
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 6, December 2023, pp. 7016~7026

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i6.pp7016-7026  7016

Journal homepage: http://ijece.iaescore.com

Best-worst northern goshawk optimizer: a new stochastic

optimization method

Purba Daru Kusuma, Faisal Candrasyah Hasibuan
Department of Computer Engineering, Faculty of Electrical Engineering, Telkom University, Bandung, Indonesia

Article Info ABSTRACT

Article history:

Received Apr 12, 2023

Revised Jul 14, 2023

Accepted Jul 17, 2023

 This study introduces a new metaheuristic method: the best-worst northern

goshawk optimizer (BW-NGO). This algorithm is an enhanced version of

the northern goshawk optimizer (NGO). Every BW-NGO iteration consists

of four phases. First, each agent advances toward the best agent and away

from the worst agent. Second, each agent moves relatively to the agent

selected at random. Third, each agent conducts a local search. Fourth, each

agent traces the space at random. The first three phases are mandatory, while

the fourth phase is optional. Simulation is performed to assess the

performance of BW-NGO. In this simulation, BW-NGO is confronted with

four algorithms: particle swarm optimization (PSO), pelican optimization

algorithm (POA), golden search optimizer (GSO), and northern goshawk

optimizer (NGO). The result exhibits that BW-NGO discovers an acceptable

solution for the 23 benchmark functions. BW-NGO is better than PSO,

POA, GSO, and NGO in consecutively optimizing 22, 20, 15, and 11

functions. BW-NGO can discover the global optimal solution for three

functions.

Keywords:

Agent system

Local search

Metaheuristic

Northern goshawk optimization

Particle swarm optimization

Stochastic optimization

Swarm intelligence

This is an open access article under the CC BY-SA license.

Corresponding Author:

Purba Daru Kusuma

Department of Computer Engineering, Faculty of Electrical Engineering, Telkom University

Bandung, Indonesia

Email: purbodaru@telkomuniversity.ac.id

1. INTRODUCTION

Metaheuristic is a technique that is extensively used in studies regarding optimization. Its popularity

mainly comes from its flexibility in tackling various optimization problems, from simple ones to very

complicated ones. Metaheuristic becomes flexible because it adopts an approximate approach that does not

trace all possible solutions [1]. This strategy makes metaheuristics adaptive enough to solve optimization

problems using limited computational resources. However, this benefit is offset by the metaheuristic

choosing a suboptimal answer as the acceptable option and cannot guarantee the global optimal solution [1].

Recently, many metaheuristics have been ready to use for any optimization problems. Many old

algorithms are still popular. Genetic algorithm (GA) is still implemented in recent engineering studies, such

as hydrogen liquefaction process [2], town logistics distribution systems [3], construction projects [4],

spectrometry peak detection [5], plain text encryption [6], Parkinson disease prediction [7], and so on. GA is

also utilized in optimization studies related to the financial sector, such as in-stock selection [8], credit rating

assessment [9], and cryptocurrency price forecasting [10]. Artificial bee colony (ABC) is also used in a lot of

optimization studies in the engineering sector, such as in power contract capacity optimization [11], parallel

machine scheduling [12], tunnel deformation prediction [13], and hybrid flow-shop scheduling [14]. Besides

these old algorithms, many later algorithms have received positive attention. Grey wolf optimizer (GWO) has

been modified and implemented in several engineering studies, such as in flood evacuation planning [15],

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

Best-worst northern goshawk optimizer: a new stochastic optimization method (Purba Daru Kusuma)

7017

abrasive jet machining [16], workflow scheduling [17], and so on. Marine predator algorithm (MPA) is also

implemented in many optimization studies in engineering, such as in determining the optimal parameters of

supercapacitor [18], car design impact problem [19], welded beam design problem [19], detecting the

structural damage [20], optimizing the performance and cost of heating, cooling, and power system [21],

diagnosing the rolling bearing fault in the rotating machinery [22], and so on.

A lot of new metaheuristics were built based on swarm intelligence. The examples of them are

tunicate swarm algorithm (TSA) [23], golden search optimization (GSO) [24], election-based optimization

algorithm (EBOA) [25], hybrid leader based optimization (HLBO) [26], northern goshawk optimization

(NGO) [27], butterfly optimization algorithm (BOA) [28], Komodo mlipir algorithm (KMA) [29], mixed

leader based optimizer (MLBO) [30], multileader optimizer (MLO) [31], pelican optimization algorithm

(POA) [32], and so on. Several new algorithms were built by modifying the previous swarm-based

metaheuristic, such as the chaotic slime mold algorithm (CSMA) [33], stochastic Komodo algorithm (SKA)

[34], modified honey badger algorithm (MHGA) [35], hybrid pelican Komodo algorithm (HPKA) [36], and

many others.

Numerous factors contribute to the extensive development of metaheuristics. First, four familiar

mechanics can be taken, especially in the swarm intelligence-based algorithm. These mechanics are getting

closer to the high-quality solution or farther from the low-quality solution, interacting with other solutions,

searching around the current solution (neighborhood/local search), and searching randomly within the space.

Many variations can be taken in every part. Moreover, many algorithms are developed by conducting several

searches. In almost all algorithms, the random search is only done in the initialization phase.

Meanwhile, several algorithms, such as simulated annealing (SA) [37], tabu search (TS) [38], and

variable neighborhood search (VNS) [39], are developed based on local search. Second, various random

distributions or movements can be chosen due to the characteristic of the metaheuristic as a stochastic

system. Almost all algorithms choose uniform distribution due to its simplicity. Meanwhile, several

algorithms choose other distributions. The normal distribution can be found in the invasive weed optimizer

(IWO) [40]. Levy flight can be found in cuckoo search (CS) [41]. The combination between levy flight and

Brownian movement can be found in MPA [42].

The massive development of metaheuristics is also correlated with the fact that no algorithm or

method is suitable for tackling all and various problems. The example is as follows. HPKA is superior to

GWO in solving the fixed dimensional multimodal functions but inferior to GWO in solving the high

dimensional unimodal functions [36]. On the other hand, GWO is inferior to MPA, KMA, POA, and HPKA

in solving the portfolio optimization problem in which the solution space is presented in an integer [36]. GSO

generally outperforms the gravitational search algorithm (GSA) but is still inferior in solving step functions

[24]. NGO is inferior to GSA in solving penalized two, although NGO generally is superior among other

benchmark algorithms [27]. SKA can discover the best result only in 4 out of 10 functions compared to other

benchmark algorithms [34]. GA can outperform BOA in solving two functions, although, in general, BOA

outperforms GA [28]. This circumstance occurs because a combined method or random distribution may be

effective for some problems but less effective for others.

Moreover, many metaheuristics that hybridize previous algorithms still have a weakness. On the

other hand, optimizing many new challenges, such as electric vehicles, cloud computing, and others, is not

easy. It makes the study in proposing a new metaheuristic still promising.

Regarding this problem and opportunity, this study proposes a new metaheuristic that modifies the

primary form of NGO. There are several reasons for choosing NGO as a baseline. First, NGO is a new

algorithm, and this algorithm’s exploration, implementation, and modification are still limited. Second, NGO

is unique because it does not adopt the mechanism to follow the highest quality agent, although NGO is a

swarm intelligence-based metaheuristic.

The modification is done by accommodating the four standard searches in the metaheuristics,

especially those built based on swarm intelligence. In every iteration, all agents do these four searches.

One search is optional, while the other three are mandatory. The best-worst northern goshawk optimizer

(BW-NGO) is the name of the proposed method. The best-worst term comes from the action that

accommodates movement toward the best agent and away from the worst agent. As the improvement version

of NGO, below are the contributions of this work: i) BW-NGO is an enhanced version of NGO as the new

metaheuristic and ii) BW-NGO implements four common searches in every iteration.

The remainder of this paper is constructed as follows. Section 2 explores and reviews the previous

studies regarding metaheuristics, especially algorithms developed based on swarm intelligence (SI). Section 3

presents the model of BW-NGO that consists of the core concept, algorithm, and mathematical model.

Section 4 presents the simulation carried out in this work to evaluate the performance of BW-NGO, it is

result, and the in-depth analysis of the result and findings. Section 5 summarizes this work and future

opportunities.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7016-7026

7018

2. RELATED WORKS

Based on the common perspective, two strategies are carried out by any metaheuristic. The first

strategy is exploration, and the second strategy is exploitation. This perspective is common and can be used

in the single solution-based algorithm, such as VNS, TS, and SA, or the population-based algorithm, such as

ABC, GA, and PSO. The exploitation can be interpreted as any effort to discover a better solution around or

near the current one. Exploration can be interpreted as any effort to discover a better solution anywhere

within space.

As the SI-based metaheuristic is extensively studied, there is a new perspective that enriches the

previous perspective. Four common strategies are found in many new metaheuristics. The first strategy is

getting closer to the highest quality solution and going away from the lowest quality solution. The second

strategy involves engaging with one or more chosen solutions from the population. Discovering a superior

solution close to the current one is the third strategy. The fourth strategy is to do a random search inside the

search area. This perspective can be used as an alternative because there is an ambiguous distinction between

exploration and exploitation in many recent swarm intelligence-based metaheuristics. Below is a deeper

review of these four strategies.

The first strategy is getting closer to the highest quality solution and going away from the worst

solution. In general, getting closer to the highest quality solution is more popular than moving away from the

worst solution. In some algorithms, the highest quality solution is called a leader. Each algorithm builds its

method regarding this first strategy. In PSO, there are two types of highest quality solutions: global and local

best [43]. In PSO, the existence of the lowest quality solution is not considered. Every agent tries to move

toward the global and local best with a certain proportion [43]. In GSO, every agent also moves toward the

global and local best, but the proportion is determined stochastically and enriched with sinusoid movement

[24]. In GSO, replacing the worst solution with the randomly selected solution can be seen as an effort to

avoid the worst solution [24]. In MPA, the predator represents the local best, and there is an interaction

between every predator and its prey [42]. In KMA, the movement toward the best solution can be found in

many parts: the movement of giant male dragons toward the better big male dragons and the small male

dragons toward the giant male dragons [29]. In GWO, all agents move toward the results of the best three

agents [44]. These three agents are obtained by a sorting process carried out in every iteration [44]. MLO also

adopts multiple global leaders. The similarity is that these leaders are also obtained by sorting in every

iteration [31]. The difference is that in MLO, the number of leaders is determined by the user [31]. In shell

game optimizer (SGO), the best solution among the population in every iteration becomes one factor

considered in the first strategy besides two randomly selected solutions [45]. Meanwhile, the worst solution

is avoided by putting the worst solution in the lowest probability of being chosen [45].

The second strategy involves interacting with the corresponding and randomly selected agents. This

strategy is less popular than the first strategy. This method is employed during the Eddy formation phase of

MPA when there is a chance that the prey would travel toward the difference between two randomly picked

prey [42]. This action is a part of the exploration. In NGO, the first guided movement is the movement of

every agent relative to a randomly selected agent [27]. In this movement, the corresponding agent moves

toward the randomly selected agent if this selected agent is better than the corresponding agent [27].

Otherwise, the corresponding agent moves away from the selected agent [27]. In HLBO, the randomly

selected agent is constructed together with the best agent to become the target [26]. In HLBO, the proportion

of the best agent and the randomly selected agent is determined based on the normalized quality of these

agents. The combination of the best and randomly selected agents can also be found in MLBO. The

difference is that the proportion of the best agent increases as the iteration continues, while the proportion of

the randomly selected agent decreases [30]. In SGO, two randomly selected agents are combined with the

best agent [45].

The third strategy is the local search or neighborhood search. In general, this strategy is exploitation.

In old metaheuristics such as SA and TS, this strategy becomes the backbone as the modification of the

current solution is carried out in every iteration. In IWO, spreading new seeds around the current seed with

normal distribution also can be seen as the interpretation of this third strategy [40]. The new seeds will be

concentrated near the current seed, although there is the possibility that the new seed is far from the current

seed. Levy flight can be perceived as a local search when the flight distance is short. The guided movement

can also be seen as a local search when the corresponding agent is near the target. In MPA, the second option

of the eddy formation can also be seen as a local search with certain ambiguity [42]. In the early iteration, the

local space is broad and declines as the iteration goes on [42]. Other algorithms, such as NGO [27], MLO

[31], and HLBO [26], also carry out a similar strategy in their second phase. The distinction between these

algorithms and MPA is that their method only accepts the new solution generated by the local search if it is

superior to the existing solution.

Int J Elec & Comp Eng ISSN: 2088-8708 

Best-worst northern goshawk optimizer: a new stochastic optimization method (Purba Daru Kusuma)

7019

The fourth strategy is the random search around space. This random search usually follows a

uniform distribution, so the probability of any solution within the solution space becoming the initial solution

is equal. In general, all metaheuristics deploy this strategy in the initialization phase. Nevertheless, only a few

algorithms implement this strategy in the iteration phase. In ABC, the scout bee discovers a new food source

within the solution space after the onlooker bee fails to discover a better solution around the current food

source within some trials [46]. In harmony search (HS), the random search is also carried out if the generated

random number is higher than the harmony memory consideration rate (HMCR) [47].

Based on this explanation, there is an opportunity to develop a new metaheuristic that

accommodates the four common strategies in every iteration. It is because this kind of algorithm is still

challenging to discover. Many old algorithms are developed based on local search. Most of all, a swarm

intelligence-based metaheuristic focuses on the strategy related to the highest quality agent. Some new

algorithms adopt local search as complementary to the first strategy. Only a few algorithms carry out a

random search in the iteration phase.

3. METHOD

The central concept of BW-NGO is accommodating four joint movements in the SI. This

accommodation is transformed into four phases that the agents carry out. The first phase entails moving

towards the best agent and away from the worst agent. The second phase consists of agent mobility relative

to the system. The local search phase is the third phase. The random search within space constitutes the

fourth phase. The first three phases are required for all agents in each iteration.

Meanwhile, the fourth phase is optional. It is carried out only if these three phases do not produce

any improvement. These phases are conducted sequentially. Below is a more detailed explanation of every

phase. Exploration helps avoid the local optimal entrapment, while exploitation helps improve the current

solution, especially when the current solution is in the region where the global optimal solution exists.

The first phase is carried out by moving toward the best agent and avoiding the worst agent. These

best and worst agents are determined from the previous iteration. These two movements are carried out in a

single movement. In the early iteration, the proportion of moving away from the worst agent is high, while

the proportion of moving toward the best agent is low. This proportion shifts gradually as the iteration goes

on. The proportion of the movement toward the best agent increases.

Meanwhile, the proportion of the movement away from the worst agent decreases. This strategy is

developed based on several reasons. In the beginning, optimization is designed to avoid low-quality solutions.

Meanwhile, as the iteration goes, the optimization will focus on the improvement toward the best solution.

The second phase creates interaction between the corresponding agent and the other agent in the

system. This other agent is selected randomly. Then, the quality of both agents is compared. If the selected

agent is better than the corresponding agent, then this corresponding agent moves toward the selected agent.

Contrary, if the selected agent is not better than the corresponding agent, then this corresponding agent

avoids the selected agent.

The third phase is the local search or neighborhood search. The new solution is generated randomly

around the corresponding agent within its observation range. In the early iteration, the observation range was

wide to accommodate the exploration. Then, this observation range decreases gradually as the iteration goes

on. It is seen as the strategy shifting toward exploitation.

The fourth phase is the random search. It is carried out by generating a new solution within space.

This phase is designed to focus on exploration. This step is only implemented if there is no improvement

after implementing the preceding three phases. It can be interpreted that the acceptable solution has been

found or the agent is trapped on the local optimal.

There is a candidate generated in every phase for every agent. This candidate becomes the

replacement for the corresponding agent only if this candidate has better quality than the corresponding

agent. Otherwise, the agent remains in its current state or solution.

This concept is then transformed into the algorithm. The algorithm of BW-NGO is presented in

algorithm 1. Meanwhile, (1) to (15) are the formalization of processes in the algorithm. Several annotations

used in this formal model are as follows.

a : Agent

A : Set of agents

abest : The best agent

aworst : The worst agent

agbest : The global best agent

bl : Lower boundary

bu : Upper boundary

c1 : First candidate

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7016-7026

7020

c2 : Second candidate

c3 : Third candidate

c4 : Fourth candidate

d1 : First direction

d2 : Second direction

f : Fitness/objective function

U : Uniform random

Below is the explanation of algorithm 1. The optimization process is split into two steps: the

initialization and the iteration. The random search is done in the initialization to discover the agent’s initial

solution. The iteration has two sub-steps. Discovering the best agent, the worst agent, and the worldwide best

agent is the first sub-step. The second sub-step consists of all agents' movement. The global best agent is the

agent whose quality is the best to the current the iteration. This global best agent becomes the final solution.

Algorithm 1. Best-worst northern goshawk optimizer
1 output: agbest

2 begin

3 for all A

4 initialize a using (1)

5 end for

6 t=1

7 while t≤tmax

8 discover abest using (2)

9 discover aworst using (3)

10 update agbest using (4)

11 for all A

12 conduct the first phase using (5) to (8)

13 conduct the second phase using (9) to (11)

14 conduct the third phase using (12) and (13)

18 if improvement fails, then

19 conduct the fourth phase using (14) and (15)

21 end if

22 end while

23 end

𝑎 = 𝑈(𝑏𝑙 , 𝑏𝑢) (1)

𝑎𝑏𝑒𝑠𝑡,𝑡 = 𝑎 ∈ 𝐴 ∧ min(𝑓(𝑎𝑡)) (2)

𝑎𝑤𝑜𝑟𝑠𝑡,𝑡 = 𝑎 ∈ 𝐴 ∧ max(𝑓(𝑎𝑡)) (3)

𝑎𝑔𝑏𝑒𝑠𝑡
′ = {

𝑎𝑏𝑒𝑠𝑡 , 𝑓(𝑎𝑏𝑒𝑠𝑡) < 𝑓(𝑎𝑔𝑏𝑒𝑠𝑡)

𝑎𝑔𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
 (4)

𝑑1 = 𝑈(0,1). (
𝑡

𝑡𝑚𝑎𝑥
) . (𝑎𝑏𝑒𝑠𝑡 − 𝑈(1,2). 𝑎) (5)

𝑑2 = 𝑈(0,1). (1 −
𝑡

𝑡𝑚𝑎𝑥
) . (𝑎 − 𝑈(1,2). 𝑎𝑤𝑜𝑟𝑠𝑡) (6)

𝑐1 = 𝑎 + 𝑑1 + 𝑑2 (7)

𝑎′ = {
𝑐1, 𝑓(𝑐1) < 𝑓(𝑎)

𝑎, 𝑒𝑙𝑠𝑒
 (8)

𝑎𝑠 = 𝑈(𝐴) (9)

𝑐2 = {
𝑎 + 𝑈(0,1). (𝑎𝑠 − 𝑈(1,2). 𝑎), 𝑓(𝑎𝑠) < 𝑓(𝑎)

𝑎𝑠 + 𝑈(0,1). (𝑎 − 𝑈(1,2). 𝑎𝑠), 𝑒𝑙𝑠𝑒
 (10)

𝑎′ = {
𝑐2, 𝑓(𝑐2) < 𝑓(𝑎)

𝑎, 𝑒𝑙𝑠𝑒
 (11)

Int J Elec & Comp Eng ISSN: 2088-8708 

Best-worst northern goshawk optimizer: a new stochastic optimization method (Purba Daru Kusuma)

7021

𝑐3 = 𝑎 + (1 −
𝑡

𝑡𝑚𝑎𝑥
) . (2. 𝑈(0,1) − 1). 𝑎 (12)

𝑎′ = {
𝑐3, 𝑓(𝑐3) < 𝑓(𝑎)

𝑎, 𝑒𝑙𝑠𝑒
 (13)

𝑐4 = 𝑈(𝑏𝑙 , 𝑏𝑢) (14)

𝑎′ = {
𝑐4, 𝑓(𝑐4) < 𝑓(𝑎)

𝑎, 𝑒𝑙𝑠𝑒
 (15)

Below is the explanation of (1) to (15). In (1) states that the agent’s initial solution is generated

randomly within the space. In (2) states that the best agent is the agent whose solution is the best among

all agents in the current iteration. In (3) states that the worst agent is the agent whose solution is the worst

among all agents in the current iteration. In (4) states that the best agent becomes the global best agent

only if it is better than the current global best agent. In (5) states that the proportion of the movement

toward the best agent is linearly proportional to the iteration. In (6) states that the proportion of the

movement away from the worst agent is reversely proportional to the iteration. In (7) states that the first

candidate is obtained by combing the agent’s current solution with movements generated from (5) and (6).

In (8) states that this first candidate replaces the agent’s current solution only if this first candidate is better

than the current one. In (9) states that the agent is selected randomly from the population. In (10) states

that the second candidate is obtained by the movement of the corresponding agent relative to the selected

agent. The movement toward the selected agent is carried out if the selected agent is better than the

corresponding agent. The opposite direction is taken if the selected agent is not better than the

corresponding agent. In (11) states that the second candidate replaces the agent’s current solution only if

this second candidate is better than the agent’s current solution. In (12) formalizes the local search and

generates the third candidate. In (12) also exhibits that the local space declines gradually as the iteration

continues. In (13) states that the third candidate replaces the agent’s current solution only if this third

candidate is better than the agent’s current solution. In (14) states that the fourth candidate is generated

randomly within the space. In (15) states that the fourth candidate only replaces the agent’s current

solution if it is better than the current one.

The BW-NGO complexity can be expressed as O(2tmax.n(A)). The following explains this

presentation: BW-complexity NGOs are proportional to the maximum number of iterations or population

size. As exhibited in the iteration, the iteration from the first iteration to the maximum iteration becomes the

outer loop. In contrast, the iteration from the first agent to the last agent constitutes the inner loop. Every

outer loop contains two inner loops in succession. The initial inner loop determines which agents are the

greatest, worst, and global best. Tracing the quality of all agents is required to complete this process. To

accommodate the modification, the second inner loop is executed.

4. RESULTS AND DISCUSSION

4.1. Simulation

Simulation is carried out to assess the performance of BW-NGO. This work uses BW-NGO to

overcome the acceptable solution of the 23 benchmark functions. These 23 functions have been used

extensively and have become common in many studies proposing a new metaheuristic. The popularity of

these functions comes from several reasons. First, these functions consist of 7 unimodal functions and 16

multimodal functions. Second, these functions consist of 13 high dimensional functions and ten fixed

dimensional functions. In the high dimensional functions, the dimension varies from 1 to thousands. In the

fixed dimensional functions, the dimension is fixed, and it is usually tiny. These functions also represent

problems with various spaces, from narrow to very wide. Generally, these functions can be categorized into

three clusters: high dimension unimodal, high dimension multimodal, and fixed dimension multimodal

functions. Table 1 provides a thorough summary of the functions. The high-dimensional functions F1 through

F7 are unimodal. F8 through F13 are high-dimensional functions with several modes. Finally, F14 to F23 are

multimodal functions with fixed dimensions.

This simulation benchmarked BW-NGO with four algorithms: PSO, POA, GSO, and NGO. PSO

represents the early metaheuristic developed based on swarm intelligence. It is necessary to measure how far

BW-NGO is better than its origin. NGO is chosen to measure the improvement of BW-NGO with the NGO

as its basic form. POA and GSO are chosen because these two algorithms are new SI-based metaheuristics.

The result is exhibited in Table 2.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7016-7026

7022

Table 2 exhibits that, in general, BW-NGO can discover the acceptable solution for the 23 functions.

Moreover, it can be the global optimal solution for three functions: Six Hump Camel, Branin, and Goldstein

Price. All these three functions are fixed-dimension multimodal functions. BW-NGO is also very competitive

compared to the four algorithms. The data regarding the number of functions where BW-NGO beats the

benchmark algorithms are exhibited in Table 3.

Table 1. Benchmark functions
No Function Dim Space Target

F1 Sphere 50 [-100, 100] 0
F2 Schwefel 2.22 50 [-100, 100] 0

F3 Schwefel 1.2 50 [-100, 100] 0

F4 Schwefel 2.21 50 [-100, 100] 0
F5 Rosenbrock 50 [-30, 30] 0

F6 Step 50 [-100, 100] 0

F7 Quartic 50 [-1.28, 1.28] 0

F8 Schwefel 50 [-500, 500] -418.9×dim

F9 Ratsrigin 50 [-5.12, 5.12] 0

F10 Ackley 50 [-32, 32] 0
F11 Griewank 50 [-600, 600] 0

F12 Penalized 50 [-50, 50] 0

F13 Penalized 2 50 [-50, 50] 0
F14 Shekel Foxholes 2 [-65, 65] 1

F15 Kowalik 4 [-5, 5] 0.0003
F16 Six Hump Camel 2 [-5, 5] -1.0316

F17 Branin 2 [-5, 5] 0.398

F18 Goldstein-Price 2 [-2, 2] 3
F19 Hartman 3 3 [1, 3] -3.86

F20 Hartman 6 6 [0, 1] -3.32

F21 Shekel 5 4 [0, 10] -10.1532
F22 Shekel 7 4 [0, 10] -10.4028

F23 Shekel 10 4 [0, 10] -10.5363

Table 2. Simulation result
Function PSO POA GSO NGO BW-NGO Better Than

F1 1.508×104 6.491×104 1.546×104 1.196×10-12 1.145×10-20 PSO, POA, GSO, NGO

F2 0 0 1.810×1060 0 1.046×10-152 GSO

F3 5.941×104 1.499×105 2.878×104 3.182×101 9.900 PSO, POA, GSO, NGO
F4 3.522×101 7.151×101 3.500×101 1.669×10-5 1.873×10-8 PSO, POA, GSO, NGO

F5 9.213×106 1.513×108 1.075×107 4.881×101 4.872×101 PSO, POA, GSO, NGO

F6 1.398×104 6.244×104 1.403×104 8.532 7.428 PSO, POA, GSO, NGO
F7 5.548 1.258×102 5.518 4.700×10-3 1.457×10-2 PSO, POA, GSO

F8 -3.741×103 -4.450×103 -6.392×103 -6.053×103 -7.773×103 PSO, POA, GSO, NGO

F9 4.032×102 6.035×102 3.214×102 5.556×10-11 2.293×10-4 PSO, POA, GSO
F10 1.463×101 1.980×101 1.998×101 1.996×10-7 1.769×10-11 PSO, POA, GSO, NGO

F11 1.393×102 5.936×102 1.360×102 2.350×10-8 7.668×10-12 PSO, POA, GSO, NGO

F12 1.603×106 2.687×108 2.223×106 5.784×10-1 4.698×0-1 PSO, POA, GSO, NGO
F13 1.379×107 6.724×108 1.774×107 2.990 2.875 PSO, POA, GSO, NGO

F14 7.311 1.811 5.051 1.047 4.720 PSO, GSO

F15 1.715×10-2 2.822×10-3 2.171×10-3 5.323×10-4 4.525×10-4 PSO, POA, GSO, NGO

F16 -1.023 -1.029 -1.032 -1.032 -1.031 PSO, POA

F17 5.356×10-1 4.026×10-1 3.981×10-1 3.981×10-1 3.981×10-1 PSO, POA

F18 7.786 3.061 3.000 3.000 3.000 PSO, POA
F19 -2.123×10-1 -4.954×10-2 -4.954×10-2 -4.954×10-2 -4.954×10-2 PSO

F20 -2.686 -2.914 -3.272 -3.283 -3.199 PSO, POA

F21 -4.743 -3.517 -9.086 -9.183 -5.525 PSO, POA
F22 -4.542 -4.236 -8.465 -9.776 -5.547 PSO, POA

F23 -3.706 -3.454 -8.904 -9.440 -6.160 PSO, POA

Table 3. Cluster based comparison result
Cluster Number of Functions Beaten by BW-NGO

PSO POA GSO NGO

1 6 6 7 5

2 6 6 6 5
3 10 8 2 1

Total 22 20 15 11

Int J Elec & Comp Eng ISSN: 2088-8708 

Best-worst northern goshawk optimizer: a new stochastic optimization method (Purba Daru Kusuma)

7023

Table 3 exhibits that the improvement produced by BW-NGO is significant. BW-NGO is superior to

PSO and POA by beating these algorithms in 22 and 20 functions, respectively. BW-NGO is also very

competitive by creating better performance than GSO in 15 functions. Meanwhile, the draw between

BW-NGO and GSO occurs in three functions: Branin, Goldstein Price, and Hartman 3. It means that GSO is

better than BW-NGO in only 5 functions. BW-NGO is better than NGO in 11 functions and draws in 3

functions. It means that NGO is still better than BW-NGO in 9 functions.

The second simulation is carried out to evaluate the performance of BW-NGO with the population

size variation. In this simulation, the population size is set at 5, 10, and 15. These values represent a low

population size. The result is exhibited in Table 4.

Table 4. Relation between population size and performance
Function Average Fitness Score

n(A)=5 n(A)=10 n(A)=15

F1 8.689×10-22 8.975×10-21 9.152×10-21

F2 0 1.270×10-215 2.891×10-170

F3 5.925 4.201 7.580

F4 3.159×10-8 2.438×10-8 2.753×10-8
F5 4.888×101 4.877×101 4.874×101

F6 9.346 8.282 7.678

F7 1.714×10-2 1.221×10-2 1.371×10-2
F8 -8.262×103 -7.907×103 -7.909×103

F9 8.748×10-2 1.149 2.097×10-7

F10 3.769×10-12 1.174×10-11 1.766×10-11
F11 4.917×10-11 2.019×10-13 4.596×10-14

F12 7.390×10-1 5.790×10-1 5.183×10-1

F13 2.981 2.939 2.906
F14 5.637 4.660 4.667

F15 1.608×10-3 1.553×10-3 5.166×10-4

F16 -1.030 -1.032 -1.032
F17 3.981×10-1 3.981×10-1 3.981×10-1

F18 1.088×101 3.000 3.000

F19 -4.954×10-2 -4.954×10-2 -4.954×10-2

F20 -3.014 -3.167 -3.191

F21 -5.531 -5.914 -6.369

F22 -5.702 -5.255 -5.576
F23 -4.581 -5.554 -6.011

4.2. Discussion

In this section, an in-depth analysis of the simulation result is carried out. This analysis is conducted

based on the head-to-head comparison between BW-NGO and the benchmark algorithm. This analysis

consists of the result and the strategy difference between BW-NGO and the benchmark algorithm.

The first comparison is the comparison between BW-NGO and PSO. Overall, BW-NGO

outperforms PSO in almost all functions. PSO outperforms BW-NGO only in solving Schwefel 2.22. This

superiority can be seen as a significant gap implemented in PSO and BW-NGO. In PSO, all agents move

toward the global and local best agents with a certain proportion or weight. PSO carries out random

movement only in the initialization phase. It differs from BW-NGO, which carries out all strategies in every

iteration.

The second comparison is the comparison between BW-NGO and POA. Like PSO, BW-NGO also

outperforms POA in almost all functions. BW-NGO outperforms POA on all functions in the second cluster.

Meanwhile, POA outperforms BW-NGO on 1 and 2 functions in the first and third clusters. Different from

PSO, POA focuses on random search and local search. POA conducts a full random search in the

initialization phase.

Meanwhile, POA conducts partial random movement in the first phase of every iteration. It is called

partial because after the random target is generated, the agent can move toward or away relative to this target

based on the quality. The local search is carried out in the second phase.

The third comparison is the comparison between BW-NGO and GSO. Table 3 exhibits that

BW-NGO is superior to GSO in the first and second clusters but inferior in the third cluster. It means that

BW-NGO is superior to GSO in solving high-dimension problems. On the other hand, GSO is superior to

BW-NGO in solving low-dimension problems. From the strategy perspective, GSO implements three of four

movements in the SI. First, GSO implements a random search in the initialization. Second, GSO implements

movement toward the global and local best with each iteration. In addition, GSO avoids the worst solution by

replacing the worst agent in each iteration with a randomly picked agent. Thirdly, GSO implements local

search with each iteration by combining this with the initial movement.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7016-7026

7024

The fourth comparison is the comparison between BW-NGO and NGO. Table 3 exhibits that

BW-NGO outperforms NGO in solving 11 functions. Meanwhile, Table 2 exhibits that BW-NGO is drawn to

NGOs in solving four functions in the third cluster: Six Hump Camel, Branin, Goldstein-Price, and

Hartman 3. It means that NGO is still superior to BW-NGO in solving eight functions: two functions in the

first cluster, one in the second cluster, and five in the third cluster. It means that, in general, BW-NGO is

superior to NGOs in solving big-dimension problems but less superior in solving low-dimension problems.

5. CONCLUSION

This work has demonstrated that the proposed algorithm, the BW-NGO, is a competitive

metaheuristic. It can discover an acceptable solution in solving all functions. Moreover, it can discover the

global optimal solution in solving three functions: Six Hump Camel, Branin, and Goldstein Price. BW-NGO

is also competitive compared to the benchmark algorithms. BW-NGO is better than PSO, POA, GSO, and

NGO in optimizing 22, 20, 15, and 11 functions. Overall, BW-NGO is superior in solving big-dimension

problems. The simulation result also exhibits that the BW-NGO can provide an acceptable solution with a

low population size. Several opportunities can be created based on this work. This work has proven that the

modification of NGOs is still open. Future studies can also be conducted by comparing BW-NGO and NGO

in solving various real-world optimization problems, from numerical to combinatorial problems.

ACKNOWLEDGEMENTS

The authors received financial support for publication of this article from Telkom University,

Indonesia.

REFERENCES
[1] H. R. Moshtaghi, A. T. Eshlaghy, and M. R. Motadel, “A comprehensive review on meta-heuristic algorithms

and their classification with novel approach,” Journal of Applied Research on Industrial Engineering, vol. 8, no. 1, pp. 63–89,

2021.
[2] J. Zhu, G. Wang, Y. Li, Z. Duo, and C. Sun, “Optimization of hydrogen liquefaction process based on parallel genetic algorithm,”

International Journal of Hydrogen Energy, vol. 47, no. 63, pp. 27038–27048, Jul. 2022, doi: 10.1016/j.ijhydene.2022.06.062.

[3] H. Cui, J. Qiu, J. Cao, M. Guo, X. Chen, and S. Gorbachev, “Route optimization in township logistics distribution considering
customer satisfaction based on adaptive genetic algorithm,” Mathematics and Computers in Simulation, vol. 204, pp. 28–42, Feb.

2023, doi: 10.1016/j.matcom.2022.05.020.

[4] C. Liu, F. Zhang, H. Zhang, Z. Shi, and H. Zhu, “Optimization of assembly sequence of building components based on simulated
annealing genetic algorithm,” Alexandria Engineering Journal, vol. 62, pp. 257–268, Jan. 2023, doi: 10.1016/j.aej.2022.07.025.

[5] J. Zhou et al., “Combination of continuous wavelet transform and genetic algorithm-based Otsu for efficient mass spectrometry

peak detection,” Biochemical and Biophysical Research Communications, vol. 624, pp. 75–80, Oct. 2022, doi:
10.1016/j.bbrc.2022.07.083.

[6] R. B. Abduljabbar, O. K. Hamid, and N. J. Alhyani, “Features of genetic algorithm for plain text encryption,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 434–441, Feb. 2021, doi:
10.11591/ijece.v11i1.pp434-441.

[7] N. Benayad, Z. Soumaya, B. D. Taoufiq, and A. Abdelkrim, “Features selection by genetic algorithm optimization with k-nearest

neighbour and learning ensemble to predict Parkinson disease,” International Journal of Electrical and Computer Engineering
(IJECE), vol. 12, no. 2, pp. 1982–1989, Apr. 2022, doi: 10.11591/ijece.v12i2.pp1982-1989.

[8] M. Ozcalici and M. Bumin, “Optimizing filter rule parameters with genetic algorithm and stock selection with artificial neural

networks for an improved trading: The case of Borsa Istanbul,” Expert Systems with Applications, vol. 208, Dec. 2022, doi:
10.1016/j.eswa.2022.118120.

[9] R. Estran, A. Souchaud, and D. Abitbol, “Using a genetic algorithm to optimize an expert credit rating model,” Expert Systems

with Applications, vol. 203, Oct. 2022, doi: 10.1016/j.eswa.2022.117506.
[10] S. G. Quek, G. Selvachandran, J. H. Tan, H. Y. A. Thiang, N. T. Tuan, and L. H. Son, “A new hybrid model of fuzzy time series

and genetic algorithm based machine learning algorithm: A case study of forecasting prices of nine types of major

cryptocurrencies,” Big Data Research, vol. 28, May 2022, doi: 10.1016/j.bdr.2022.100315.
[11] C.-C. Lo and C.-S. Chiang, “Application of the artificial bee colony algorithm to power contract capacity optimization,”

Microprocessors and Microsystems, vol. 93, Sep. 2022, doi: 10.1016/j.micpro.2022.104621.

[12] D. Lei and H. Yang, “Scheduling unrelated parallel machines with preventive maintenance and setup time: Multi-sub-colony
artificial bee colony,” Applied Soft Computing, vol. 125, Aug. 2022, doi: 10.1016/j.asoc.2022.109154.

[13] T. Feng, C. Wang, J. Zhang, B. Wang, and Y.-F. Jin, “An improved artificial bee colony-random forest (IABC-RF) model for

predicting the tunnel deformation due to an adjacent foundation pit excavation,” Underground Space, vol. 7, no. 4, pp. 514–527,
Aug. 2022, doi: 10.1016/j.undsp.2021.11.004.

[14] X.-R. Tao, Q.-K. Pan, and L. Gao, “An efficient self-adaptive artificial bee colony algorithm for the distributed resource-

constrained hybrid flowshop problem,” Computers and Industrial Engineering, vol. 169, Jul. 2022, doi:
10.1016/j.cie.2022.108200.

[15] S. Khalilpourazari and S. H. R. Pasandideh, “Designing emergency flood evacuation plans using robust optimization and

artificial intelligence,” Journal of Combinatorial Optimization, vol. 41, no. 3, pp. 640–677, Apr. 2021, doi: 10.1007/s10878-021-
00699-0.

[16] K. Kalita, S. Pal, S. Haldar, and S. Chakraborty, “A hybrid TOPSIS-PR-GWO approach for multi-objective process parameter

Int J Elec & Comp Eng ISSN: 2088-8708 

Best-worst northern goshawk optimizer: a new stochastic optimization method (Purba Daru Kusuma)

7025

optimization,” Process Integration and Optimization for Sustainability, vol. 6, no. 4, pp. 1011–1026, Dec. 2022, doi:
10.1007/s41660-022-00256-0.

[17] N. Arora and R. Kumar, “HPSOGWO: A hybrid algorithm for scientific workflow scheduling in cloud computing,” International

Journal of Advanced Computer Science and Applications, vol. 11, no. 10, 2020, doi: 10.14569/IJACSA.2020.0111078.
[18] D. Yousri, A. Fathy, and H. Rezk, “A new comprehensive learning marine predator algorithm for extracting the optimal

parameters of supercapacitor model,” Journal of Energy Storage, vol. 42, Oct. 2021, doi: 10.1016/j.est.2021.103035.

[19] K. Zhong, G. Zhou, W. Deng, Y. Zhou, and Q. Luo, “MOMPA: Multi-objective marine predator algorithm,” Computer Methods
in Applied Mechanics and Engineering, vol. 385, Nov. 2021, doi: 10.1016/j.cma.2021.114029.

[20] L. V. Ho et al., “A hybrid computational intelligence approach for structural damage detection using marine predator

algorithm and feedforward neural networks,” Computers and Structures, vol. 252, Aug. 2021, doi:
10.1016/j.compstruc.2021.106568.

[21] X. Sun, G. Wang, L. Xu, H. Yuan, and N. Yousefi, “Optimal performance of a combined heat-power system with a proton

exchange membrane fuel cell using a developed marine predators algorithm,” Journal of Cleaner Production, vol. 284, Feb. 2021,
doi: 10.1016/j.jclepro.2020.124776.

[22] X. Chen, X. Qi, Z. Wang, C. Cui, B. Wu, and Y. Yang, “Fault diagnosis of rolling bearing using marine predators algorithm-

based support vector machine and topology learning and out-of-sample embedding,” Measurement, vol. 176, May 2021, doi:
10.1016/j.measurement.2021.109116.

[23] S. Kaur, L. K. Awasthi, A. L. Sangal, and G. Dhiman, “Tunicate swarm algorithm: A new bio-inspired based metaheuristic

paradigm for global optimization,” Engineering Applications of Artificial Intelligence, vol. 90, Apr. 2020, doi:
10.1016/j.engappai.2020.103541.

[24] M. Noroozi, H. Mohammadi, E. Efatinasab, A. Lashgari, M. Eslami, and B. Khan, “Golden search optimization algorithm,” IEEE

Access, vol. 10, pp. 37515–37532, 2022, doi: 10.1109/ACCESS.2022.3162853.
[25] P. Trojovský and M. Dehghani, “A new optimization algorithm based on mimicking the voting process for leader selection,”

PeerJ Computer Science, vol. 8, May 2022, doi: 10.7717/peerj-cs.976.

[26] M. Dehghani and P. Trojovský, “Hybrid leader based optimization: a new stochastic optimization algorithm for solving
optimization applications,” Scientific Reports, vol. 12, no. 1, Apr. 2022, doi: 10.1038/s41598-022-09514-0.

[27] M. Dehghani, S. Hubalovsky, and P. Trojovsky, “Northern goshawk optimization: a new swarm-based algorithm for solving

optimization problems,” IEEE Access, vol. 9, pp. 162059–162080, 2021, doi: 10.1109/ACCESS.2021.3133286.
[28] S. Arora and S. Singh, “Butterfly optimization algorithm: a novel approach for global optimization,” Soft Computing, vol. 23,

no. 3, pp. 715–734, Feb. 2019, doi: 10.1007/s00500-018-3102-4.

[29] S. Suyanto, A. A. Ariyanto, and A. F. Ariyanto, “Komodo mlipir algorithm,” Applied Soft Computing, vol. 114, Jan. 2022, doi:
10.1016/j.asoc.2021.108043.

[30] F. Zeidabadi, S. Doumari, M. Dehghani, and O. Malik, “MLBO: Mixed leader based optimizer for solving optimization

problems,” International Journal of Intelligent Engineering and Systems, vol. 14, no. 4, pp. 472–479, Aug. 2021, doi:
10.22266/ijies2021.0831.41.

[31] M. Dehghani et al., “MLO: Multi leader optimizer,” International Journal of Intelligent Engineering and Systems, vol. 13, no. 6,

pp. 364–373, Dec. 2020, doi: 10.22266/ijies2020.1231.32.
[32] P. Trojovský and M. Dehghani, “Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications,”

Sensors, vol. 22, no. 3, Jan. 2022, doi: 10.3390/s22030855.

[33] O. Altay, “Chaotic slime mould optimization algorithm for global optimization,” Artificial Intelligence Review, vol. 55, no. 5,
pp. 3979–4040, Jun. 2022, doi: 10.1007/s10462-021-10100-5.

[34] P. D. Kusuma and M. Kallista, “Stochastic komodo algorithm,” International Journal of Intelligent Engineering and Systems,

vol. 15, no. 4, Aug. 2022, doi: 10.22266/ijies2022.0831.15.
[35] S. A. Yasear and H. M. Ghanimi, “A modified honey badger algorithm for solving optimal power flow optimization

problem,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 4, Aug. 2022, doi:

10.22266/ijies2022.0831.14.
[36] P. D. Kusuma and A. Dinimaharawati, “Hybrid pelican Komodo algorithm,” International Journal of Advanced Computer

Science and Applications, vol. 13, no. 6, 2022, doi: 10.14569/IJACSA.2022.0130607.
[37] A. Kuznetsov, L. Wieclaw, N. Poluyanenko, L. Hamera, S. Kandiy, and Y. Lohachova, “Optimization of a simulated annealing

algorithm for s-boxes generating,” Sensors, vol. 22, no. 16, Aug. 2022, doi: 10.3390/s22166073.

[38] M. A. Noman, M. Alatefi, A. M. Al-Ahmari, and T. Ali, “Tabu search algorithm based on lower bound and exact algorithm
solutions for minimizing the makespan in non-identical parallel machines scheduling,” Mathematical Problems in Engineering,

pp. 1–9, Dec. 2021, doi: 10.1155/2021/1856734.

[39] P. Lou, Y. Chen, and S. Gao, “Adaptive variable neighborhood search-based supply network reconfiguration for robustness

enhancement,” Complexity, pp. 1–21, Dec. 2020, doi: 10.1155/2020/1292938.

[40] F. Zhao, S. Du, H. Lu, W. Ma, and H. Song, “A hybrid self-adaptive invasive weed algorithm with differential evolution,”

Connection Science, vol. 33, no. 4, pp. 929–953, Oct. 2021, doi: 10.1080/09540091.2021.1917517.
[41] L. Zhang, Y. Yu, Y. Luo, and S. Zhang, “Improved cuckoo search algorithm and its application to permutation flow shop

scheduling problem,” Journal of Algorithms and Computational Technology, vol. 14, Jan. 2020, doi:

10.1177/1748302620962403.
[42] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, “Marine Predators algorithm: A nature-inspired metaheuristic,”

Expert Systems with Applications, vol. 152, p. 113377, Aug. 2020, doi: 10.1016/j.eswa.2020.113377.

[43] D. Freitas, L. G. Lopes, and F. Morgado-Dias, “Particle swarm optimisation: a historical review up to the current developments,”
Entropy, vol. 22, no. 3, Mar. 2020, doi: 10.3390/e22030362.

[44] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, Mar.

2014, doi: 10.1016/j.advengsoft.2013.12.007.
[45] M. Dehghani, Z. Montazeri, O. Malik, H. Givi, and J. Guerrero, “Shell game optimization: a novel game-based algorithm,”

International Journal of Intelligent Engineering and Systems, vol. 13, no. 3, pp. 246–255, Jun. 2020, doi:

10.22266/ijies2020.0630.23.
[46] A. Kumar, D. Kumar, and S. K. Jarial, “A review on artificial bee colony algorithms and their applications to data clustering,”

Cybernetics and Information Technologies, vol. 17, no. 3, pp. 3–28, Sep. 2017, doi: 10.1515/cait-2017-0027.

[47] M. Dubey, V. Kumar, M. Kaur, and T.-P. Dao, “A systematic review on harmony search algorithm: theory, literature, and
applications,” Mathematical Problems in Engineering, pp. 1–22, Apr. 2021, doi: 10.1155/2021/5594267.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7016-7026

7026

BIOGRAPHIES OF AUTHORS

Purba Daru Kusuma received his bachelor, and master’s degrees in electrical

engineering from Bandung Institute of Technology, Indonesia, in 2002 and 2009 respectively.

He received his doctoral degree in computer science from Gadjah Mada University, Indonesia,

in 2017. Currently, he is an assistant professor in Telkom University, Indonesia. His research

area is artificial intelligence, machine learning, and operational research. He can be contacted

by email: purbodaru@telkomuniversity.ac.id.

Faisal Candrasyah Hasibuan is a Computer Engineering lecturer at Telkom

University, Bandung, West Java, Indonesia. Status as an alma mater, he completed a

bachelor’s program at the place where he works now. He was granted a master’s degree in

electrical engineering with a Computer Engineering specialization at Bandung Institute of

Technology (ITB). The field of research interests are but are not limited to the embedded

system, internet of things, and intelligent control system. He can be contacted by email:

faicanhasfcb@telkomuniversity.ac.id.

https://orcid.org/0000-0001-5973-5229
https://scholar.google.com/citations?user=DKoguJIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56206181600
https://www.webofscience.com/wos/author/record/2202384
https://orcid.org/0009-0007-0803-5418
https://scholar.google.com/citations?user=ew_7tWoAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=57193810202
https://www.webofscience.com/wos/author/record/3287862

