
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 13, No. 6, December 2023, pp. 6817~6826 

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i6.pp6817-6826      6817  

 

Journal homepage: http://ijece.iaescore.com 

Statistical analysis of the key scheduling of the new lightweight 

block cipher 
 

 

Nursulu Kapalova1,2, Kunbolat Algazy1,2, Armanbek Haumen1, Kairat Sakan1,2 
1Laboratory of Information Security, Institute of Information and Computational Technologies, Almaty, Republic of Kazakhstan 

2Faculty of Information Technology, Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan 

 

 

Article Info  ABSTRACT 

Article history: 

Received Apr 26, 2023 

Revised Jul 18, 2023 

Accepted Jul 3, 2023 

 

 This research paper is aimed at studying the generation of round keys (GRK) 

of the lightweight block cipher (LBC), which provides an optimal balance 

between security, performance, and minimal costs in internet of things (IoT). 

For comparative analysis, the GRK of the well-known PRESENT algorithm 

was studied. A number of studies have been carried out to assess the 

cryptographic strength of encryption algorithms, however, less attention has 

been paid to the assessment of the reliability of GRK algorithms, which can 

lead to a possible weakening of a cryptosystem. A trusted GRK should issue 

random and independent round keys regardless of the secret key. The 

experiments were carried out with secret keys of low and high density, as 

well as random numbers. The obtained results show that the GRK of the 

LBC algorithm generates random round keys that successfully pass tests of 

the National Institute of Standards and Technology (NIST) for randomness. 
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1. INTRODUCTION 

Any cipher is a certain transformation of the plaintext, which depends on the key. Modern block 

ciphers include a key schedule algorithm to obtain an array of round keys from a secret key and an 

encryption algorithm. The security of a cipher depends on both algorithms and is judged by the quality and 

length of the encryption key. According to National Institute of Standards and Technology (NIST) 

requirements [1], [2], the minimum length of the encryption key should be 112 bits. In block algorithms, the 

degree of security of encrypted data directly depends on the transformations used and the algorithm for 

generating round keys (GRK) [3]. If the GRK provides a complex dependence of the round keys on the secret 

key, then many cryptanalysis methods will be inefficient. 

Round keys are directly added to the original encryption data to hide the dependency between input 

and output in a particular round. Therefore, the statistical properties of the key schedule scheme are important 

for obtaining random ciphertexts in each round [4], [5]. When developing an encryption algorithm, it is 

impossible to test all combinations of master keys. However, there is a strong possibility that deliberate 

exploration or accidental discovery may reveal some of the secret keys, leading to an unexpected weakening 

of a cipher [6]. Such secret keys are considered weak keys. Thus, the security of a GRK algorithm is just as 

important as the encryption to eliminate weak keys. Therefore, when developing an encryption algorithm, it 

is required that round keys are created using a special round key generation algorithm and depend on the 

values of most bits of the original encryption key [7], [8]. 

Compared to the requirements for the strength of an encryption algorithm, less attention has been 

paid in the literature to the requirements for the reliability of a GRK algorithm. Knudsen and Mathiassen [9] 

https://creativecommons.org/licenses/by-sa/4.0/
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indicate that the GRK is secure if all round keys are equally protected. According to Poojari and Nagesh [7], 

several attacks can use a linear relationship between round key bits. According to the authors, a GRK should 

have the property of an avalanche effect and all bits of the input keys should have the same effect on the 

output round keys. Due to this, one can achieve the maximum avalanche effect in round keys. Kelsey et al. 

[10] show that by excluding linearity in the GRK and providing an avalanche and a strict avalanche effect in 

round keys, it is possible to prevent attacks on related keys and differential attacks. 

May et al. [11] proposes three desirable properties for a GRK, namely a one-way anti-collision 

function, independence between round and secret keys, and efficient implementation. In [12], an estimate of 

the independence between the round keys generated by the GRK is presented. The authors have shown that 

the independence between round keys ensures the resistance of the GRK to a key-dependent attack.  

The reliability of the GRK algorithm depends on the functions used to generate round keys. 

Numerous GRK algorithms are proposed in scientific papers, which use various methods to generate round 

keys. For example, the block cipher international data encryption algorithm (IDEA) uses a linear function 

(rotate shift) to generate round keys [13]. Similarly, the GRK algorithm of the PRESENT block cipher uses a 

linear permutation as its main component to generate round keys [14]. However, in the PRESENT cipher, a 

non-linear function (s-box) is only used for a limited number of bits (only the outermost 4 bits). The GRK 

from the advanced encryption standard (AES) algorithm uses linear and non-linear functions to generate 

round keys [15]. 

Sulaiman et al. [16] argue that a quality key schedule should be developed using those transformations 

that are used in the main part of the cipher. This approach is used for the key schedule of the lightweight 

Serpent encryption algorithm [17]. To evaluate the reliability of the lightweight block cipher (LBC) GRK 

algorithm, a frequency test was performed, as well as tests of bit independence and bit correlation for high/low-

density keys. In this article, for comparative studies, the GRK of the PRESENT cipher is considered. 

The purpose of the research work is to evaluate the statistical security of the GRK algorithm of the 

LBC cipher. It includes the study of the cryptographic properties of the output sequence of the round key 

generation algorithm using statistical tests. If the GRK algorithm produces poor results in statistical tests, 

then it will certainly not be resistant even to basic attacks [18], [19]. 

 

 

2. METHOD  

2.1.  Block encryption algorithm LBC 

The LBC algorithm is designed to encrypt 64-bit block-type data with an 80-bit key. LBC encrypts 

for 20 rounds. Each round includes 4 types of transformation [20]: i) S transformation, ii) RL transformation, 

iii) L transformation, and iv) K transformation. 

During encryption, the original plaintext block is divided into 4 subblocks of 16 bits each. 

Encryption starts by adding the first 64 bits of the master key to the plain text as shown in Figure 1. Next, 

round transformations are performed. 

If we designate the round encryption process as E, we will get: 

 

𝐸(𝐴) = [𝐾(𝐿(𝑆(𝐴0)||𝑅𝐿(𝑆(𝐴0)) ⊕ 𝑆(𝐴1)||𝑆(𝐴2)||𝑆(𝐴3)))]𝑟𝑐 = 𝐵, 
 

where 𝐴 = {𝐴0, 𝐴1, 𝐴2, 𝐴3} is the 64-bit plaintext, {𝐴𝑖} are 16-bit subblocks, B is the 64-bit ciphertext, rc is 

the number of rounds. The RL function is executed only for the subblock {𝐴0}. That is {𝐴1} = 𝑅𝐿(𝐴0) ⨂ 𝐴1. 

Nyssanbayeva et al. [20] provides a detailed description of this encryption algorithm. 

 

2.2.  Key scheduling in encryption algorithms 

Let Y be a key of a symmetric block encryption algorithm. Then a key schedule is the system of 

functions {𝜏1, 𝜏2, … , 𝜏𝑟}, which allows extending the key Y to r keys 𝑦1, … , 𝑦𝑟 , where r is the number of 

rounds of the iterative (round) block cipher. A key schedule is a process of generating a key sequence based 

on a master key (secret key). The same numerical sequences, so-called round keys, will be used for round 

encryption procedures [21]. 

 

2.2.1. Key schedule in the LBC algorithm 

The length of the secret key (master key) of the LBC algorithm is 80 bits. From this secret key, the 

round keys of the algorithm are generated. The key schedule in the considered algorithm includes several 

transformations, which are presented in Figure 2. 

A master key of 80 bits is divided into 5 subblocks of 16 bits each. In the first step, the bits of the 

first key subblock are replaced with other bits using the S-box substitution table. The fourth subblock is 

added with the constant Nr modulo 2. Here Nr is the number of a round, which takes values from 1 to 20. In 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Statistical analysis of the key scheduling of the new lightweight block cipher (Nursulu Kapalova) 

6819 

the second step, the bits of each subblock rotate left by several positions. This procedure is performed by the 

function Ri, where i is the number of positions by which the bits of the subblock rotate. As shown in Figure 2, 

the bits of the first subblock rotate left by 6 positions, the second subblock-by 7, the third subblock-by 8, and 

the remaining subblocks-by 9 and 10 positions respectively. In the third step, the subblocks are summed by 

XOR operations with the neighboring right subblock, i.e., the first with the second, the second with the third, 

and the third with the fourth subblock. In the last step of the transformation, the subblocks rotate left by one 

position, that is, the entire subblocks are swapped. 

After the above transformations, the initial 4 sub-blocks (64 bits) of the sequence of 5 sub-blocks 

(80 bits) starting from the left are taken and then used as the encryption (decryption) round keys. The 80 bits 

obtained from the previous transformations will be used as the basis for the next round keys. This process 

continues until all round encryption keys are received. 
 

 

  
 

Figure 1. General scheme of the LBC algorithm 

encryption process 

 

Figure 2. Scheme for generating round keys of the 

LBC algorithm 

 

 

2.2.2. Key schedule in the PRESENT algorithm 

The PRESENT algorithm can accept keys of either 80 or 128 bits [22]. However, this paper will 

consider key scheduling with 80-bit master keys. The secret 80-bit key is stored in the key register Y and 

represented as a sequence of bits {𝑦79, 𝑦78, … , 𝑦0}. The first-round key is formed from 64 leftmost bits of the 

main secret key 𝑌𝑖 = {𝑦63, 𝑦62, … , 𝑦0} consists of the 64 leftmost bits of the current contents of the register Y. 

So, after the first round we have: 

 

𝑌𝑖 = {𝑦63, 𝑦62, … , 𝑦0} = {𝑦79, 𝑦78, … , 𝑦16} 

 

After extracting the round key Yi, the key register 𝑌 = {𝑦79, 𝑦78, … , 𝑦0} is updated as: 

 
[𝑦79, 𝑦78, … , 𝑦1, 𝑦0] = [𝑦18, 𝑦17, … , 𝑦20, 𝑦19], 
[𝑦79, 𝑦78, 𝑦77, 𝑦76] = 𝑆[𝑦79, 𝑦78, 𝑦77, 𝑦76], 
[𝑦19, 𝑦18, 𝑦17, 𝑦16, 𝑦15] = [𝑦19, 𝑦18, 𝑦17, 𝑦16, 𝑦15]⨁𝑟𝑜𝑢𝑛𝑑_𝑐𝑜𝑢𝑛𝑡𝑒𝑟. 
 

Thus, the key register rotates left by 61 positions, then the leftmost four bits are passed through the 

S-box of the main encryption algorithm. The round_counter value is added to the 𝑦19𝑦18𝑦17𝑦16𝑦15 bits from 

the key register Y. These procedures are repeated 31 times until the last round key is obtained. 

 

2.3.  Evaluation 

This section discusses key schedule estimates in the LBC algorithm. The following data types were 

selected for testing: high-density key (HDK) sequence, low-density key (LDK) sequence, and random 

density key (RDK) sequence. The HDK sequence consists mainly of ‘1’ bits and contains only one or two ‘0’ 

bits. On the contrary, LDK consists mostly of ‘0’ bits and contains only one or two ‘1’ bits. RDK is a random 

sequence of bits. Such a scheme of initial data was taken from [19]. 

In this paper, we give an estimate of the quality of the GRK of the LBC algorithm. To compare the 

results, work was also carried out to evaluate the key schedule of the PRESENT-80 algorithm. All initial data 
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(HDK, LDK, and RDK) are 80 bits long and will serve as a secret key for the GRK of the LBC and 

PRESENT algorithms. The following tests were used to assess the quality and reliability of the key schedule 

of the algorithms: frequency test, bit difference between round keys, Hamming weight test, and avalanche 

effect in round keys. 

 

2.3.1. Frequency test 

The focus of the test is on the ratio of zeros and ones for the entire sequence. For numeric key data 

generated by round keys, the number of 1s and 0s in the sequence should be approximately equal. Thus, the 

frequency test is the basic NIST test for proving the randomness of numerical sequences in round keys  

[23], [24]. If any GRK fails to produce random round keys, then there is no need to conduct any further tests 

since they impose more stringent requirements, and the algorithm will certainly not comply with them [19]. 

An estimate in the frequency test can be obtained using formulas (1)-(3). To conduct a frequency test, we 

perform the following operations [23]: 

a. Convert the zeros and ones of the input sequence to -1 and +1, respectively, and sum to obtain 

 

𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 = 2𝜀𝑖 − 1, (1) 

 

where 𝜀𝑖 are the bits of the input sequence. 

b. Calculate test statistics: 

 

𝑆𝑜𝑏𝑠 =
|𝑆𝑛|

√𝑛
. (2) 

 

c. Calculate p-value: 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑒𝑟𝑓𝑐 (
𝑆𝑜𝑏𝑠

√2
); (3) 

 

where 𝑒𝑟𝑓𝑐 is the complementary error function. 

To estimate the key schedule of both algorithms, we used 10,000 secret keys. All these keys were 

combined into one file. In each round, the keys are also written to one file. Since the LBC algorithm consists 

of 20 rounds of encryption, 20 round keys were taken for testing, that is, 20 separate files with a round key in 

each. To compare the test results, 20 round keys were also taken from the PRESENT algorithm. Each file 

was individually tested with the frequency test. 

The frequency test evaluates the calculated p-value from the input bit sequence. The p-value 

indicates the probability of obtaining the observed results given that the null hypothesis is true, or the 

probability of error if the null hypothesis is rejected. Based on the calculated p-value, it is decided that if the 

p-value is ≥0.01, then the sequence is considered pseudo-random, otherwise it is non-random [23]. 

 

2.3.2. Bit difference between round keys 

The purpose of this test is to identify the complex relationship between round keys [19] by assessing 

confusion in round keys. Two consecutive round keys are summed by the XOR operation and the total 

number of 1 s in the resulting vector is calculated. A reliable key schedule provides a bit difference of 50%, 

which greatly complicates the statistical relationship between the secret key and the round keys. 

 

2.3.3. Hamming weight test 

Hernandez-Castro et al. [25] performed a probabilistic metaheuristic search. In doing so, they 

identified a set of round keys that had very low Hamming weight. In differential cryptanalysis, such keys will 

be an ideal basis for attacking the encryption algorithm. A perfectly balanced binary sequence of n bits 

should have a Hamming weight of n/2 [25]. 

In the LBC algorithm, only the leftmost 64 bits of the key sequence are used for the encryption 

process in each round, and the remaining bits are not considered during the encryption process. Thus, the 

Hamming weight of round keys is calculated for these 64 bits. Since, in our case, the value of n is 64, then 

the ideal value of the Hamming weight for each sequence is n/2=32. The LBC algorithm uses 20 round keys. 

Therefore, the value of the Hamming weight should be 20 rounds×32 bits=640 bits. This is 50% of the total 

number of bits. In this test, the same key is used as the secret key for both the LBC algorithm and the Present 

algorithm, and the Hamming weight for each round key is calculated by (4): 

 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1 𝑏𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠
 (4) 
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2.3.4. Avalanche effect in round keys 

The avalanche effect (AE) in encryption algorithms estimates the degree to which the ciphertext 

changes when one-bit changes in the corresponding plaintext or secret key. This test determines the nonlinear 

characteristics of the transformations used in the proposed algorithm. The best avalanche effect is 50% or 

more, ensuring that changing any bit of the secret key affects the bits of the ciphertext [26]. 

The avalanche effect is calculated using (5): 

 

𝐴𝐸 =
1

𝑥
∑ |𝑐𝑖 − 𝑝𝑖|𝑥

𝑖=1  (5) 

 

where x is the length of the plaintext (ciphertext), 𝑐𝑖 is the ith bit of the ciphertext, and 𝑝𝑖  is the ith bit of the 

plaintext. The resulting value is converted into a percentage for comparison using (6). 

 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 = 𝐴𝐸 × 100. (6) 

 

For this criterion, the sequences LDK, HDK, and RDK described in subsection 2.3 were used. 

At the beginning of testing, based on the selected key, the round keys 𝐾𝑖
′. are generated. Then we change one 

bit of the original key and generate the round keys 𝐾𝑖
′.  

 

𝐾𝑖
′ = {𝑘1

′ , 𝑘2
′ , … , 𝑘𝑟𝑐

′ }; (7) 

 

Where i is the position of the changed bit of the original key and 𝑟𝑐 is the sequential number of the round. 

Using the formula (5), we find the values of 𝐴𝐸 for each round. In each iteration, we change the 

next bit of the original key and find new values of 𝐴𝐸. This method was used to study the round keys of the 

LBC and PRESENT-80 algorithms. 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Frequency test 

The results of the frequency test are considered to be the decisive factor for the key sequence 

generated by the GRK of the encryption algorithm. If the key sequence passes the frequency test, then the 

round keys are considered random. Otherwise, there is no need to perform other statistical tests. 

A set of 10,000 random secret keys was used to test the GRK of both studied algorithms. The key 

sequences generated by the GRK of the LBC and PRESENT algorithms pass the frequency test. Since the 

GRK input data were random, the generated round key sequences were also random. This indicates that the 

GRK of the LBC and PRESENT algorithms generate key sequences that are close to random. 

Table 1 shows the pass rate of 20 round keys obtained from random secret sequences using the GRK 

of the algorithms under study. The average p-value of the LBC algorithm is ~0.58, while that of the 

PRESENT algorithm is ~0.46. These results show that if the secret key is random, then a good frequency can 

be achieved using round keys. 

 

 

Table 1. Average p-value of round keys 
Round LBC PRESENT Round LBC PRESENT 

1 0.82 0.88 11 0.15 0.55 
2 0.19 0.84 12 0.99 0.32 
3 0.52 0.66 13 0.90 0.30 
4 0.05 0.50 14 0.36 0.67 
5 0.83 0.44 15 0.32 0.43 
6 0.45 0.49 16 0.95 0.31 
7 0.59 0.34 17 0.83 0.15 
8 0.50 0.34 18 0.60 0.12 
9 0.91 0.25 19 0.18 0.43 

10 0.39 0.34 20 0.99 0.88 

 

 

3.2.  Bit difference between round keys 

As in other algorithms, in LBC round keys are summed with round data modulo 2 (XOR operation). 

Therefore, if the round keys are pseudo-random, then the encrypted data, when summed with such keys, will 

be less predictable and more random. The test evaluates the average value of the bit difference for random 

secret keys. For testing, three types of sequences for the secret key were used: LDK, HDK, and RDK.  

50 secret keys of each type were chosen. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 6817-6826 

6822 

Tables 2 and 3 show the percentage of bit differences between two consecutive round keys 

generated by the LBC GRK and the PRESENT GRK, respectively. As the results of the study show, for the 

LBC algorithm, the average value of the differences of the round keys of three types is approximately the 

same: LDK-49.32%, HDK-49.97%, and RDK-50.41%. At the same time, the PRESENT algorithm has these 

results: LDK-33.05%, HDK-34.44%, and RDK-49.87%. With keys of the LDK type, the percentage of bit 

difference ranges from 39% to 51% for the LBC algorithm and from 11% to 52% for the PRESENT 

algorithm. A good result was shown by keys of the RDK type: from 49% to 51% for both algorithms. Ideally, 

the bit difference between round keys should be at least 50%. Weak bit changes in the initial rounds can help 

attackers predict the keys of previous rounds and gain access to the secret key. Figure 3 shows the average 

percentage bit differences between the generated round keys of the LBC and PRESENT algorithms. 

 

 

Table 2. Results of calculating the differences between the round keys of the LBC algorithm 
y(i) XOR 

y(i+1) 

LBC 

HDK LDK Random Keys Average 

Number of 

Bit Diff. 

% of Bit 

Diff. 

Number of 

Bit Diff. 

% of Bit 

Diff. 

Number of 

Bit Diff. 

% of Bit 

Diff. 

 

y1+y2 35.96 44.95% 31.2 39.00% 41.08 51.35% 45.10% 
y2+y3 40.86 51.08% 36.4 45.50% 40.02 50.03% 48.87% 

y3+y4 38.66 48.33% 40.06 50.08% 40.82 51.03% 49.81% 

y4+y5 40.54 50.68% 39.98 49.98% 41.32 51.65% 50.77% 
y5+y6 39.64 49.55% 39.6 49.50% 39.94 49.93% 49.66% 

k6+y7 40.4 50.50% 39.9 49.88% 40.12 50.15% 50.18% 

y7+y8 40.6 50.75% 39.8 49.75% 40.64 50.80% 50.43% 
y8+y9 40.22 50.28% 40.5 50.63% 40.02 50.03% 50.31% 

… … … … … … … … 

y18+y19 41.32 51.65% 40.28 50.35% 39.68 49.60% 50.53% 
y19+y20 40.06 50.08% 40.94 51.18% 39.82 49.78% 50.34% 

Average 39.98 49.97% 39.45 49.32% 40.33 50.41% 49.90% 

 

 

Table 3. Results of calculating the differences between the round keys of the PRESENT algorithm 
k(i) XOR 

k(i+1) 

PRESENT 

HDK LDK 
 

Random Keys Average 

Number of 

Bit Diff. 

% of Bit 

Diff. 

Number of 

Bit Diff. 

% of Bit 

Diff. 

Number of 

Bit Diff. 

% of Bit 

Diff. 

y1+y2 10.1 12.63% 9.3 11.63% 40.98 51.23% 25.16% 
y2+y3 11.04 13.80% 10.22 12.78% 40.28 50.35% 25.64% 

y3+y4 14.56 18.20% 14.58 18.23% 38.28 47.85% 28.09% 

y4+y5 14.7 18.38% 13.82 17.28% 40.04 50.05% 28.57% 
y5+y6 18.1 22.63% 16.4 20.50% 39.44 49.30% 30.81% 

y6+y7 18.16 22.70% 17.34 21.68% 40 50.00% 31.46% 

y7+y8 23.36 29.20% 22.54 28.18% 40.12 50.15% 35.84% 
y8+y9 23.28 29.10% 22.42 28.03% 39 48.75% 35.29% 

… … … … … … … … 
y18+y19 41.28 51.60% 39.34 49.18% 40.18 50.23% 50.33% 

y19+y20 44.8 56.00% 41.88 52.35% 39.7 49.63% 52.66% 

Average 27.55 34.44% 26.44 33.05% 39.90 49.87% 39.12% 

 

 

3.3.  Hamming weight test 

Round keys with low Hamming weights can be helpful in differential cryptanalysis attacks, as 

discussed earlier. For testing, again, 50 secret keys of each of the three types were selected: LDK, HDK, and 

RDK. Based on these secret keys, round keys were generated. For each key, the Hamming weight was 

calculated using (4). The results obtained are shown in Table 4. With the LDK and HDK keys, the LBC 

algorithm deviates from the optimal value of the Hamming weight by only 1.49% and 1.31%, while the 

PRESENT algorithm deviates much more -19.74% and 19.75%, respectively. With RDK keys, both 

algorithms take approximately the same values as shown in Table 4. It can be seen from the results that the 

LBC algorithm generates round keys with the Hamming weight from 48% to 50% for any type of secret key 

as shown in Figure 4.  

 

3.4.  Avalanche effect in round keys 

To test the avalanche effect in round keys, one key of each of the HDK, LDK, and RDK types was 

selected. First, round keys were generated from the master key using the GRK. In the second step, we 

changed the first bit of the master key and again generated round keys. The resulting two groups of round 
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keys were compared using (5), but here we were looking for the difference between the bits of the two groups 

of round keys. In each next step, the next bit of the master key was changed. In this way, indicators of the 

avalanche effect were calculated for each changed bit position of the master key. The test was carried out for 

each of the two algorithms separately. According to the test results, the avalanche indicator of the round keys 

of the LBC algorithm averaged ≈37%, while the same indicator of the PRESENT algorithm averaged ≈2%. 

The average values of the avalanche effect are shown in Table 5. 

 

 

 
 

Figure 3. Average values of the percentage of bit differences between the generated round keys of the LBC 

and PRESENT algorithms 

 

 

Table 4. Average value of the Hamming weight of round keys 
Key type LDK HDK RDK 

Algorithm LBC PRESENT LBC PRESENT LBC PRESENT 

Average value of Hamming weight 48.51% 30.26% 48.69% 69.75% 50.08% 49.95% 

 

 

 
 

Figure 4. Average values of the Hamming weight of the LDK type round keys 
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Table 5. Average values of the avalanche effect of round keys 
Algorithm HDK LDK RDK 

LBC 37.39% 37.45% 37.50% 
PRESENT 2.24% 2.25% 2.21% 

 

 

Table 5 shows that the avalanche effect in the round keys of the PRESENT algorithm is very low. 

This is because the non-linear transformation in the key schedule of this algorithm has very little effect on the 

bits of the key sequence. In the key schedule of the PRESENT algorithm, only the 4 extreme bits of the key 

sequence pass through the S-box (substitution table) in each round. Besides, beats 15 to 19 are added to the 

round number. This process also reduces the influence of the key sequence on the avalanche effect. In the 

LBC algorithm, the S-box operates on 16 bits in each round, and after rotate shifts, each block passes through 

the S-box. Therefore, the avalanche effect of this algorithm is higher than that of the PRESENT algorithm as 

shown in Figures 5, 6, and 7. 

 

 

 
 

Figure 5. Average values of the avalanche effect of HDK-type round keys 

 

 

 
 

Figure 6. Average values of the avalanche effect of LDK-type round keys 

 

 

 
 

Figure 7. Average values of the avalanche effect of RDK-type round keys 

 

 

In this test, we calculated avalanche effect values only for round keys. In [19], the same test was 

carried out together with the original text. Obviously, with such tests, the avalanche rate will be higher than 

that of tests for round keys. 
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4. CONCLUSION  

This study aims to investigate the security impact of existing key scheduling procedures in the 

lightweight LBC and PRESENT symmetric block cipher algorithms. The results show that the GRK of the 

LBC algorithm demonstrates good statistical performance. The PRESENT algorithm GRK provides random 

round keys only when the secret key is random, but the LBC key schedule provides round key randomness 

for low-density keys, high-density keys, and random secret keys. The key sequence generated by the GRK of 

the LBC algorithm has completely passed the frequency test. The average value of the percent differences in 

bits between the generated round keys of the LBC algorithm is approximately 50%, which proves the good 

quality of the key schedule. The Hamming weight of the round keys of the algorithm is also within the 

normal range. The indicators of the avalanche effect of the round keys of the LBC algorithm had an average 

value of ≈37%. This means that the key schedule of the LBC algorithm is provided with a sufficient level of 

security for the encryption algorithm itself. 
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