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 Statistical-based feature extraction has been typically used to purpose 

obtaining the important features from the sky image for cloud classification. 

These features come up with many kinds of noise, redundant and irrelevant 

features which can influence the classification accuracy and be time 

consuming. Thus, this paper proposed a new feature selection algorithm to 

distinguish significant features from the extracted features using an ant 

colony system (ACS). The informative features are extracted from the sky 

images using a Gaussian smoothness standard deviation, and then 

represented in a directed graph. In feature selection phase, the self-adaptive 

ACS (SAACS) algorithm has been improved by enhancing the exploration 

mechanism to select only the significant features. Support vector machine, 

kernel support vector machine, multilayer perceptron, random forest,  

k-nearest neighbor, and decision tree were used to evaluate the algorithms. 

Four datasets are used to test the proposed model: Kiel, Singapore whole-sky 

imaging categories, MGC Diagnostics Corporation, and greatest common 

divisor. The SAACS algorithm is compared with six bio-inspired benchmark 

feature selection algorithms. The SAACS algorithm achieved classification 

accuracy of 95.64% that is superior to all the benchmark feature selection 

algorithms. Additionally, the Friedman test and Mann-Whitney U test are 

employed to statistically evaluate the efficiency of the proposed algorithms. 
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1. INTRODUCTION 

The classifying of the cloud type from ground-based sky images is continually receiving 

attention. The different forms of cloud have an impact on both weather prediction and the exchange of 

energy between the atmosphere and the Earth’s surface [1], [2]. The variations of cloud images which 

depend on various atmospheric circumstances are the primary distinction between cloud images and other 

images. A cloud does not always have a definite spatial distribution. Even clouds of the same genus can 

vary in size and shape. Additionally, sophisticated examples of curving shapes, crossing borders, and 

angles can be seen in the structure information and cloud distribution [3]–[5]. The various identification 

technology equipment to collect sky photographs include meteorological balloons, satellites-based, and 

ground-based [6], [7]. The meteorological balloon and satellite-based approach’s cloud-system enable the 

direct observation on how clouds affect the earth’s radiation at the top of the atmosphere. The purpose of a 

ground-based approach is to use the local area and observe cloud bottoms in order to get whole data of the 

https://creativecommons.org/licenses/by-sa/4.0/
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cloud. These ground-based sky images are readily available, relatively inexpensive, and of high spatial 

resolution [8]. 

Creating significant features that can be used to distinguish between different cloud types in  

ground-based sky image is a crucial issue in this field. Different algorithms have been used to extract many 

visual attributes from sky images, such as texture, color, and shape, which will be taken into account when 

determining the type of cloud. The work in [9] was the first to accomplish automated cloud classification and 

combines spectral and textural attributes using the grey level co-occurrence matrix. The k-nearest neighbor 

(KNN) classifier with random test sample successfully categorizes seven different sky patterns with an 

accuracy of 87.52%. In [4], a method for feature extraction that uses the average ranking of occurrence 

patterns of all rotation-invariant patterns offered in the local binary pattern (LBP) was described. A cloud 

image becomes more robust when the occurrence rates are in various changing patterns. Four patch-LBP and 

region LBP technique have also been proposed in [1]. Support vector machine (SVM) and linear discriminant 

analysis are used to classify the various cloud types represented in a histogram. However, insignificant 

extracted features occur during the selection of the most important feature set. 

Feature selection technique is the preprocessing process that aims to minimize the dimensionality of 

the data which gets only the significant feature subset as small as conceivable that are supplied to the learning 

algorithm [10]. The majority of researchers have addressed the feature selection problem for image 

classification task by using the bio-inspired algorithms [11]. The grey wolf optimization (GWO) [12], ant 

colony optimization (ACO) [13], and bat algorithm (BA) [14] are examples of these techniques, which are 

used for prioritizing features and improving classification accuracy. The development of an intelligent 

transportation system with traffic sign detection and recognition system based on the ACO algorithm was 

proposed by Jayaprakash and KeziSelvaVijila [15]. This work has achieved significant progress when tested 

on public road sign database. Liu et al. [14] has presented a feature selection method to increase the final 

detection accuracy for image steganalysis. The relevant binary feature subset was retrieved from the whole 

feature set by using BA. A levy flight based and GWO was also proposed in [12] to address feature selection 

for image steganalysis. 

A modified version of the ant lion optimizer (ALO) algorithm with a wavelet SVM classifier was 

proposed in [16] for overcoming the high correlation bands in hyperspectral image classification. This 

method performed better than previous algorithms because of its ability to leverage the global best ants in the 

local search. In [17], a feature subset of computed tomography images was generated using the ACO 

algorithm with a rough dependency measure. SVM and naïve Bayes classifier were trained on the selected 

subsets to predict lung cancer disease. These techniques experience early convergence and are drawn towards 

regional optimum areas. ACO-based feature selection has also been proposed in the high dimensional space 

of image classification problem [13]. Nevertheless, the ACO algorithm has low classification accuracy due to 

premature convergence and poor balance between exploitation and exploration mechanism. 

The ant colony system (ACS) was first presented by Dorigo and Stützle [18]. The ACS improved 

the ACO algorithmic in three different ways [19], [20]. The state transition rule for determining the route to 

the next node is first replaced with an aggressive action choice between exploitation and exploration. Second, 

the procedure for updating the global pheromone rule will deposit pheromone on the routes of the best ant’s 

tour. Finally, the ants ignored some pheromone trails along the previously traveled path to increase 

deliberation of other remaining paths [21]. The accuracy and effectiveness of ACS are considerably higher 

than those of other algorithms because there are not many parameters that have to be modified to aid in the 

identification of significant features. This ability dealt with the nonlinear global optimization problem and 

was initially developed for finding the shortest path of the travelling salesman problem [22]. Other 

combinatorial optimization problems that have been tackled using ACS, including vehicle routing [23], job 

scheduling [24], network communication [19], [25] and image processing [26]. However, the ACS’s 

exploring mechanism is ineffective. In the search step, which is carried out using the trail-and-error method 

and is error prone while the fundamental of the local pheromone update parameter are fixed and  

maintained constant. Additionally, effective results might not always be reproducible. In this paper, the ACS 

exploration mechanism for selecting significant features is also proposed. The remainder of the paper is 

organized as follows: section 2 describes the method of the proposed algorithm and dataset collection while 

section 3 presents the experimental findings and discussion. Finally, section 4 gives the conclusion and 

recommendations for future works. 

 

 

2. METHOD  

2.1.   Proposed algorithm 

This section provides the self-adaptive ACS (SAACS) algorithm for feature selection. Figure 1 

displays three main components i.e., i) the feature extraction and graph modeling, ii) the SAACS algorithm, 
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and iii) the classification process. The first component will produce the weighted directed graph data to 

SAACS. The SAACS will provide the significant feature subset to be used in the classification process. The 

SAACS algorithm uses the sigmoid function to adaptively control the amount of local pheromone update 

value, drawing inspiration from the activation function of neural networks [27]. The experiments are 

assembled using a different number of features in order to determine the influence of these different 

selections on accuracy results. First, the sky images were rescaled in fixed size 500500 pixels and converted 

into greyscale. Next, we randomly select 70% of sky images for training and 30% of sky images for testing. 

The classifier is SVM, multilayer perceptron (MLP), kernel support vector machine (KSVM), KNN, decision 

tree (DT), and random forest (RF). 

 

 

 
 

Figure 1. SAACS feature selection algorithm 

 

 

The graph modeling part is intended to represent the sky image obtained from the feature extraction 

technique and thus provide the search space for selecting the significant features. The search space presented 

as a pair (F, V), where F is a feature and V assigned as an intensity value 𝑉(𝑓𝑖)[0,255] to each feature 
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𝑓𝑖=(𝑥𝑓𝑖
, 𝑦𝑓𝑖

)𝐹. 𝑥𝑓𝑖
 and 𝑦𝑓𝑖

 indicate the position x and y of feature 𝑓𝑖  respectively. The n features are 

presented as 𝑓1, 𝑓2,…, 𝑓𝑛 in the graph modeling 𝐺 = (𝑣, 𝑒), where node 𝑣1 is presented as feature 𝑓1 and e is 

the edge link to the nearest node. The directed graph is formed by connecting the two nodes 𝑣𝑖 and 𝑣𝑗 if the 

weight of the related features of two nodes is more than 1. 

The SAACS for feature selection starts by initialization of the parameters as shown in Table 1. 

Nodes 𝑓𝑖 are related to pheromone values 𝜏𝑖. Each ant k is distributed to a particular node in the first step, 

which can travel and consider any other node in the graph 𝑠𝑘 ← {𝑓𝑖}, where 𝑠𝑘 is the subset by ant k. Ants 

carry out a forward selection in which each ant k grows its subset 𝑠𝑘 incrementally by adding new features. 

Each ant 𝑘 explores all features in the set 𝑁 − 𝑠𝑘 and selects the following feature to include in 𝑠𝑘 based on 

the ACS-based feature selection algorithm. 

 

 

Table 1. Parameter setting for SAACS algorithm 
Parameter Description Value 

𝑚 Amount of ant 50 

𝐼 Iterations 50 

𝜌 Pheromone decay 0.5 

𝜏0 Initial amount of pheromone on the edges 0.5 

𝛼 Importance of the pheromone value 0.12 

𝜂 Heuristic value 0.5 

𝛽 Importance of heuristic value 1.22 

𝑞0 Exploration/exploitation parameter 0.3 

 

 

Ant transition in SAACS algorithm is where each ant will choose a feature subset at random from a 

total of 𝑚 features. In the first stage, each ant selects a node that corresponds to its direction in time t. The 

random transition utilizing the proposed in (1) and (2), 

 

𝐽 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝑁𝑖

𝑚{𝜏𝑖𝑙[𝜂𝑖𝑙]
𝛽}  𝑖𝑓 𝑞 ≤ 𝑞0

𝑍𝑖𝑗
𝑚                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

where parameter 𝑞0 is specified as 0 ≤ 𝑞0 ≤ 1 and q is a random variable with uniform distribution in the 

closed interval [0,1]. 𝑍𝑖𝑗
𝑚 is established using: 

 

𝑍𝑖𝑗
𝑚 =  𝜆[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽 , 𝑗 ∈  𝑁𝑖

𝑚 (2) 

 

where α and β are two parameters for balancing the weights between the pheromone and heuristic value, and 

𝑁𝑖
𝑚 refers to the neighbor nodes of node i which ant m has not yet visited. 

The total number of features is given by the value of N. The amount of pheromone for each feature 

in the initial iteration was assigned a minimal random value. Heuristic value also influences a feature’s 

productivity. The mean decrease in impurity, which offers a relative feature importance, is used to set the 

value of 𝜂𝑖𝑗. The relative by ordering the relevance of the features is provided by this feature significance 

score [28]. 

The ACS-based selection process included the ant transition and local pheromone update rule as two 

crucial steps to improve the exploration mechanism. The transition probability of ACS is used to determine 

whether the current λ is dominated or not. As a result, the ants determine which features are sufficiently 

significant to include in the feature set based on the value of a parameter λ. In other words, these important 

steps are guided by the appropriate λ value for direct subset formation which can maximize dependency and 

minimize redundancy among the features. 

In the global pheromone updating process, the quantity of pheromones of each chosen node and 

feature is updated once each iteration 𝑖 of the graph has been fully traversed by all the ants. The updating rule 

is carried out by utilizing the (3) [29] to update the quantity of pheromone for each feature.  

 

𝜏𝑖𝑗 ←  𝑓(𝑥) = {
(1 − 𝜌)𝜏𝑖𝑗 + 𝜌∆𝜏𝑖𝑗

𝑏𝑠       ∀(𝑖, 𝑗) ∈ 𝑇𝑏𝑠

𝜏𝑖𝑗                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

where ρ is the evaporation factor, 𝜏𝑖𝑗 corresponds to the current quantity of pheromone on the link (𝑖, 𝑗), 𝑇𝑏𝑠 

is the iteration’s best tour so far, and ∆𝜏𝑖𝑗
𝑏𝑠 is the reward provided to the best tour. 
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Each node that has been visited will undergo the local pheromone update procedure by the 

corresponding ant [29]. As a result, choosing an appropriate pheromone level is essential to navigate the 

search space and discovering the most comprehensive optimal solution. In the early stages of the evolution 

process, all individuals are motivated to thoroughly explore the entire search space. The ants are then 

encouraged towards convergence to the global optimum and establish the optimal solution in a later stage of 

the process. The local pheromone update is proposed to be adaptively controlled using an adaptive weighting 

strategy through the proposed (4). This is done by employing a sigmoid function based on feedback 

collection and reward mechanism for determining the significant features to be included in the final subset. 

Significant features are determined according to (5) [27], 

 

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 + (1 −  𝜆(𝜏𝑖𝑗))𝜏0 (4) 

 

where 𝜆 is weighted activation function and 𝜏0 is the initial pheromone value,  

 

𝜆(𝑥) = (
1

1+𝑒−𝑥) (5) 

 

where e is the natural logarithm and 𝑥 is the input to the function which is determined by (4). 

The evaluation function is the core component of any feature selection method. The function 

evaluates the quality of engaging features based on their abilities to distinguish between various classes to 

determine the optimality of subsets. The wrapper technique is used in this study’s evaluation process. This 

approach evaluates various combinations of features using a learning algorithm, and after a number of 

evaluation rounds, the best optimal features are shown.  

The experiments are repeated 50 times and the average accuracy is used for comparison. This 

implies some sort of classification decision feedback mechanism and evaluation criteria to modify the 

searching of significant features. The average of all the fitness functions has been calculated. Following 

convergence, the best ant’s relevant feature set was chosen to prune the feature dimension. The fitness 

function 𝑓(𝑠) of solution 𝑠 is defined as in (6) [28]. 

 

𝑓(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑠)) (6) 

 

2.2.  Dataset 

The widely accepted sky image datasets i.e., Kiel, Singapore whole-sky imaging categories 

(SWIMCAT), MGC Diagnostics Corporation (MGCD), and greatest common divisor (GCD) were used in 

this study. Experiments are conducted on different benchmark classification problems available in the 

literature to demonstrate the performance of the proposed algorithm. The description of the datasets is shown 

in Table 2. Figure 2 displays the images and classes of all four datasets. The Kiel and SWIMCAT is a small 

dataset, but MGCD and GCD are very large datasets.  

A calibrated ground-based WSI created by [30] in Singapore between January 2013 and May 2014 

is presented in Figure 2(a). The automatic wide angled high-resolution sky imaging camera collected image 

patches for the whole-sky imaging categories database. This database included images from each of the 5 

cloud categories. A total of 784 image patches were chosen. Each image patch size is 125125 pixels. 

Kiel dataset categorizes sky images into 7 classes with a resolution of 2,2721,704 pixels as shown 

in Figure 2(b). The sky images were captured when a German researcher’s team was studying a project 

named “Polarstern” during a transit of a research vessel. The sky images are different in illumination and 

intra-class variation. Different climates, seasons, and sunray angles impact upon the various images. This sky 

image dataset is programmed by capturing one sky image every 15 second [9]. Heinle et al. [9] selected 

approximately 1,500 sky images from a total of 75,000 based on independent time and with respect to 

predefined universal cloud classification system. 

The MGCD dataset as shown in Figure 2(c) contains 8,000 cloud samples in JPEG format. This 

dataset was captured using a sky camera with a fisheye lens of size 1,0241,024 pixels. The WMO’s 

taxonomic classification guidelines and similarities in cloud appearance were used by the MGCD to 

categorize the sky conditions into 7 sky classes. “Mix cloud” are a category of cloud where at least two 

distinct cloud types are typically presented. Additionally, sky image with 10% or less cloud coverage is 

regarded as clear sky [31], [32]. 

The largest GCD dataset in Figure 2(d) which comprises 19,000 cloud images, was collected by 

camera sensors in nine Chinese regions. GCD has a lot of variation in sky condition because it was gathered 

over an extended period. GCD includes 7 different types of clouds according to the WMO’s classification 

rules. The resolution of cloud images in GCD is 512512 pixels, and they are recorded in JPEG format  

[8], [32]. 
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Table 2. Datasets summary 
Dataset Number of classes Number of images Training Testing Size 

Kiel 7 1,500 1,050 450 Small 
SWIMCAT 5 784 548 235 Small 

MGCD 7 8,000 5,600 2,400 Very large 

GCD 7 19,000 13,300 5,700 Very large 
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Figure 2. Representation of four sky image datasets (a) SWIMCAT, (b) Kiel, (c) MGCD, and (d) GCD 

 

 

3. RESULTS AND DISCUSSION 

Experiments were carried out on the four datasets to evaluate the SAACS algorithm. The classifiers 

that were used in the classification process are SVM, KSVM, MLP, RF, KNN and DT. Six benchmark  

bio-inspired algorithms have been successfully used for performance comparison namely, road sign detection 

and recognition (RSDR) [15], levy flight-based GWO (LFGWO) [12], binary BA (BBA) [14], ACO [13], 

modified ALO (MALO) [16], and ACO with rough dependency measure (ACO_RDM) [17]. The 

classification accuracy, number of selected features, similarity score, precision, recall and f-measure metrics 

are used as the algorithm performances. Calculation of the accuracy is as given in (7) [33] which indicates of 

the correctly classified cloud type from the total number of samples in the dataset. 

 

%Accuracy = (
number of correctly classify samples

total number of samples
) ×100 (7) 

 

Precision detects the rate of true positives among all positive values while recall is used to compute the 

capability of the positive case. A harmonic mean of recall and precision is measured using the f-measure. 

Precision, recall and f-measure are computed using (8), (9) and (10) respectively as:  

 

Precision=(
∑ True Positve

∑ Predicted condition positive
) ×100 (8) 
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Recall=(
∑ True Positve

∑ Condition positive
) ×100 (9) 

 

F-measure=2×
Positive predictive value × True positive rate

 Positive predictive value+True positive rate
 (10) 

 

Cosine similarity is used to determine the angle between two features’ cosine value. This measurement provides 

details regarding the direction of two feature vectors without taking into account their magnitudes. The 

similarity is measured using (11) [17] as:  

 

sim (f
i
,f

j
) = 

∑
m

a=1(fia,fja)

√( ∑
m

a=1fia
2

)( ∑
m

a=1fia
2

)

 (11) 

 

where 𝑓𝑖, 𝑓𝑗 are any two features in 𝑚 feature vectors. The performance of the algorithms was also compared 

using Friedman test and Mann-Whitney U test. Friedman test is used to generate a ranking across multiple 

algorithms. This nonparametric statistical test is to ascertain the average categorization accuracy rank of the 

algorithms. The smallest value for the rank implies the best performance [34]. Mann-Whitney U test is used 

to show a significant difference between two independent groups. The 𝑝 value of the Mann-Whitney U test 

will reveal whether there is significant difference in the algorithm’s performance [35]. 

The results of number of selected features and cosine similarity of the algorithms is shown in  

Table 3. In summary, SAACS has achieved best similarity value in Kiel, SWIMCAT and MGCD datasets 

while for the GCD dataset, the SAACS has obtained the smallest number of selected features. Table 4 

tabulates the average classification accuracy for all four datasets which are combined to form a single dataset. 

The figure in parenthesis is the performance rank. The results demonstrate that SAACS reaches the best 

average accuracy compared to other algorithms. Through the use of the Gaussian smoothness standard 

deviation, the possibility of capturing the dominant information in sky images as well as applicable to the 

accurate classification is increased. This technique contributes the mean information of pixel distribution in 

each of the patch hierarchical properly in the sky image. Then, graph modeling technique is introduced to 

create the relationship between features for highlighting the high relevance features. Furthermore, the final 

feature subset is selected by formulating activation function in local pheromone update value and heuristic 

information to selecting the significant features in every step of ant.  

 

 

Table 3. Number of selected features and cosine similarity of each algorithm for each dataset 
Algorithm Kiel SWIMCAT MGCD GCD 

No. of 

selected 

features 

Similarity 

value 
No. of 

selected 

features 

Similarity 

value 
No. of 

selected 

features 

Similarity 

value 
No. of 

selected 

features 

Similarity 

value 

RSDR 1,898 0.81 1,936 0.88 1,890 0.94 1,912 0.92 
LFGWO 526 0.92 636 0.97 632 0.87 654 0.94 

BBA 1,806 0.91 1,850 0.97 1,865 0.9 1,902 0.92 
ACO 1,871 0.92 1,864 0.96 1,840 0.87 1,738 0.92 

MALO 1,834 0.93 1,845 0.96 1,734 0.89 1,749 0.88 
ACO_RDM 1,643 0.84 1,482 0.92 1,368 0.91 1,412 0.85 

SAACS 63 0.97 64 0.98 83 0.96 100 0.93 

 

 

Table 4. Average classification accuracy for combined datasets 
Classifier Algorithm 

RSDR (%) LFGWO (%) BBA (%) ACO (%) MALO (%) ACO_RDM (%) SAACS (%) 

KSVM 80.92 
(7) 

84.7 
(2) 

83.68 
(3) 

83.32 
(4) 

82.05 
(5) 

81.69 
(6) 

89.86 
(1) 

MLP 80.07 

(7) 
86.15 

(2) 
84.76 

(3) 
84.14 

(4) 
82.85 

(6) 
83.84 

(5) 
88.59 

(1) 
RF 82.96 

(7) 
88.24 

(2) 
87.7 

(3) 
86.32 

(6) 
87.15 

(4) 
87.81 

(5) 
95.64 

(1) 
SVM 74.1 

(7) 
85.35 

(2) 
79.74 

(5) 
81.41 

(4) 
82.99 

(3) 
77.38 

(6) 
85.55 

(1) 
KNN 79.72 

(6) 
84.02 

(2) 
83.41 

(3) 
77.34 

(7) 
81.82 

(4) 
79.32 

(5) 
85.28 

(1) 
DT 76.2 

(7) 
82.77 

(2) 
80.89 

(4) 
79.18 

(5) 
81.67 

(3) 
78.48 

(6) 
86.09 

(1) 
Average accuracy 78.91 

(6) 
85.21 

(2) 
83.36 

(3) 
81.95 

(4) 
83.62 

(2) 
81.51 

(5) 
89.17 

(1) 
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The benchmark image feature selection algorithms have two main drawbacks i.e., trapped into local 

optimum and immature convergence in later stage [12]–[17] due to incomplete search space exploration. In 

other words, those algorithms rely on the positive feedback principle to reinforce the best solution which 

converges prematurely before the best solution is founded. Thus, the concept of local pheromone update of 

ACS has proved to be effective to search the solution in wider feature space. ACS provides the local 

pheromone update parameter which can avoid stagnation and premature convergence by decreasing the 

pheromone value on previously used edges and makes them less attractive for other ants. The SAACS 

parameters were designed considering the input from the feedback of fitness function and are all 

automatically adaptable when the solution is generated. In this fashion, the path that leads to significant 

features may be chosen by the ants using the pheromone level and heuristic information. Tables 5 to 8 show 

the results of three performance metrics including average precision, recall and F-measure on each dataset. It 

can be concluded that the SAACS provides the best average performance for all datasets. 

 

 

Table 5. Precision, recall, and f-measure for Kiel dataset 
Algorithm Evaluation metric 

Precision Recall f-measure 

RSDR 0.8167 0.7997 0.8022 

LFGWO 0.8728 0.8652 0.8661 

BBA 0.8389 0.8214 0.8243 
ACO 0.8252 0.8091 0.8109 

MALO 0.8482 0.8354 0.8382 
ACO_RDM 0.8251 0.8128 0.8331 

SAACS 0.9047 0.8989 0.9003 

 

 

Table 6. Precision, recall, and f-measure for SWIMCAT dataset 
Algorithm Evaluation metric 

Precision Recall f-measure 

RSDR 0.7479 0.7316 0.7358 
LFGWO 0.8607 0.8539 0.8537 

BBA 0.8227 0.8082 0.8110 
ACO 0.8089 0.7898 0.7932 

MALO 0.8081 0.7965 0.7966 

ACO_RDM 0.7894 0.7795 0.7774 
SAACS 0.8894 0.8799 0.8806 

 

 

Table 7. Precision, recall, and f-measure for MGCD dataset 
Algorithm Evaluation metric 

Precision Recall f-measure 

RSDR 0.8205 0.8084 0.8087 

LFGWO 0.8593 0.8494 0.8504 
BBA 0.8646 0.8552 0.8555 

ACO 0.8562 0.8446 0.8452 
MALO 0.8552 0.8442 0.8449 

ACO_RDM 0.8503 0.8361 0.8368 

SAACS 0.8911 0.8862 0.8863 

 

 

Table 8. Precision, recall, and f-measure for GCD dataset 
Algorithm Evaluation metric 

Precision Recall f-measure 

RSDR 0.8363 0.8201 0.822 

LFGWO 0.8503 0.8387 0.8402 

BBA 0.8625 0.8483 0.85 
ACO 0.8688 0.8498 0.8513 

MALO 0.8605 0.8404 0.8442 

ACO_RDM 0.8483 0.8285 0.8318 

SAACS 0.884 0.8771 0.8761 

 

 

Table 9 depicts the performance rank of 6 benchmark algorithms and the proposed algorithm in 

different classifiers using the Friedman test. This statistical test computes the rank for the algorithm in terms 

of the classification accuracy. The smallest value for the classification accuracy indicates the highest rank. 

SAACS has obtained the first rank for all the classifiers. 
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Table 9. Performance rank of all datasets for each classifier 
Classifier Algorithm 

RSDR LFGWO BBA ACO MALO ACO_RDM SAACS 
KSVM 5 4.251 3.625 4.523 4.753 4.752 1.125 
MLP 5.254 4.252 3.756 4.502 4.514 4.522 1.25 
RF 5.754 3.756 4.511 4.783 3.756 4.251 1 

SVM 6.252 3 4.25 3.5 3.114 5.75 2.25 
KNN 5.444 2.5 2.753 6.517 3.521 5.515 1.752 
DT 4.468 2.254 3.75 5.25 3.5 5.75 1 

 

 

In Table 10, Mann-Whitney 𝑈 test shows the result of average accuracy of the first and second place 

algorithms (SAACS and LFGWO) are tested for any significance difference. The method used for this test is 

the nonparametric Mann-Whitney 𝑈 test with confidence interval of 95%. Any 𝑝 value which is less than 

0.05 indicates a significant difference. The result of Mann-Whitney 𝑈 test indicates that SAACS is 

significantly better than the LFGWO benchmark algorithm in all classifiers. 
 

 

Table 10. p values from Mann-Whitney U test 
Classifier Algorithm Average rank 𝑝 value 

KSVM LFGWO 4.251 0.0148 

SAACS 1.125 

MLP LFGWO 4.252 0.0151 
SAACS 1.25 

RF LFGWO 3.756 0.0145 

SAACS 1 
SVM LFGWO 3 0.0151 

SAACS 2.25 

KNN LFGWO 2.5 0.0303 
SAACS 1.752 

DT LFGWO 2.254 0.0156 

 SAACS 1 

 

 

4. CONCLUSION  

This paper has proposed a new feature selection algorithm that improves the local pheromone 

update value and heuristic information of the original ACS in classifying the cloud type from ground-based 

sky images. The level of local pheromone update value and heuristic information are adaptively controlled 

by employing a sigmoid activation function based on feedback information and reward mechanism. 

Therefore, the most significant feature subset of the extracted features is generated.  The benchmark 

comparison of six image feature selection algorithms on four sky image datasets has shown that the SAACS 

algorithm outperforms the benchmark algorithms. SAACS was able to leap out from the local optimum 

because of its ability to explore a wider feature space, which significantly increases classification accuracy 

with a small number of features. This paper emphasizes the exploration mechanism. However, as a 

recommendation for future work, the balance between the exploration and exploitation mechanisms has also 

to be improved. The SAACS can also be used to determine the most important features in other domains, 

with the purpose of selecting significant information from the image. Disaster management, medical 

diagnosis, industrial inspection, sports management, and content-based image retrieval are examples of 

these domains. 
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