
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 1, February 2024, pp. 574~588

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i1.pp574-588  574

Journal homepage: http://ijece.iaescore.com

Encountering distributed denial of service attack utilizing

federated software defined network

Rima Abdelhadi, Moath H. Alsafasfeh, Bilal I. Alqudah
Department of Computer Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, Ma'an, Jordan

Article Info ABSTRACT

Article history:

Received Apr 23, 2023

Revised Jul 10, 2023

Accepted Jul 17, 2023

 This research defines the distributed denial of service (DDoS) problem in

software-defined-networks (SDN) environments. The proposes solution uses

Software defined networks capabilities to reduce risk, introduces a

collaborative, distributed defense mechanism rather than server-side

filtration. Our proposed network detection and prevention agent (NDPA)

algorithm negotiates the maximum amount of traffic allowed to be passed to

server by reconfiguring network switches and routers to reduce the ports'

throughput of the network devices by the specified limit ratio. When the

passed traffic is back to normal, NDPA starts network recovery to normal

throughput levels, increasing ports' throughput by adding back the limit ratio

gradually each time cycle. The simulation results showed that the proposed

algorithms successfully detected and prevented a DDoS attack from

overwhelming the targeted server. The server was able to coordinate its

operations with the SDN controllers through a communication mechanism

created specifically for this purpose. The system was also able to determine

when the attack was over and utilize traffic engineering to improve the

quality of service (QoS). The solution was designed with a sophisticated way

and high level of separation of duties between components so it would not

be affected by the design aspect of the network architecture.

Keywords:

Detection and prevention

Distributed denial of service

attack

Distributed solution

Quality of service

Software defined network

This is an open access article under the CC BY-SA license.

Corresponding Author:

Rima Abdelhadi

Department of Computer Engineering, Faculty of Engineering, Al-Hussein Bin Talal University

King Hussien Bin Talal University Str, Ma'an, Jordan

Email: Alqudah@ahu.edu.jo

1. INTRODUCTION

The use of online services is increasing, making it easier for attackers to find targets to achieve their

goals. A very effective attack on online services is the denial-of-service attack (DoS) or the distributed form

of it (DDoS). This attack can last for days, weeks, or even months, and can cost companies in average about

$1.6 Million USD and others about $20,000 USD per day. DoS and DDoS attacks aim to prevent employees

and customers from reaching services provided by the servers and can have catastrophic consequences if the

attack takes place in servers providing healthcare services or emergency services [1]. On October 21, 2016, a

stream of distributed denial of service (DDoS) attacks involving tens of millions of internet protocol (IP)

addresses had been noted and attacked dynamic domain name system (DNS). The magnitude of the attack

was claimed to be 1.2 Tbps and it involved internet of things (IoT) devices. To restore trust, researchers

should investigate different methodologies to limit the consequences of the attack on victims and providers

[1], [2]. The following is a summary of some techniques used to mitigate the danger of DDoS. Some studies

categorized the attacks by the nature of the targeted part of the system, such as cisco, where it classified the

attacks into: i) volume-based DDoS attacks: the attack targets server resources and facility bandwidth,

networking equipment; ii) application DDoS attacks: this type of attack overwhelms services (i.e. voice over

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

 Encountering distributed denial of service attack utilizing federated software defined … (Rima Abdelhadi)

575

IP (VoIP), hypertext transfer protocol (HTTP), domain name servers (DNS)); and iii) low-rate DoS (LDoS)

attacks: this type attacks do not flood the network with traffic; however, it targets applications weaknesses

such as (Slowloris) attack. However, Kaspersky security company classified DDoS attacks based on the

method attack follow rather than what does the attack target on the victim system as a weakness. Kaspersky

specified the following steps to protect against the attack: i) tolerate a web-server configuration against

DDoS attacks, ii) alter an internet service providers (ISP) firewall to allow only the traffic complimenting to

the services on the company side, iii) tweak a firewall to fight synchronization connection (SYN) flood

attacks, iv) migrate public resources to another IP address; and v) relocate all business-critical applications to

the cloud or move to the separate public subnet.

2. LITERATUR REVIEW

A denial of service (DoS) attack attempts to prohibit a client from accessing a certain service or to

reduce the quality of the services provided. The severity of the attack is determined by the volume of traffic

directed towards the victim. It is a one-to-one attack in the case of a DoS attack.

Hatagundi and Kumaraswamy [4] provided a survey for possible attacks in software-defined-

networks (SDN) networks and the possible methods of mitigation. The study specified four goals to achieve:

− Analyze various attack on the SDN environment, including DoS and DDoS.

− To determine the state of the system by measuring the unpredictability or entropy in switches and

controllers using statistical methods.

− To determine whether the system is under attack based on a predefined entropy threshold.

− To compute bandwidth utilization by each switch, assign a priority, and arrange packet flow using time

slice allocation algorithms depending on the priority.

The methodology for mitigating DDoS attack is based on first identifying DDoS using an entropy

detection attack and then mitigating it using a bandwidth prediction method. When a time slice allocation

approach is implemented, the findings reveal that the switches with higher priority receive better time

allocation. However, the authors encountered certain difficulties, such as the fact that OpenFlow security

features typically incorporate more sophisticated logics rather than simplification and packet pausing or

forwarding. The security of the OpenFlow feature necessitates the adoption of a controller that is platform

dependent, followed by the creation of a security application that is platform dependent.

Dong et al. [5] provided a survey about the distributed nature of the DoS attack and the effect of the

advances in computational ability in impowering DDoS attacks on the SDN itself. They also studied the

cloud architecture of SDN. From the design point of view, the design of SDN represented in three plans,

application plan: where the user applications run. The control plan: where the controllers reside and manage

connected devices. The last plan is the data plan that represents the managed routers by the second plan. SDN

architecture and design aspects described in detail in many literature [6]–[10], When compared to traditional

networks, SDN offers the following advantages:

− Global authority: The controller has a thorough understanding of the network topology, network state,

and application requirements.

− Adaptability and programmability: The data plane can be customized flexibly to enhance network resource

allocation.

− Availability: The controller's communications with forwarding devices are not reliant on the device

providers.

In the case of a DDoS attack, many networks or bots will flood the victim with traffic [11].

Canadian Institute for Cybersecurity at University of Brunswick came up with a new taxonomy for DDoS

attacks that can be done using user datagram protocol/transmission control protocol (UDP/TCP) at the

application layer. The classification came up to cover new possible attacks [12], [13] .

The problem of DDoS attack in SDN covered from many points of views, Liu et al. [14] provided a

survey covering the security issues in SDN from north to south, the authors introduced the background,

architecture and working process of SDN, and summarized and analyzed the typical security issues from

north to south. They also review and analyzed existing solutions and research progress of each layer, such as

authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and

flow rule consistency detection.

Chen et al. [15] focused on his research on increasing the efficiency and decreasing the latency

when preventing a DDoS attack targeting SDN infrastructure by utilizing decision trees (DT), they called it

DETPro. The intention is to make the framework lightweight through deciding what to do based on DT. They

addressed the issue by proposing a DDoS attack detection module based on a modified decision tree

algorithm that is both accurate and quick to process. The proposed DDoS attack mitigation module includes a

dynamic whitelist system that can block attack traffic while forwarding benign traffic in real time. Then they

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 574-588

576

combined them in a "time-efficient, lightweight system" (DETPro) that incorporates both methodologies.

DETPro can detect DDoS attacks accurately in the early stages, defend against DDoS attacks effectively, and

safeguard the network, according to the testing results from the research they presented.

 Sanjeetha et al. [16] focused in their research on DDoS attacks on primary victim servers flooded by

high traffic. DDoS attack can be instigated on a primary server present in SDN during high traffic scenarios.

The purpose of their research is to show how attackers can use a mechanism designed to deal with flow table

space exhaustion in high-traffic conditions to conduct a DDoS attack on a primary server via the controller.

They next attempted to detect and separate the assault flow from normal traffic.

Finally, they safeguard the core server against controller-initiated attacks and resource risks. Their

work is mostly focused on improving DDoS categorization methods, with the following contributions: First,

after being trained by a self-organizing map (SOM). They offer two approaches with different trade-off

priorities for classifying normal and DDoS attack traffic a SOM distributed-center classification approach

that is employed when SOM training is complete. This heuristic technique achieves a quick processing time

while maintaining an acceptable level of accuracy. Second, they offer an SDN-based DDoS attack detection

platform that has been built in a testbed utilizing SDN switches. This testbed allows the system to estimate

the accuracy and processing time of several algorithms, as well as compare them.

 Nam et al. [17] focused in their study on identifying DDoS attacks, which have been a long-standing

issue in network security. They used two approaches with distinct tradeoff priorities to categorize regular and

DDoS attack traffic. To have a faster processing time and a more precise detecting method, as well as to

assign different priority than existing detecting algorithms, they included four new SDN controller modules:

monitor, algorithm, alert, and DDoS mitigation, as well as a lightweight SDN-based DDoS detection and

mitigation architecture. The entropy of the source IP address (etpSrcIP), the entropy of the source port

(etpSrcP), the entropy of the destination port (etpDstP), the entropy of the packet protocol (etpProtocol), and

the total number of packets were then examined and categorized to detect distinct types of DDoS assaults

(totalPacket). When given different priorities, traditional detection algorithms have been demonstrated to

perform worse than the proposed techniques. They addressed some of the issues that researchers

investigating DDoS attacks encounter, such as the similarities between DDoS attack and regular traffic

patterns, the spread of big DDoS attacks powered by IoT bots, and the attributes that are manually picked for

each type of host and each type of attack.

Ubale and Jain [18] investigated the SDN centralized functionality issue, which makes it vulnerable

to TCP SYN flood attacks, which degrade server resources and transform the controller into a single point of

failure by exhausting controller resources. Additionally, it causes a data plane saturation attack. The

researchers used two functional modules: the hashing module and the flow aggregator module, to avoid TCP

SYN flood DDoS attacks in SDN settings, address security issues such as ternary content addressable

memory (TCAM) exhaustion attacks, and overcome the disadvantages of standard SDN, and the

(OPERETTA and SLICOTS) modules that is implemented in the controller to investigate SYN flood attack.

They addressed the problem by first proposing their (SRL) hashing module, a competent and streamlined

framework for mitigating TCP SYN flood attacks that is implemented in the controller, then installing

permanent forwarding for requested connections and after handshake completion SRL moves user to

Whitelist and using hashing module to replace flow rules from flow table according to priority of hash value.

A flow aggregator was used to stop the malicious connection requests. They were able to detect a slow rate

DDoS attack by limiting TCP connection requests. Finally, SRL was implemented in the Floodlight

controller under various attacking and usual traffic scenarios. According to their research, SRL has only a

minor impact on SDN controller operations. If there was a difficulty, it permitted real users to connect, as

well as recognizing malicious users who conducted a complete TCP handshake before beginning an attack.

Using a prototype implementation of SLR, SRL performance and efficiency are compared to SLICOTS,

OPERETTA, and standard SDN, revealing that SLR has a lower service delivery time for requests under

attack, lower CPU utilization caused by regular traffic with many users, a lower number of real entries

getting replaced before the attack, and the lowest DDoS attack detection rate. The main challenge is

determining the threshold value; if it is too high, attack detection may be slowed, and if it is too low,

erroneous findings may occur.

 Aryal et al. [19] proposed a model for detecting DDoS attacks in 5G networks using SDN. A hybrid

method is used, with five separate machine learning classifiers used to calculate a dynamic threshold. The

proposed strategy is a hybrid approach that combines statistical analysis and machine learning. In an iterative

process, data sets are evaluated and compared to a dynamic threshold. Sixteen features are retrieved, and

correlation values between the features are examined using machine learning. With the deployment of SDN,

the system provided dynamic configuration with software defined security (SDS). The traffic is constantly

evaluated to improve the controller's efficacy in terms of task handling capacity. In terms of accuracy,

precision, and efficiency, the suggested method outperforms current conventional approaches. In terms of

Int J Elec & Comp Eng ISSN: 2088-8708 

 Encountering distributed denial of service attack utilizing federated software defined … (Rima Abdelhadi)

577

outcomes, machine learning is also being used to improve detection precision. This improves accuracy from

nearly 87% to 99.86% while lowering the false positive rate (FPR). The findings achieved using

experimental data sets outperformed previous methods. Different machine learning techniques were

employed for poor outcomes, and the findings showed that their model surpassed others in terms of accuracy

and precision.

 Sharma [20] research discussed that configuring detection and prevention strategies were the current

remedies for the DDoS attack. All solutions require pre-configuration and cannot be modified or accepted in

response to changes in the network or the nature of the attack. This study attempts to propose a DDoS

solution based on SDN architecture. Their goals were to allow networks to regulate their behavior and take

appropriate measures when they were attacked, to measure efficiency and resilience against DDoS attacks

and false policy-based attacks by comparing the architecture to filter-based intrusion prevention

architectures, and to provide real-time monitoring and reactive service by combining management

applications at the control plane in SDN with multi-agent system (MAS) and statistical modeling. Then it

aimed to use the programmatic interface of SDN coupled with MAS to represent and reason knowledge about

network topology and state, then to identify and avoid potential threats by using data flows rather than

individual packets, and finally to control and manage large-scale networks with the least amount of

downtime. The authors outlined the difficulties encountered during the research as follows: it is hard to

recognize a real-world example in which an attack was discovered in SDN networks due to a lack of

availability. Comparative research employing a common benchmark that has yet to be developed or

established. The suggested agent-based self-mitigating architecture takes use of trade-offs between the

timeliness and volume of load data exposed, as well as the efficiency and granularity of the control input

required for quick reconfiguration.

 Hyun et al. [21] maintain server stability by limiting the number of packets entering the server per

second, without discriminating between legitimate users and botnets. Per the findings, network administrators

and web administrators can use the SDN controller to adjust network packet flow based on the company's

overall environment and specific network environment. Kalliola et al. [22] studied the DDoS flooding attack

and the method to mitigate it with SDN by managing traffic. They established an approach based on learning

traffic values and allocating appropriate resources to withstand the attack. The proposed approach is designed

to protect both end hosts and network links from packet and bandwidth flooding assaults. The technique in

this study allows optional input from external signature-based blacklist sources, as well as traffic

management. The report stated that even when confronted with an overwhelming attack, the efficacy in

preserving service was in the range of (50% to 80%). Blacklist integration and level of protection are two of

the research's challenges: the method permits the integration of fixed or dynamic blacklists consisting of

particular IP addresses. Because the defensive mechanism functions at the IP layer, attacks targeting higher

levels are not covered.

 Manso et al. [23] develop and deploy a software-defined intrusion detection system (IDS) that

identifies and mitigates attacks at their source, assuring network infrastructure availability and sustaining the

QoS even while an online service is already under attack. Their IDS detects DDoS-based cyber-attack

scenarios automatically and limits them at the client level, reducing the negative repercussions of the attack's

wider effect for possible victims, and then notifies SDN controller as soon as an attack is discovered. Their

method additionally sends from the SDN controller to network devices some essential traffic forwarding

decisions. An event is created whenever a substantial change in the traffic trend is noticed; if an event linked

with a DDoS attack is triggered, an SDN controller produces flow rules to restrict the malicious traffic.

According to the findings, their method right away detects a variety of DDoS-based cyber-attacks, mitigates

their negative impacts on network performance, and ensures that normal traffic is delivered correctly while

neutral traffic is protected. Their defensive technique would be most successful if it was installed as near to

the attack source that creates rogue traffic as feasible, which would need coordination among many service

providers to authenticate packet source addresses and apply other flow-based filtering capabilities. This

analysis might be carried out by a federation of SDN controllers, one for each service provider.

Mousavi and St-Hilaire [24] focused on the hypothesis that SDN could be a single point of failure

that could be attacked by DDoS. Such controller attacks will deplete the resources of the intended victim.

The proposed solution is a potential tool for early detection (when more than 500 packets are assumed as

attack traffic threshold). The researchers relied on incoming traffic's randomness, where entropy refers to the

probability of an event occurring given the total number of events, which in this case is incoming packets.

The proposed method is based on assessing the network's randomness; if one machine receives more

traffic (regardless of the source of the traffic), the entropy will fall due to a lack of randomness on the

network. The following two factors influenced their methodology; the Windows definition: where either the

number of packets or the time interval were described as Windows, and the Threshold: within this window,

entropy is calculated to determine the degree of uncertainty in the incoming packets. According to the study,

the proposed method can detect DDoS attacks within the first 500 packets of attack traffic and can recognize

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 574-588

578

both the controller and the targeted host. In a dynamic environment, human involvement is essential. Each

time the network configuration changes, a new threshold and entropy must be calculated. The threshold is

chosen experimentally, which implies that if the threshold is incorrectly set, several attacks may succeed, or

legitimate traffic may be blocked.

Sahay et al. [25] proposed an automatic DDoS attack mitigation utilizing SDN. Customers can

request DDoS mitigation services from ISPs using a distributed collaborative framework. ISPs can modify

the label of aberrant traffic and divert it to security middle boxes upon request, while attack detection and

analysis modules are deployed at the customer's end, avoiding privacy breaches and other legal issues.

3. PROBLEM FORMULATION

The network is illustrated using conceptual representation of SDN box (controller and switches).

Connection between controllers does not mean a direct hard wire between them, but it represents a

communication ability. Network representation or topology did not follow one common network architecture

or design such as star or tree or any single architecture.

The representation will be a mix between them to show the problem with many possible

complications. As shown in Figure 1, a victimized server located in network (v) is being attacked by bots

located in networks (A) and (B). There are many possible routes between attacking bots and victimized

server. Traffic oriented to victimized server will go through many SDN nodes that have enough capabilities

to process traffic and communicate.

Figure 1. Scenario of DDoS attack in SDN managed network

 Assuming a victim (v) connected to internet with many routes available towards it from outside.

Some attacker (E) located somewhere in a remote network. The attacker managed to prepare many bots (bn)

where (n) is the network ID the bot (b) belongs to. Each bot (b) is generating oriented traffic (tn) towards (v).

On the path to (v), generated packets/traffic will be routed by many switches or routers, both are denoted as

(sRd) where (R) is the router ID connecting (s) the source network ID and (d) the destination network ID.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Encountering distributed denial of service attack utilizing federated software defined … (Rima Abdelhadi)

579

Despite that all routers are transferring malicious traffic from bots to victim (v), routers can do nothing but

passing the traffic if not classified as malicious traffic (traffic to drop).

 In one hand, the installed firewall on the victimized side must deal with all incoming traffic. On the

other hand, network must be busy with malicious traffic (𝑡𝑥) that should not be transmitted through the

network. The traffic directed to the victim machine (𝑡𝑣) is explained in (1), where the (𝑡𝑥) is the attack traffic

from network x and (𝑡𝑙) is the legitimate traffic from any link l.

𝑡𝑣 = (∑ (𝑡𝑥) 𝑛
𝑥=1) + (𝑡𝑙) ∶ 𝑡𝑙 𝑖𝑠 𝑡ℎ𝑒 𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑣 𝑓𝑟𝑜𝑚 𝑎𝑛𝑦 𝑙𝑖𝑛𝑘 "𝑙" (1)

The machine will be under attack when the sum of illegal traffic (𝑡𝑥) is much more than the

legitimate traffic (𝑡𝑙) as shown in (2). although, it worth noticing that the legitimate traffic effect might be

high in some applications, such as video broadcasting. However, attackers still send a very high volume of

traffic to overwhelm victim servers.

(∑ (𝑡𝑥) 𝑛

𝑥=1) ≫ (𝑡𝑙): (𝑡𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑡𝑡𝑎𝑐𝑘 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑜𝑚 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 "𝑥" (2)

Our goal will be minimizing the total (𝑡𝑥) to maximize the chance of (𝑡𝑙), which is the legal traffic,

to reach its destination (v). If that goal achieved, then the risk of the attack is minimized, and the victim (v)

will have enough time to heal and recover from the attack while continue to provide service. The following

section will explain the problem when SDN components used rather than regular switches and routers. If the

distance between any group of bots attacking the victim (v) is given by (db) measured by number of hubs or

controllers, traffic (t) will be much higher when getting closer to the victim (v), as explained in (3).

(𝑡𝑥1: 𝑑𝑏) < (𝑡𝑥2 ∶ 𝑑𝑏 − 1) < ⋯ < (𝑡𝑥𝑛 ∶ 𝑑𝑏 − 𝑛𝑏 − 1)

These yields → (𝑡𝑥1: 𝑑𝑏) ≪ (𝑡𝑥𝑛 ∶ 𝑑𝑏 − 𝑛𝑏 − 1) (3)

where (tx) is the malicious traffic toward (v) from bots (b), db-n is the distance getting less when (n)

increase. The reason for this accumulation of traffic is the fact that many nodes will start to join traffic in

the nodes close to the victim. We will be using this phenomenon to trace back the malicious traffic to the

source.

4. PROPOSED SOLUTION

In our proposed solution, detection and prevention for DDoS attacks can be initiated either from the

server side or from the controller side. Figure 2 shows the flow chart for both cases of detection and

prevention. To coordinate and manage the attack mitigation process, we provided software called “agent”.

The agent job is to take discissions based on statistics provided by controllers. In the server-side agent,

depends on frequent readings for metrics (CPU utilization, memory consumption and network traffic). If

measurements showed that utilization levels are near to the maximum available resources’ utilization with a

very high network use, it will be an indication of DDoS attack, then the victimized server agent will notify

the edge SDN controller by a flag representing possible positive diagnosis. Figure 2(a) shows the flowchart

for detection and the stage where the server asks for the prevention process to be started by edge SDN

controller. Servers normally suffer from the DDoS attack before getting detected by the network since the

attack is coming from several sources.

The edge SDN controller is capable of doing diagnosis by measuring external traffic and bandwidth

consumption against maximum known history. If there was a high traffic rate much higher than the usual

known behavior or close to the maximum bandwidth available, then the controller is suspecting a DDoS

attack and asking the server to initiate self-evaluation process and waits for its response, this detection flow

can work effectively when victimized servers are powerful enough and detect the attack late. Figure 2(b)

shows the flow chart for the designed detection process. However, the edge SDN controller will ask the

victimized server to confirm the result the controllers found regarding the potential attack.

The evaluation process on the victim server (VSe) is expressed by (4), since the DOS attack goal is

to prevent the server from providing service, we specified a threshold for each studied metric considered as

the upper boundary for resource utilization before considered over-utilized.

𝑉𝑆𝑒 = (𝐶𝑃𝑈𝑢 > 𝑚𝑎𝑥𝐶𝑃𝑈𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 || 𝑀𝐸𝑀𝑢 > 𝑚𝑎𝑥𝑀𝑒𝑚𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

& 𝑁𝑊𝑢 > 𝑚𝑎𝑥𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (4)

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 574-588

580

(a) (b)

Figure 2. Prediction and detection process starting, (a) from the victim side, (b) from edge SDN controllers

5. ALGORITHM

Algorithm 1 shows the victimized server-side agent. The server agent job is to evaluate the

victimized server status and communicate with the edge SDN controllers (the controllers whose job is to

manage the routers and switches connected to the server or servers subject to attack “victimized”). Lines

(1-6) sets the acceptable thresholds on the simulated network. Each network has its own settings based on the

nature of services running on the network; for example, gaming network has higher CPU usage than a

network with database servers. However, a network with video streaming services will consume memory and

network more than CPU. The variable “maxRound” in line 5 sets the maximum number of evaluations

allowed for the server before sounding alters regarding a possible DoS attack.

Algorithm 1. Victimized server-side agent
ServerAgent():

1. Set alertForPossibleAttack=FALSE

2. Set CPUThreshold=0.95

3. Set MemThreshold=0.95

4. Set NetThreshold=0.80

5. Set maxRounds=100

6. Set recoveryTime=5000ms

7. Set round=0.

8. While (true)

9. networkUtilize= NetworkThroughput/Networkbandwidth

10. CPUutilize=getCPUUtilization ()
11. MemUtilize= getMemoryUtilization ()
12. If ((CPUutilize>CPUThreshold)||(MemUtilize>MemThreshold))&&(networkUtilize>NetThreshold)

12.1. round++.
12.2. if (round > maxRounds)

12.2.1. round=0
12.2.2. alertForPossibleAttack=TRUE
12.2.3. If (EdgeControllerAgent.HighTraffic==FALSE) raise(internalAttack)
12.2.4. If (EdgeControllerAgent.HighTraffic==TRUE) && alertForPossibleAttack
Then

 ControllerResponse= EdgeControllerAgent.C2C ()

12.2.5. Wait(recoveryTime)
13. Else

13.1. alertForPossibleAttack=FALSE
14. wait(10ms)
15. end while

A

Int J Elec & Comp Eng ISSN: 2088-8708 

 Encountering distributed denial of service attack utilizing federated software defined … (Rima Abdelhadi)

581

In line 12, the algorithm for the server agent tests the current CPU utilization, memory utilization,

and network utilization against the maximum values expected. If either CPU or memory are highly consumed

with a high network usage, the algorithm will count that as a positive sign (line 12.1). in line (12.2) if the

total positive checks exceed the maximum allowed threshold, the line (12.2.2) will set the flag for possible

attack to (TRUE) to indicate a possible attack. The algorithm will stop the evaluation for a while (line 12.2.6)

after alerting the controller managing the local network routers and switches. This “wait time” assumes that

the controller will take an action and allow that action enough time to reflect on the server status. This time is

adjustable as well.

In line (12.2.3) the server will get a feedback form the controller. The received feedback represents

the network status of the outer network (outside the facility network). If the outer network has no high traffic

and the server still getting high traffic from somewhere, then the server will raise a flag for a possible Internal

DoS attack. In such case, the server must check for data theft (or very high information transfer rate) and

investigate its legality.

Algorithm 2 describes the agent that runs on the SDN controllers participating in the network

detection and prevention process. The edge SDN controller agent’s algorithm checks the network traffic

status by calling the predict high traffic algorithm (Algorithm 3) in line 2. If there was high traffic, the edge

SDN controller agent’s algorithm asks the victimized server if there was a possible attack alert due to a

continuous increase in traffic detected and waits for its response. This notification will trigger the process of

attack detection by calling the C2C algorithm (Algorithm 4) in line 3.1 which calls NDPA algorithm

(Algorithm 5).

Algorithm 2. SDN controller-side agent
SDNControllerAgent

1. while (TRUE)

2. HighTraffic  PredictHighTraffic()

2.1. if (HighTraffic)
2.1.1. serverResponse=getServer(alertForPossibleAttack)

3. if (serverResponse=TRUE or NULL)
3.1. Call C2C()

4. Wait(delay)
5. End while

Algorithm 3. Predicting high traffic
1. set MaxHistory [NoOfManagedNetworkingDevices]= {0}

2. set HighTraffic=FALSE.  public

3. set MaxTotal=0, maxSmapleCount=100, delay=1000ms
4. set trafficToleranceFactor =w
5. set counter=0
6. set static oldHistory=0
7. while (true)
8. for each managed networking device

8.1. MaxHistory[device(i)] = device(i).getmaxtraffic
8.2. MaxTotal=MaxTotal+ MaxHistory[device(i)]

9. If (OldHistory + trafficToleranceFactor <MaxTotal)
9.1. counter=counter+1
9.2. if (counter >maxSmapleCount)

9.1.1. set HighTraffic=TRUE

9.1.2. counter=0

10. Wait(delay)

11. oldHistory=MaxTotal

12. End while

Algorithm 3 predicts if there was unusual high traffic referring to network device traffic history and

pre-set traffic threshold. Lines 1-6 of the algorithm is setting the initial values; each network can be

configured based on its nature. For example, if the network is designed to carry backups at a certain time,

then traffic tolerance factor (line 4) can be adjusted dynamically to avoid wrong detections. The

maxSampleCount parameter controls the sampling lifecycle. The MaxTotal parameter keeps track of the

maximum traffic known and detected in the history of the detection cycle for all devices the controller

manages. The algorithm in line 8 iterates over each managed networking device (i.e. routers and switches)

the controller manages and get the maximum traffic passed through the device and store it regardless the

source or the destination.

Lin1e 9 checks the maxTotal for the current round of sampling in addition to a pre-defined tolerance

factor with the maximum known history. If the new readings are bigger than the history, then the algorithm

starts counting that towards a cycle of detection (lines 9.1 and 9.2). Algorithm 4 calls the predict high traffic

algorithm (Algorithm 3), if the return value was true which means high traffic detected, C2C algorithm will

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 574-588

582

call the network detection and prevention agent’s algorithm NDPA (Algorithm 5) and it will return a report

of the network device’s ID that has the high traffic to the calling algorithm.

Algorithm 4. Controller to controller communication algorithm
C2C():

1. highTrafficSources[]=null
2. while (TRUE)

3. HighTraffic  PredictHighTraffic()

3.1. if (HighTraffic)

3.1.1. highTrafficSources.add[]  NDPA(MyID)

3.1.2. ReportBack(callerID, HighTraffic)

4. Wait(delay)
End while

The two previous algorithms (the server agent algorithm and the controller agent algorithm)

collectively build a common opinion and negotiate it to predict the possible attack based on the traffic nature

and the server status. If they predict an attack is about to happen or happening then the victimized server can

call the C2C algorithm which starts the NDPA algorithm, and the edge controller can call C2C algorithm in

line (3) which starts NDPA algorithm in line (2.1.1). The NDPA works by negotiating the maximum traffic

allowed to pass reconfiguring switches and routers.

Algorithm 5. Network detection and prevention agent (NDPA)
1. StatusList[] NDPA(callerID)

2. Set initial=0.5%

3. Set static limitRatio= initial

4. Local:

5. If(PredictHighTraffic() == TRUE)

5.1. For each Network Device (ND):

5.1.1. ND→ Reduce_BW(limitRatio)

5.1.2. StatusList.add(HighTraffic, MyID)

5.2. limitRatio= limitRatio+initial
5.3. For each neighbouring controller (NCi) :

5.3.1. NCi→ C2C ()

6. Elseif (limitRatio>initial)

6.1. limitRatio= limitRatio – initial
6.2. For each Network Device (ND):

6.2.1. ND→ Increase_BW(initial)

7. ReportBack(StatusList,callerID)

The NDPA algorithm calls the predict high traffic algorithm (Algorithm 3). A “TRUE” returned

value means high traffic detected. Thus, NDPA will start reducing the throughput of the ports by the limit

ratio of 25% initially in line 4.1.1 or any other ratio specified by the engineers. As long as the high traffic is

“TRUE” the throughput reduction will be increased by 25% each round as shown in line 4.2. NDPA will

contact its neighboring controllers to check their network devices for high traffic by calling C2C algorithm

line 4.3.1.

If the predict high traffic algorithm return value was “FALSE”, which means traffic is not high or

high traffic reduced; NDPA starts the network recovery to normal throughput levels as shown in lines 5-5.2.1

by increasing ports throughput gradually adding 25% back to the port each time. The NDPA algorithm will

update the history list to new values.

It is worth mentioning that the NDPA algorithm, which is a network throughput reduction policy,

applies only to a network connection that produces the highest traffic only in abnormal rates compared to its

history. Other links and nodes in the network will not suffer from any reduction in throughput and will be

served normally. This guarantees that only abnormal sub-networks or nodes causing undesired behavior will

be affected by the reduction.

6. RESULTS

Algorithm simulation results showed the ability of the proposed algorithm to detect possible

DDoS attacks in a tree topology network. As shown in Table 1, after observing the incremental nature of

traffic volume causing the CPU to suffer high utilization, the server started negotiating traffic with the

edge controller. At time 20 through 24 the utilization became very high, and the traffic throughput

reached the maximum allowed amount. At that point the server started a positive detection process in

collaboration with the edge controller. The detection process lasted for 4 cycles. In time 25 the controller

started reducing the maximum amount of traffic by 25% to become 75% of the original throughput.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Encountering distributed denial of service attack utilizing federated software defined … (Rima Abdelhadi)

583

However, the problem is not solved because the server reported back a high utilization. The controller

takes further steps to mitigate the high traffic by reducing another 25% of throughput and so on-going

form 100% throughput to 75%, then 56.25%, 42.1875%, 31.640625%, 23.730469%, till 17.797852%, and

finally 13.348389% of the original throughput which allows 11,676 kilobytes per second to be passed to

the server.

Table 1. Very high normal traffic followed by attack traffic
Time Utilization % Throughput % Total

Traffic
Passed
Traffic

attack detected
CPU Memory Network

1 80 65 100 100 11,900 11,900 FALSE

2 81.904 66.904 100 100 11,900 11,900 FALSE
3 83.808 68.808 100 100 11,900 11,900 FALSE

…. ….. ….. ….. ….. ….. ….. …..

23 97.3630 83.82553 100 100 12,495 12,495 FALSE
24 99.3622 85.82473 100 100 12,460 12,460 FALSE

25 97.3686 83.83113 100 75 12,600 12,500 TRUE

26 99.3686 85.83113 100 56.25 12,600 12,500 TRUE

27 100 87.83113 100 42.1875 12,600 12,500 TRUE

28 100 89.83113 100 31.640625 13,300 12,500 TRUE

29 100 91.83113 100 23.730469 13,300 12,500 TRUE

30 100 93.83113 100 17.797852 13,300 12,500 TRUE

31 100 95.83113 100 13.348389 13,300 12,500 TRUE

32 100 97.83113 100 16.463013 11,676 11,676 FALSE
33 98.1318 95.96297 100 12.34726 12,600 12,500 TRUE

34 95 93.06483 100 15.228287 10,801 10,801 FALSE

35 93.2718 91.33667 100 11.421215 13,300 12,500 TRUE

36 90.5082 88.66984 100 14.086164 9,989 9,989 FALSE

37 92.1064 90.26808 100 17.372936 12,320 12,320 FALSE

38 94.0776 92.23928 100 13.029702 13,300 12,500 TRUE

39 96.0776 94.23928 100 16.069967 11,396 11,396 FALSE

40 97.9010 96.06264 100 12.052475 12,600 12,500 TRUE

41 94.9059 93.15951 100 14.864719 10,542 10,542 FALSE
42 96.5927 94.84623 100 11.14854 12,600 12,500 TRUE

43 93.6630 92.00391 100 13.749865 9,751 9,751 FALSE

44 92.1029 90.44375 100 16.958166 12,026 12,026 FALSE
45 94.0270 92.36792 100 12.718625 13,300 12,500 TRUE

Figure 3 shows the growing traffic flow toward the victim server, and the area between dashed lines

A and B in Figure 3 shows approximately where the proposed algorithm started detecting a possible attack.

Figure 4 shows the throughput of traffic in the local victim server network, where the dashed line A

approximates the time when the NDPA algorithm decided to run a throughput reduction policy to reduce the

possible malicious traffic. The area after dashed line B in both figures represents the drop in resource

consumption due to throughput reduction enforced by the prevention algorithm (NDPA).

The zigzag behavior in Figure 4 indicates the areas where the algorithm assumes a possible recovery

in server resources and tries to restore normal traffic gradually, however, when continuity in attack is

detected, the algorithm enforces the throughput reduction again to insure providing service and server not to

crash. The detection process lasted for 4 cycles. In time 25 the controller started reducing the maximum

amount of traffic by 25% to become 75% of the original throughput. However, the problem is not solved

because the server reported back a high utilization. The controller takes further steps to mitigate the high

traffic by reducing another 25% of throughput and so on-going from 100% throughput to 75%, then 56.25%,

42.19%, 31.64%, 23.73%, to 17.79%, and finally 13.35% of the original throughput which allows

11,676 kilobytes per second to be passed to the server.

In the second experiment, Table 2, it is assumed that the victim server and the edge controller have

no previous experience with attack, no traffic history available for server or edge controller. However, the

server will start working using the pre-set metrics or default and thresholds. The edge controller will assume

that the server will be able to detect any abnormal levels of utilization and report it back through the

controller agent. The controller then starts with the NDPA algorithm to limit the traffic after making sure that

the reported metrics form the server are not due to internal attack from the server side. As shown in Table 2,

the server reported back to the controller with attack detected in time slice 7. The controller started the

process of limiting the traffic throughput to acceptable levels. In time 20, it is noticeable from the traffic

amount that the attack stopped by the attacker. The detection and prevention method stopped and most

importantly it restored the network ability to transfer more information by gradually increase the upper limit

allowed throughput.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 574-588

584

Figure 3. Resources utilization before and during continuous attack

Figure 4. Throughput before and after attack detection

Table 2. Sudden attack with no previous history records of traffic
Time Utilization % Throughput

Ratio

Total

Traffic

Passed

Traffic

Attack detected

CPU Memory Network

1 80 65 100 100 15,600 12,500 FALSE
2 82 67 100 100 12,600 12,500 FALSE

3 84 69 100 100 12,600 12,500 FALSE

4 86 71 100 100 12,600 12,500 FALSE
5 88 73 100 100 13,300 12,500 FALSE

6 90 75 100 100 14,000 12,500 FALSE

7 92 77 100 75 12,600 12,500 TRUE

8 94 79 100 56.25 12,600 12,500 TRUE

9 91.2 76.95 100 75 5,600 5,600 FALSE

10 90.30399 76.05399 100 56.25 12,600 12,500 TRUE

11 92.30399 78.05399 100 42.1875 12,600 12,500 TRUE

12 94.30399 80.05399 100 31.640625 12,600 12,500 TRUE

13 96.30399 82.05399 100 23.730469 13,300 12,500 TRUE

14 98.30399 84.05399 100 17.797852 14,000 12,500 TRUE

15 100 86.05399 100 13.348389 12,600 12,500 TRUE

16 100 88.05399 100 17.797852 11,676 11,676 FALSE

17 100 89.92215 100 13.348389 12,600 12,500 TRUE

18 100 91.92215 100 17.797852 11,676 11,676 FALSE
19 98.13184 90.05399 100 13.348389 12,600 12,500 TRUE

20 100 92.05399 100 17.797852 11,676 11,676 FALSE

21 93.22525 85.676544 100 23.730469 11,200 11,200 FALSE
22 90.26639 83.095116 100 31.640625 11,200 11,200 FALSE

23 87.45547 80.64276 100 42.1875 11,200 11,200 FALSE

24 89.24747 82.43476 100 56.25 11,200 11,200 FALSE
25 86.487495 80.01542 100 75 10,500 10,500 FALSE

26 84.807495 78.33542 100 100 10,500 10,500 FALSE

27 86.487495 80.01542 100 100 10,500 10,500 FALSE

28 88.167496 81.69542 100 100 10,850 10,850 FALSE

Int J Elec & Comp Eng ISSN: 2088-8708 

 Encountering distributed denial of service attack utilizing federated software defined … (Rima Abdelhadi)

585

Figures 5 and 6 show the analysis of the victim server and NDPA algorithm response to a

temporary attack during normal high demand on server resources. This detection process in this scenario

started from the controller agent side. The detection and prevention algorithm detected that before that and

started reducing the network traffic to a level that the server can continue providing service as shown in

Figure 5 in area A. in area B, the system was stable until the attack stopped around time 23. NDPA

restored network throughput since the server is not suffering from over-utilization to normal levels as

shown in Figure 5 area C. As shown in Figure 6, in time 13 the server was suffering from a potential

DDoS attack, and server resources are over-utilized. In time 23 the NDPA algorithm was able to lower the

throughput lowering the CPU utilization to acceptable ratio. Simulation results demonstrated that the

proposed algorithms were able to detect and prevent the server from crashing and continued providing

services despite the DDoS attack because the throughput reduction applied to all network routes that

generate high traffic only.

Figure 5. Throughput recovery to normal after temporary DDoS attack

Figure 6. Resources consumption for temporary attack and during a normal high traffic

In the 3rd experiment; we assume an attack traffic initiated from the neighboring network, then the

attacker stops the attack. What is assumed that the NDPA should be able to detect the attack, limit the

throughput, then when the attack is over, NDPA must restore the network throughput to its original values.

This behavior must protect the sever form the bad traffic. As shown in Table 3, first router (Router0)

managed by (Controller 2) is passing safe traffic. However, (Router1) is passing very large traffic and

causing a DDoS attack symptom. However, traffic is coming from different sources and other networks.

At time 4, (Router1) experienced limitations imposed by the managing controller based on the

commination and negotiation with the edge controller. From the table, it is observable that (Router0) did not

suffer any reduction in the throughput due to NDPA control of traffic on the network. The edge-router

throughput was reduced to be able to prevent any local high traffic on the incoming uplinks, though, the good

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 574-588

586

about that is the local traffic will not be affected by the reduction since the new throughput will be more

sufficient to pass the safe traffic through towards the server. Users might experience some delay, but the

server will not crash due to high traffic.

Table 3. Two-level architecture, experiment 3 results

T
im

e Edge-
Controller

Traffic

Edge-
Router

Traffic

isHigh

Traffic

Edge-Router
Throughput

Ratio

Controller2

Traffic

Managed by Controller2, Router0 and Router1 from network2 connected

to the Edge-Router from the previous network

Router0
Traffic

isHigh
Traffic

Router0

Throughput

Ratio

Router1
Traffic

isHigh
Traffic

Router1

Throughput

Ratio

1 14,900 14,900 TRUE 100 16,800 1,400 FALSE 100 15,400 TRUE 100
2 13,700 13,700 TRUE 100 21,700 700 FALSE 100 21,000 TRUE 100

3 13,700 13,700 TRUE 100 18,200 700 FALSE 100 17,500 TRUE 100

4 14,900 14,900 TRUE 75 22,400 1,400 FALSE 100 21,000 TRUE 75
5 12,975 12,975 TRUE 56.25 23,100 2,100 FALSE 100 21,000 TRUE 56.25

6 10,631 10,631 FALSE 75 23,100 2,100 FALSE 100 21,000 TRUE 42.1875

7 9,735 9,735 FALSE 100 21,210 210 FALSE 100 21,000 TRUE 31.640625
8 15,860 15,860 TRUE 100 21,560 1,960 FALSE 100 19,600 TRUE 31.640625

9 14,900 14,900 TRUE 100 21,000 1,400 FALSE 100 19,600 TRUE 31.640625

10 14,900 14,900 TRUE 100 21,000 1,400 FALSE 100 19,600 TRUE 31.640625
11 13,700 13,700 TRUE 75 13,300 700 FALSE 100 12,600 TRUE 23.730469

12 10,575 10,575 FALSE 100 13,300 700 FALSE 100 12,600 TRUE 17.797852
13 13,700 13,700 TRUE 100 14,000 700 FALSE 100 13,300 TRUE 17.797852

14 14,900 14,900 TRUE 100 15,400 1,400 FALSE 100 14,000 TRUE 17.797852

15 22,100 22,100 TRUE 75 18,200 5,600 FALSE 100 12,600 TRUE 13.348389
16 10,575 10,575 FALSE 100 12,376 700 FALSE 100 11,676 FALSE 17.797852

17 14,660 14,660 TRUE 75 13,860 1,260 FALSE 100 12,600 TRUE 13.348389

18 11,535 11,535 FALSE 100 12,936 1,260 FALSE 100 11,676 FALSE 17.797852
19 13,700 13,700 TRUE 75 13,300 700 FALSE 100 12,600 TRUE 13.348389

20 10,575 10,575 FALSE 100 12,376 700 FALSE 100 11,676 FALSE 17.797852

21 18,400 18,400 TRUE 100 15,400 4,200 FALSE 100 11,200 FALSE 17.797852
22 12,400 12,400 FALSE 100 11,900 700 FALSE 100 11,200 FALSE 23.730469

23 12,400 12,400 FALSE 100 11,900 700 FALSE 100 11,200 FALSE 23.730469

24 12,400 12,400 FALSE 100 11,900 700 FALSE 100 11,200 FALSE 23.730469

25 12,300 12,300 FALSE 100 11,550 1,050 FALSE 100 10,500 FALSE 23.730469

26 11,700 11,700 FALSE 100 11,200 700 FALSE 100 10,500 FALSE 23.730469

27 11,700 11,700 FALSE 100 11,200 700 FALSE 100 10,500 FALSE 23.730469
28 11,510 11,510 FALSE 100 11,235 385 FALSE 100 10,850 FALSE 23.730469

29 10,970 10,970 FALSE 100 10,920 70 FALSE 100 10,850 FALSE 31.640625

30 12,400 12,400 FALSE 100 11,900 700 FALSE 100 11,200 FALSE 31.640625
31 20,300 20,300 TRUE 100 16,800 4,900 FALSE 100 11,900 FALSE 31.640625

32 20,300 20,300 TRUE 100 16,800 4,900 FALSE 100 11,900 FALSE 31.640625

33 13,100 13,100 TRUE 100 12,600 700 FALSE 100 11,900 FALSE 31.640625
34 13,100 13,100 TRUE 75 12,600 700 FALSE 100 11,900 FALSE 42.1875

35 6,473 6,473 FALSE 100 12,600 700 FALSE 100 11,900 FALSE 56.25

36 4,450 4,450 FALSE 100 4,200 350 FALSE 100 3,850 FALSE 75
37 11,450 11,450 FALSE 100 11,200 350 FALSE 100 10,850 FALSE 75

38 13,120 13,120 TRUE 75 12,320 1,120 FALSE 100 11,200 FALSE 100

39 13,940 13,940 TRUE 56.25 13,090 1,190 FALSE 100 11,900 FALSE 100
40 9,071 9,071 FALSE 75 13,090 1,190 FALSE 100 11,900 FALSE 100

41 7,380 7,380 FALSE 100 6,930 630 FALSE 100 6,300 FALSE 100

42 7,380 7,380 FALSE 100 6,930 630 FALSE 100 6,300 FALSE 100

43 6,560 6,560 FALSE 100 6,160 560 FALSE 100 5,600 FALSE 100

44 13,940 13,940 TRUE 100 13,090 1,190 FALSE 100 11,900 FALSE 100

45 13,940 13,940 TRUE 75 13,090 1,190 FALSE 100 11,900 FALSE 100
46 11,415 11,415 FALSE 100 13,090 1,190 FALSE 100 11,900 FALSE 100

47 13,100 13,100 TRUE 75 12,600 700 FALSE 100 11,900 FALSE 100

48 4,450 4,450 FALSE 100 4,200 350 FALSE 100 3,850 FALSE 100
49 11,450 11,450 FALSE 100 11,200 350 FALSE 100 10,850 FALSE 100

50 13,600 13,600 TRUE 75 12,600 1,400 FALSE 100 11,200 FALSE 100

51 10,575 10,575 FALSE 100 12,600 700 FALSE 100 11,900 FALSE 100

As shown in Figure 7, controller 2 monitoring and managing network 2 concluded that the routers in

the network are passing very high traffic through. Meanwhile server is suffering the high traffic and reported

it back to the edge-controller agent. In its turn, the edge-controller initiated a controller-to-controller

communication (C2C) to track down traffic. it is noticeable Figure 7, in cycle 11, that controller 2 and just

after implementing NDPA started observing lower traffic than before. This new traffic is a direct result of

controllers implementing throughput reduction policy in routers they manage.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Encountering distributed denial of service attack utilizing federated software defined … (Rima Abdelhadi)

587

Figure 7. Two controllers traffic detection

7. CONCLUSION

Software defined networks can be used to provide a variety of services, such as security, with a

sophisticated design and separation of duties between components to prevent DDoS attacks. Basic

assumptions made for this solution to work as intended are: The ability for controllers to communicate

efficiently, controllers have some computational power, routers and switches throughput can be reconfigured,

and controllers can get statistics about routers’ traffic. As shown by experiments designed, the proposed

solution and its algorithms managed to detect and the proposed solution was able to prevent a DDoS attack

from overwhelming the server, orchestrate its work with controllers, detect if the attack was over, and restore

throughput to its original values to elevate the QoS provided to customers and networks.

REFERENCES
[1] Kaspersky Lab, “Distributed denial of service: How DDoS attacks work,” Kaspersky, https://me-en.kaspersky.com/resource-

center/preemptive-safety/how-does-ddos-attack-work (accessed May 22, 2022).
[2] T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang, “A survey of distributed denial-of-service attack, prevention, and mitigation

techniques,” International Journal of Distributed Sensor Networks, vol. 13, no. 12, Art. no. 155014771774146, Dec. 2017,

doi: 10.1177/1550147717741463.
[3] W. Queiroz, M. A. M. Capretz, and M. Dantas, “An approach for SDN traffic monitoring based on big data techniques,” Journal

of Network and Computer Applications, vol. 131, pp. 28–39, Apr. 2019, doi: 10.1016/j.jnca.2019.01.016.

[4] M. D. Hatagundi and H. V. Kumaraswamy, “A comprehensive survey on different attacks on SDN and approaches to mitigate,”
in Proceedings of the 3rd International Conference on Computing Methodologies and Communication, ICCMC 2019, IEEE, Mar.

2019, pp. 624–627, doi: 10.1109/ICCMC.2019.8819717.

[5] S. Dong, K. Abbas, and R. Jain, “A survey on distributed denial of service (DDoS) attacks in SDN and cloud computing
environments,” IEEE Access, vol. 7, pp. 80813–80828, 2019, doi: 10.1109/ACCESS.2019.2922196.

[6] D. Chouhan and A. Pal, “Detection and mitigation of mitigate denial of service (Dos) attacks using trust-based mechanism,”

International Journal of Scientific Research & Engineering Trends (IJSRET), vol. 7, no. 4, 2021.
[7] L. F. Eliyan and R. di Pietro, “DoS and DDoS attacks in software defined networks: A survey of existing solutions and research

challenges,” Future Generation Computer Systems, vol. 122, pp. 149–171, Sep. 2021, doi: 10.1016/j.future.2021.03.011.

[8] S. B. Chinmay Dharmadhikari, Salil Kulkarni, Swarali Temkar, “A study of DDoS attacks in software defined networks,” A Study
of DDoS Attacks in Software Defined Networks, vol. 6, no. 12, 2019.

[9] B. Kumar Joshi, N. Joshi, and M. Chandra Joshi, “Early detection of distributed denial of service attack in era of software-defined

network,” in 2018 11th International Conference on Contemporary Computing, IC3 2018, IEEE, Aug. 2018, doi:
10.1109/IC3.2018.8530546.

[10] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (SDN) and distributed denial of service (DDOS) attacks in

cloud computing environments: A survey, some research issues, and challenges,” IEEE Communications Surveys and Tutorials,
vol. 18, no. 1, pp. 602–622, 2016, doi: 10.1109/COMST.2015.2487361.

[11] N. N. Tuan, P. H. Hung, N. D. Nghia, N. Van Tho, T. Van Phan, and N. H. Thanh, “A DDoS attack mitigation scheme in ISP

networks using machine learning based on SDN,” Electronics (Switzerland), vol. 9, no. 3, p. 413, Feb. 2020, doi:
10.3390/electronics9030413.

[12] UNB, “DDoS evaluation dataset (CIC-DDoS2019),” Canadian Institute for Cybersecurity, https://www.unb.ca/cic/datasets/ddos-

2019.html (accessed Jul. 13, 2023).
[13] H. A. Alamri and V. Thayananthan, “Bandwidth control mechanism and extreme gradient boosting algorithm for protecting

software-defined networks against DDoS attacks,” IEEE Access, vol. 8, pp. 194269–194288, 2020, doi:

10.1109/ACCESS.2020.3033942.
[14] Y. Liu, B. Zhao, P. Zhao, P. Fan, and H. Liu, “A survey: Typical security issues of software-defined networking,” China

Communications, vol. 16, no. 7, pp. 13–31, Jul. 2020, doi: 10.23919/jcc.2019.07.002.

[15] Y. Chen, J. Pei, and D. Li, “DETPro: A high-efficiency and low-latency system against DDoS attacks in SDN based on decision
tree,” in IEEE International Conference on Communications, IEEE, May 2019, doi: 10.1109/ICC.2019.8761580.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 574-588

588

[16] R. Sanjeetha, A. Prasanna, D. Pradeep Kumar, and A. Kanavalli, “Mitigation of controller induced DDoS attack on primary server

in high traffic scenarios of software defined networks,” in International Symposium on Advanced Networks and
Telecommunication Systems, ANTS, IEEE, Dec. 2018, doi: 10.1109/ANTS.2018.8710066.

[17] T. M. Nam et al., “Self-organizing map-based approaches in DDoS flooding detection using SDN,” in International Conference

on Information Networking, IEEE, Jan. 2018, pp. 249–254, doi: 10.1109/ICOIN.2018.8343119.
[18] T. Ubale and A. K. Jain, “SRL: An TCP SYNFLOOD DDoS mitigation approach in software-defined networks,” in Proceedings

of the 2nd International Conference on Electronics, Communication and Aerospace Technology, ICECA 2018, IEEE, Mar. 2018,

pp. 956–962, doi: 10.1109/ICECA.2018.8474561.
[19] B. Aryal, R. Abbas, and I. B. Collings, “SDN enabled DDoS attack detection and mitigation for 5G networks,” Journal of

Communications, vol. 16, no. 7, pp. 267–275, 2021, doi: 10.12720/jcm.16.7.267-275.

[20] V. Sharma, “Multi-agent based intrusion prevention and mitigation architecture for software defined networks,” in International
Conference on Information and Communication Technology Convergence: ICT Convergence Technologies Leading the Fourth

Industrial Revolution, ICTC 2017, IEEE, Oct. 2017, pp. 686–692, doi: 10.1109/ICTC.2017.8191067.

[21] D. Hyun, J. Kim, D. Hong, and J. Jeong, “SDN-based network security functions for effective DDoS attack mitigation,” in
International Conference on Information and Communication Technology Convergence: ICT Convergence Technologies Leading

the Fourth Industrial Revolution, ICTC 2017, IEEE, Oct. 2017, pp. 834–839, doi: 10.1109/ICTC.2017.8190794.

[22] A. Kalliola, K. Lee, H. Lee, and T. Aura, “Flooding DDoS mitigation and traffic management with software defined networking,”
in 2015 IEEE 4th International Conference on Cloud Networking, CloudNet 2015, IEEE, Oct. 2015, pp. 248–254, doi:

10.1109/CloudNet.2015.7335317.

[23] P. Manso, J. Moura, and C. Serrão, “SDN-based intrusion detection system for early detection and mitigation of DDoS attacks,”
Information (Switzerland), vol. 10, no. 3, p. 106, Mar. 2019, doi: 10.3390/info10030106.

[24] S. M. Mousavi and M. St-Hilaire, “Early detection of DDoS attacks against SDN controllers,” in 2015 International Conference

on Computing, Networking and Communications, ICNC 2015, IEEE, Feb. 2015, pp. 77–81, doi: 10.1109/ICCNC.2015.7069319.
[25] R. Sahay, G. Blanc, Z. Zhang, and H. Debar, “Towards autonomic DDoS mitigation using software defined networking,”

in Proceedings 2015 Workshop on Security of Emerging Networking Technologies, Internet Society, 2015, doi:
10.14722/sent.2015.23004.

BIOGRAPHIES OF AUTHORS

Rima Abdelhadi received a B.Sc. degree in science, majoring in computer science

from Mutah University, Alkarak, Jordan, in 2002, and a Master of Engineering, specializing in

computer and networks engineering in 2022, from Al-Hussein bin Talal University, Ma’an,

Jordan. Alqudah focuses on her work in computer security and protection, Protecting

infrastructure and resources. She can be contacted at email: rima.qudah@gmail.com

Moath H. Alsafasfeh associate professor electrical and computer engineering

2017 from Western Michigan University (WMU), USA, an M.Eng. in Communication and

Computer Engineering from Universiti Kebangsaan Malaysia (UKM) in June 2011, and

B.Eng. Computer Engineering from Mutah University, Jordan. Dr. Alsafasfeh is an associate

professor in the College of Engineering, Department of Computer Engineering, and also the

Director of the Academic Development and Quality Assurance Center at Al-Hussein bin Talal

University. Research interests are parallel processing, multiprocessor, and multicore systems;

computer vision, image processing, and pattern recognition; AI and machine learning; non-

destructive testing and evaluation; renewable energy systems (solar panels and gardens);

drones and quadcopters. He can be contacted at email: moath.alsafasfeh@ahu.edu.jo

Bilal I. Alqudah assistant professor of computer security and privacy protection

at the College of Engineering at Al-Hussein Bin Talal University, Ma'an. He holds a Ph.D. in

computer security and privacy protection, and a master's degree in computer science from the

Bobby B. Lyle College of Engineering, Southern Methodist University, Dallas, Texas- USA,

bachelor’s degree in computer science from Mutah University in Karak, Jordan. Dr. Alqudah

has held many local and international training seminars and conferences in their field of

specialization. Dr. Alqudah focuses on computer security and privacy research, electronic

medical record, and access controlling in addition to other areas of interest. He can be

contacted at email: alqudah@ahu.edu.jo.

https://orcid.org/0000-0002-0493-7269
https://orcid.org/0000-0002-3370-2928
https://scholar.google.com/citations?user=haLxLnkAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57193874004
https://orcid.org/0000-0002-2826-2892
https://scholar.google.com/citations?user=g79Gi9cAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55849381700

