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 This study introduces a new metaheuristic method: the best-worst northern 

goshawk optimizer (BW-NGO). This algorithm is an enhanced version of 

the northern goshawk optimizer (NGO). Every BW-NGO iteration consists 

of four phases. First, each agent advances toward the best agent and away 

from the worst agent. Second, each agent moves relatively to the agent 

selected at random. Third, each agent conducts a local search. Fourth, each 

agent traces the space at random. The first three phases are mandatory, while 

the fourth phase is optional. Simulation is performed to assess the 

performance of BW-NGO. In this simulation, BW-NGO is confronted with 

four algorithms: particle swarm optimization (PSO), pelican optimization 

algorithm (POA), golden search optimizer (GSO), and northern goshawk 

optimizer (NGO). The result exhibits that BW-NGO discovers an acceptable 

solution for the 23 benchmark functions. BW-NGO is better than PSO, 

POA, GSO, and NGO in consecutively optimizing 22, 20, 15, and 11 

functions. BW-NGO can discover the global optimal solution for three 

functions. 
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1. INTRODUCTION 

Metaheuristic is a technique that is extensively used in studies regarding optimization. Its popularity 

mainly comes from its flexibility in tackling various optimization problems, from simple ones to very 

complicated ones. Metaheuristic becomes flexible because it adopts an approximate approach that does not 

trace all possible solutions [1]. This strategy makes metaheuristics adaptive enough to solve optimization 

problems using limited computational resources. However, this benefit is offset by the metaheuristic 

choosing a suboptimal answer as the acceptable option and cannot guarantee the global optimal solution [1]. 

Recently, many metaheuristics have been ready to use for any optimization problems. Many old 

algorithms are still popular. Genetic algorithm (GA) is still implemented in recent engineering studies, such 

as hydrogen liquefaction process [2], town logistics distribution systems [3], construction projects [4], 

spectrometry peak detection [5], plain text encryption [6], Parkinson disease prediction [7], and so on. GA is 

also utilized in optimization studies related to the financial sector, such as in-stock selection [8], credit rating 

assessment [9], and cryptocurrency price forecasting [10]. Artificial bee colony (ABC) is also used in a lot of 

optimization studies in the engineering sector, such as in power contract capacity optimization [11], parallel 

machine scheduling [12], tunnel deformation prediction [13], and hybrid flow-shop scheduling [14]. Besides 

these old algorithms, many later algorithms have received positive attention. Grey wolf optimizer (GWO) has 

been modified and implemented in several engineering studies, such as in flood evacuation planning [15], 

https://creativecommons.org/licenses/by-sa/4.0/
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abrasive jet machining [16], workflow scheduling [17], and so on. Marine predator algorithm (MPA) is also 

implemented in many optimization studies in engineering, such as in determining the optimal parameters of 

supercapacitor [18], car design impact problem [19], welded beam design problem [19], detecting the 

structural damage [20], optimizing the performance and cost of heating, cooling, and power system [21], 

diagnosing the rolling bearing fault in the rotating machinery [22], and so on. 

A lot of new metaheuristics were built based on swarm intelligence. The examples of them are 

tunicate swarm algorithm (TSA) [23], golden search optimization (GSO) [24], election-based optimization 

algorithm (EBOA) [25], hybrid leader based optimization (HLBO) [26], northern goshawk optimization 

(NGO) [27], butterfly optimization algorithm (BOA) [28], Komodo mlipir algorithm (KMA) [29], mixed 

leader based optimizer (MLBO) [30], multileader optimizer (MLO) [31], pelican optimization algorithm 

(POA) [32], and so on. Several new algorithms were built by modifying the previous swarm-based 

metaheuristic, such as the chaotic slime mold algorithm (CSMA) [33], stochastic Komodo algorithm (SKA) 

[34], modified honey badger algorithm (MHGA) [35], hybrid pelican Komodo algorithm (HPKA) [36], and 

many others. 

Numerous factors contribute to the extensive development of metaheuristics. First, four familiar 

mechanics can be taken, especially in the swarm intelligence-based algorithm. These mechanics are getting 

closer to the high-quality solution or farther from the low-quality solution, interacting with other solutions, 

searching around the current solution (neighborhood/local search), and searching randomly within the space. 

Many variations can be taken in every part. Moreover, many algorithms are developed by conducting several 

searches. In almost all algorithms, the random search is only done in the initialization phase. 

Meanwhile, several algorithms, such as simulated annealing (SA) [37], tabu search (TS) [38], and 

variable neighborhood search (VNS) [39], are developed based on local search. Second, various random 

distributions or movements can be chosen due to the characteristic of the metaheuristic as a stochastic 

system. Almost all algorithms choose uniform distribution due to its simplicity. Meanwhile, several 

algorithms choose other distributions. The normal distribution can be found in the invasive weed optimizer 

(IWO) [40]. Levy flight can be found in cuckoo search (CS) [41]. The combination between levy flight and 

Brownian movement can be found in MPA [42]. 

The massive development of metaheuristics is also correlated with the fact that no algorithm or 

method is suitable for tackling all and various problems. The example is as follows. HPKA is superior to 

GWO in solving the fixed dimensional multimodal functions but inferior to GWO in solving the high 

dimensional unimodal functions [36]. On the other hand, GWO is inferior to MPA, KMA, POA, and HPKA 

in solving the portfolio optimization problem in which the solution space is presented in an integer [36]. GSO 

generally outperforms the gravitational search algorithm (GSA) but is still inferior in solving step functions 

[24]. NGO is inferior to GSA in solving penalized two, although NGO generally is superior among other 

benchmark algorithms [27]. SKA can discover the best result only in 4 out of 10 functions compared to other 

benchmark algorithms [34]. GA can outperform BOA in solving two functions, although, in general, BOA 

outperforms GA [28]. This circumstance occurs because a combined method or random distribution may be 

effective for some problems but less effective for others. 

Moreover, many metaheuristics that hybridize previous algorithms still have a weakness. On the 

other hand, optimizing many new challenges, such as electric vehicles, cloud computing, and others, is not 

easy. It makes the study in proposing a new metaheuristic still promising. 

Regarding this problem and opportunity, this study proposes a new metaheuristic that modifies the 

primary form of NGO. There are several reasons for choosing NGO as a baseline. First, NGO is a new 

algorithm, and this algorithm’s exploration, implementation, and modification are still limited. Second, NGO 

is unique because it does not adopt the mechanism to follow the highest quality agent, although NGO is a 

swarm intelligence-based metaheuristic. 

The modification is done by accommodating the four standard searches in the metaheuristics, 

especially those built based on swarm intelligence. In every iteration, all agents do these four searches.  

One search is optional, while the other three are mandatory. The best-worst northern goshawk optimizer 

(BW-NGO) is the name of the proposed method. The best-worst term comes from the action that 

accommodates movement toward the best agent and away from the worst agent. As the improvement version 

of NGO, below are the contributions of this work: i) BW-NGO is an enhanced version of NGO as the new 

metaheuristic and ii) BW-NGO implements four common searches in every iteration. 

The remainder of this paper is constructed as follows. Section 2 explores and reviews the previous 

studies regarding metaheuristics, especially algorithms developed based on swarm intelligence (SI). Section 3 

presents the model of BW-NGO that consists of the core concept, algorithm, and mathematical model. 

Section 4 presents the simulation carried out in this work to evaluate the performance of BW-NGO, it is 

result, and the in-depth analysis of the result and findings. Section 5 summarizes this work and future 

opportunities. 
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2. RELATED WORKS 

Based on the common perspective, two strategies are carried out by any metaheuristic. The first 

strategy is exploration, and the second strategy is exploitation. This perspective is common and can be used 

in the single solution-based algorithm, such as VNS, TS, and SA, or the population-based algorithm, such as 

ABC, GA, and PSO. The exploitation can be interpreted as any effort to discover a better solution around or 

near the current one. Exploration can be interpreted as any effort to discover a better solution anywhere 

within space. 

As the SI-based metaheuristic is extensively studied, there is a new perspective that enriches the 

previous perspective. Four common strategies are found in many new metaheuristics. The first strategy is 

getting closer to the highest quality solution and going away from the lowest quality solution. The second 

strategy involves engaging with one or more chosen solutions from the population. Discovering a superior 

solution close to the current one is the third strategy. The fourth strategy is to do a random search inside the 

search area. This perspective can be used as an alternative because there is an ambiguous distinction between 

exploration and exploitation in many recent swarm intelligence-based metaheuristics. Below is a deeper 

review of these four strategies. 

The first strategy is getting closer to the highest quality solution and going away from the worst 

solution. In general, getting closer to the highest quality solution is more popular than moving away from the 

worst solution. In some algorithms, the highest quality solution is called a leader. Each algorithm builds its 

method regarding this first strategy. In PSO, there are two types of highest quality solutions: global and local 

best [43]. In PSO, the existence of the lowest quality solution is not considered. Every agent tries to move 

toward the global and local best with a certain proportion [43]. In GSO, every agent also moves toward the 

global and local best, but the proportion is determined stochastically and enriched with sinusoid movement 

[24]. In GSO, replacing the worst solution with the randomly selected solution can be seen as an effort to 

avoid the worst solution [24]. In MPA, the predator represents the local best, and there is an interaction 

between every predator and its prey [42]. In KMA, the movement toward the best solution can be found in 

many parts: the movement of giant male dragons toward the better big male dragons and the small male 

dragons toward the giant male dragons [29]. In GWO, all agents move toward the results of the best three 

agents [44]. These three agents are obtained by a sorting process carried out in every iteration [44]. MLO also 

adopts multiple global leaders. The similarity is that these leaders are also obtained by sorting in every 

iteration [31]. The difference is that in MLO, the number of leaders is determined by the user [31]. In shell 

game optimizer (SGO), the best solution among the population in every iteration becomes one factor 

considered in the first strategy besides two randomly selected solutions [45]. Meanwhile, the worst solution 

is avoided by putting the worst solution in the lowest probability of being chosen [45]. 

The second strategy involves interacting with the corresponding and randomly selected agents. This 

strategy is less popular than the first strategy. This method is employed during the Eddy formation phase of 

MPA when there is a chance that the prey would travel toward the difference between two randomly picked 

prey [42]. This action is a part of the exploration. In NGO, the first guided movement is the movement of 

every agent relative to a randomly selected agent [27]. In this movement, the corresponding agent moves 

toward the randomly selected agent if this selected agent is better than the corresponding agent [27]. 

Otherwise, the corresponding agent moves away from the selected agent [27]. In HLBO, the randomly 

selected agent is constructed together with the best agent to become the target [26]. In HLBO, the proportion 

of the best agent and the randomly selected agent is determined based on the normalized quality of these 

agents. The combination of the best and randomly selected agents can also be found in MLBO. The 

difference is that the proportion of the best agent increases as the iteration continues, while the proportion of 

the randomly selected agent decreases [30]. In SGO, two randomly selected agents are combined with the 

best agent [45]. 

The third strategy is the local search or neighborhood search. In general, this strategy is exploitation. 

In old metaheuristics such as SA and TS, this strategy becomes the backbone as the modification of the 

current solution is carried out in every iteration. In IWO, spreading new seeds around the current seed with 

normal distribution also can be seen as the interpretation of this third strategy [40]. The new seeds will be 

concentrated near the current seed, although there is the possibility that the new seed is far from the current 

seed. Levy flight can be perceived as a local search when the flight distance is short. The guided movement 

can also be seen as a local search when the corresponding agent is near the target. In MPA, the second option 

of the eddy formation can also be seen as a local search with certain ambiguity [42]. In the early iteration, the 

local space is broad and declines as the iteration goes on [42]. Other algorithms, such as NGO [27], MLO 

[31], and HLBO [26], also carry out a similar strategy in their second phase. The distinction between these 

algorithms and MPA is that their method only accepts the new solution generated by the local search if it is 

superior to the existing solution. 
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The fourth strategy is the random search around space. This random search usually follows a 

uniform distribution, so the probability of any solution within the solution space becoming the initial solution 

is equal. In general, all metaheuristics deploy this strategy in the initialization phase. Nevertheless, only a few 

algorithms implement this strategy in the iteration phase. In ABC, the scout bee discovers a new food source 

within the solution space after the onlooker bee fails to discover a better solution around the current food 

source within some trials [46]. In harmony search (HS), the random search is also carried out if the generated 

random number is higher than the harmony memory consideration rate (HMCR) [47]. 

Based on this explanation, there is an opportunity to develop a new metaheuristic that 

accommodates the four common strategies in every iteration. It is because this kind of algorithm is still 

challenging to discover. Many old algorithms are developed based on local search. Most of all, a swarm 

intelligence-based metaheuristic focuses on the strategy related to the highest quality agent. Some new 

algorithms adopt local search as complementary to the first strategy. Only a few algorithms carry out a 

random search in the iteration phase. 

 

 

3. METHOD 

The central concept of BW-NGO is accommodating four joint movements in the SI. This 

accommodation is transformed into four phases that the agents carry out. The first phase entails moving 

towards the best agent and away from the worst agent. The second phase consists of agent mobility relative 

to the system. The local search phase is the third phase. The random search within space constitutes the 

fourth phase. The first three phases are required for all agents in each iteration. 

Meanwhile, the fourth phase is optional. It is carried out only if these three phases do not produce 

any improvement. These phases are conducted sequentially. Below is a more detailed explanation of every 

phase. Exploration helps avoid the local optimal entrapment, while exploitation helps improve the current 

solution, especially when the current solution is in the region where the global optimal solution exists. 

The first phase is carried out by moving toward the best agent and avoiding the worst agent. These 

best and worst agents are determined from the previous iteration. These two movements are carried out in a 

single movement. In the early iteration, the proportion of moving away from the worst agent is high, while 

the proportion of moving toward the best agent is low. This proportion shifts gradually as the iteration goes 

on. The proportion of the movement toward the best agent increases. 

Meanwhile, the proportion of the movement away from the worst agent decreases. This strategy is 

developed based on several reasons. In the beginning, optimization is designed to avoid low-quality solutions. 

Meanwhile, as the iteration goes, the optimization will focus on the improvement toward the best solution. 

The second phase creates interaction between the corresponding agent and the other agent in the 

system. This other agent is selected randomly. Then, the quality of both agents is compared. If the selected 

agent is better than the corresponding agent, then this corresponding agent moves toward the selected agent. 

Contrary, if the selected agent is not better than the corresponding agent, then this corresponding agent 

avoids the selected agent. 

The third phase is the local search or neighborhood search. The new solution is generated randomly 

around the corresponding agent within its observation range. In the early iteration, the observation range was 

wide to accommodate the exploration. Then, this observation range decreases gradually as the iteration goes 

on. It is seen as the strategy shifting toward exploitation. 

The fourth phase is the random search. It is carried out by generating a new solution within space. 

This phase is designed to focus on exploration. This step is only implemented if there is no improvement 

after implementing the preceding three phases. It can be interpreted that the acceptable solution has been 

found or the agent is trapped on the local optimal. 

There is a candidate generated in every phase for every agent. This candidate becomes the 

replacement for the corresponding agent only if this candidate has better quality than the corresponding 

agent. Otherwise, the agent remains in its current state or solution.  

This concept is then transformed into the algorithm. The algorithm of BW-NGO is presented in 

algorithm 1. Meanwhile, (1) to (15) are the formalization of processes in the algorithm. Several annotations 

used in this formal model are as follows.  

a : Agent 

A : Set of agents 

abest : The best agent 

aworst : The worst agent 

agbest : The global best agent 

bl : Lower boundary 

bu : Upper boundary 

c1 : First candidate 
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c2 : Second candidate 

c3 : Third candidate 

c4 : Fourth candidate 

d1 : First direction 

d2 : Second direction 

f : Fitness/objective function 

U : Uniform random 

Below is the explanation of algorithm 1. The optimization process is split into two steps: the 

initialization and the iteration. The random search is done in the initialization to discover the agent’s initial 

solution. The iteration has two sub-steps. Discovering the best agent, the worst agent, and the worldwide best 

agent is the first sub-step. The second sub-step consists of all agents' movement. The global best agent is the 

agent whose quality is the best to the current the iteration. This global best agent becomes the final solution. 

 

Algorithm 1. Best-worst northern goshawk optimizer 
1 output: agbest 

2 begin 

3   for all A 

4     initialize a using (1) 

5   end for 

6   t=1 

7   while t≤tmax 

8     discover abest using (2) 

9     discover aworst using (3) 

10     update agbest using (4) 

11     for all A 

12       conduct the first phase using (5) to (8) 

13       conduct the second phase using (9) to (11) 

14       conduct the third phase using (12) and (13) 

18       if improvement fails, then 

19         conduct the fourth phase using (14) and (15) 

21       end if 

22   end while 

23 end 

 

𝑎 = 𝑈(𝑏𝑙 , 𝑏𝑢) (1) 

 

𝑎𝑏𝑒𝑠𝑡,𝑡 = 𝑎 ∈ 𝐴 ∧ min(𝑓(𝑎𝑡)) (2) 

 

𝑎𝑤𝑜𝑟𝑠𝑡,𝑡 = 𝑎 ∈ 𝐴 ∧ max(𝑓(𝑎𝑡)) (3) 

 

𝑎𝑔𝑏𝑒𝑠𝑡
′ = {

𝑎𝑏𝑒𝑠𝑡 , 𝑓(𝑎𝑏𝑒𝑠𝑡) < 𝑓(𝑎𝑔𝑏𝑒𝑠𝑡)

𝑎𝑔𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
 (4) 

 

𝑑1 = 𝑈(0,1). (
𝑡

𝑡𝑚𝑎𝑥
) . (𝑎𝑏𝑒𝑠𝑡 − 𝑈(1,2). 𝑎) (5) 

 

𝑑2 = 𝑈(0,1). (1 −
𝑡

𝑡𝑚𝑎𝑥
) . (𝑎 − 𝑈(1,2). 𝑎𝑤𝑜𝑟𝑠𝑡) (6) 

 

𝑐1 = 𝑎 + 𝑑1 + 𝑑2 (7) 

 

𝑎′ = {
𝑐1, 𝑓(𝑐1) < 𝑓(𝑎)

𝑎, 𝑒𝑙𝑠𝑒
 (8) 

 

𝑎𝑠 = 𝑈(𝐴) (9) 

 

𝑐2 = {
𝑎 + 𝑈(0,1). (𝑎𝑠 − 𝑈(1,2). 𝑎), 𝑓(𝑎𝑠) < 𝑓(𝑎)

𝑎𝑠 + 𝑈(0,1). (𝑎 − 𝑈(1,2). 𝑎𝑠), 𝑒𝑙𝑠𝑒
 (10) 

 

𝑎′ = {
𝑐2, 𝑓(𝑐2) < 𝑓(𝑎)

𝑎, 𝑒𝑙𝑠𝑒
 (11) 
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𝑐3 = 𝑎 + (1 −
𝑡

𝑡𝑚𝑎𝑥
) . (2. 𝑈(0,1) − 1). 𝑎 (12) 

 

𝑎′ = {
𝑐3, 𝑓(𝑐3) < 𝑓(𝑎)

𝑎, 𝑒𝑙𝑠𝑒
 (13) 

 

𝑐4 = 𝑈(𝑏𝑙 , 𝑏𝑢) (14) 

 

𝑎′ = {
𝑐4, 𝑓(𝑐4) < 𝑓(𝑎)

𝑎, 𝑒𝑙𝑠𝑒
 (15) 

 

Below is the explanation of (1) to (15). In (1) states that the agent’s initial solution is generated 

randomly within the space. In (2) states that the best agent is the agent whose solution is the best among 

all agents in the current iteration. In (3) states that the worst agent is the agent whose solution is the worst 

among all agents in the current iteration. In (4) states that the best agent becomes the global best agent 

only if it is better than the current global best agent. In (5) states that the proportion of the movement 

toward the best agent is linearly proportional to the iteration. In (6) states that the proportion of the 

movement away from the worst agent is reversely proportional to the iteration. In (7) states that the first 

candidate is obtained by combing the agent’s current solution with movements generated from (5) and (6). 

In (8) states that this first candidate replaces the agent’s current solution only if this first candidate is better 

than the current one. In (9) states that the agent is selected randomly from the population. In (10) states 

that the second candidate is obtained by the movement of the corresponding agent relative to the selected 

agent. The movement toward the selected agent is carried out if the selected agent is better than the 

corresponding agent. The opposite direction is taken if the selected agent is not better than the 

corresponding agent. In (11) states that the second candidate replaces the agent’s current solution only if 

this second candidate is better than the agent’s current solution. In (12) formalizes the local search and 

generates the third candidate. In (12) also exhibits that the local space declines gradually as the iteration 

continues. In (13) states that the third candidate replaces the agent’s current solution only if this third 

candidate is better than the agent’s current solution. In (14) states that the fourth candidate is generated 

randomly within the space. In (15) states that the fourth candidate only replaces the agent’s current 

solution if it is better than the current one. 

The BW-NGO complexity can be expressed as O(2tmax.n(A)). The following explains this 

presentation: BW-complexity NGOs are proportional to the maximum number of iterations or population 

size. As exhibited in the iteration, the iteration from the first iteration to the maximum iteration becomes the 

outer loop. In contrast, the iteration from the first agent to the last agent constitutes the inner loop. Every 

outer loop contains two inner loops in succession. The initial inner loop determines which agents are the 

greatest, worst, and global best. Tracing the quality of all agents is required to complete this process. To 

accommodate the modification, the second inner loop is executed. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Simulation 

Simulation is carried out to assess the performance of BW-NGO. This work uses BW-NGO to 

overcome the acceptable solution of the 23 benchmark functions. These 23 functions have been used 

extensively and have become common in many studies proposing a new metaheuristic. The popularity of 

these functions comes from several reasons. First, these functions consist of 7 unimodal functions and 16 

multimodal functions. Second, these functions consist of 13 high dimensional functions and ten fixed 

dimensional functions. In the high dimensional functions, the dimension varies from 1 to thousands. In the 

fixed dimensional functions, the dimension is fixed, and it is usually tiny. These functions also represent 

problems with various spaces, from narrow to very wide. Generally, these functions can be categorized into 

three clusters: high dimension unimodal, high dimension multimodal, and fixed dimension multimodal 

functions. Table 1 provides a thorough summary of the functions. The high-dimensional functions F1 through 

F7 are unimodal. F8 through F13 are high-dimensional functions with several modes. Finally, F14 to F23 are 

multimodal functions with fixed dimensions. 

This simulation benchmarked BW-NGO with four algorithms: PSO, POA, GSO, and NGO. PSO 

represents the early metaheuristic developed based on swarm intelligence. It is necessary to measure how far 

BW-NGO is better than its origin. NGO is chosen to measure the improvement of BW-NGO with the NGO 

as its basic form. POA and GSO are chosen because these two algorithms are new SI-based metaheuristics. 

The result is exhibited in Table 2. 
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Table 2 exhibits that, in general, BW-NGO can discover the acceptable solution for the 23 functions. 

Moreover, it can be the global optimal solution for three functions: Six Hump Camel, Branin, and Goldstein 

Price. All these three functions are fixed-dimension multimodal functions. BW-NGO is also very competitive 

compared to the four algorithms. The data regarding the number of functions where BW-NGO beats the 

benchmark algorithms are exhibited in Table 3. 

 

 

Table 1. Benchmark functions 
No Function Dim Space Target 

F1 Sphere 50 [-100, 100] 0 
F2 Schwefel 2.22 50 [-100, 100] 0 

F3 Schwefel 1.2 50 [-100, 100] 0 

F4 Schwefel 2.21 50 [-100, 100] 0 
F5 Rosenbrock 50 [-30, 30] 0 

F6 Step 50 [-100, 100] 0 

F7 Quartic 50 [-1.28, 1.28] 0 

F8 Schwefel 50 [-500, 500] -418.9×dim 

F9 Ratsrigin 50 [-5.12, 5.12] 0 

F10 Ackley 50 [-32, 32] 0 
F11 Griewank 50 [-600, 600] 0 

F12 Penalized 50 [-50, 50] 0 

F13 Penalized 2 50 [-50, 50] 0 
F14 Shekel Foxholes 2 [-65, 65] 1 

F15 Kowalik 4 [-5, 5] 0.0003 
F16 Six Hump Camel 2 [-5, 5] -1.0316 

F17 Branin 2 [-5, 5] 0.398 

F18 Goldstein-Price 2 [-2, 2] 3 
F19 Hartman 3 3 [1, 3] -3.86 

F20 Hartman 6 6 [0, 1] -3.32 

F21 Shekel 5 4 [0, 10] -10.1532 
F22 Shekel 7 4 [0, 10] -10.4028 

F23 Shekel 10 4 [0, 10] -10.5363 

 

 

Table 2. Simulation result 
Function PSO POA GSO NGO BW-NGO Better Than 

F1 1.508×104 6.491×104 1.546×104 1.196×10-12 1.145×10-20 PSO, POA, GSO, NGO 

F2 0 0 1.810×1060 0 1.046×10-152 GSO 

F3 5.941×104 1.499×105 2.878×104 3.182×101 9.900 PSO, POA, GSO, NGO 
F4 3.522×101 7.151×101 3.500×101 1.669×10-5 1.873×10-8 PSO, POA, GSO, NGO 

F5 9.213×106 1.513×108 1.075×107 4.881×101 4.872×101 PSO, POA, GSO, NGO 

F6 1.398×104 6.244×104 1.403×104 8.532 7.428 PSO, POA, GSO, NGO 
F7 5.548 1.258×102 5.518 4.700×10-3 1.457×10-2 PSO, POA, GSO 

F8 -3.741×103 -4.450×103 -6.392×103 -6.053×103 -7.773×103 PSO, POA, GSO, NGO 

F9 4.032×102 6.035×102 3.214×102 5.556×10-11 2.293×10-4 PSO, POA, GSO 
F10 1.463×101 1.980×101 1.998×101 1.996×10-7 1.769×10-11 PSO, POA, GSO, NGO 

F11 1.393×102 5.936×102 1.360×102 2.350×10-8 7.668×10-12 PSO, POA, GSO, NGO 

F12 1.603×106 2.687×108 2.223×106 5.784×10-1 4.698×0-1 PSO, POA, GSO, NGO 
F13 1.379×107 6.724×108 1.774×107 2.990 2.875 PSO, POA, GSO, NGO 

F14 7.311 1.811 5.051 1.047 4.720 PSO, GSO 

F15 1.715×10-2 2.822×10-3 2.171×10-3 5.323×10-4 4.525×10-4 PSO, POA, GSO, NGO 

F16 -1.023 -1.029 -1.032 -1.032 -1.031 PSO, POA 

F17 5.356×10-1 4.026×10-1 3.981×10-1 3.981×10-1 3.981×10-1 PSO, POA 

F18 7.786 3.061 3.000 3.000 3.000 PSO, POA 
F19 -2.123×10-1 -4.954×10-2 -4.954×10-2 -4.954×10-2 -4.954×10-2 PSO 

F20 -2.686 -2.914 -3.272 -3.283 -3.199 PSO, POA 

F21 -4.743 -3.517 -9.086 -9.183 -5.525 PSO, POA 
F22 -4.542 -4.236 -8.465 -9.776 -5.547 PSO, POA 

F23 -3.706 -3.454 -8.904 -9.440 -6.160 PSO, POA 

 

 

Table 3. Cluster based comparison result 
Cluster Number of Functions Beaten by BW-NGO 

PSO POA GSO NGO 

1 6 6 7 5 

2 6 6 6 5 
3 10 8 2 1 

Total 22 20 15 11 
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Table 3 exhibits that the improvement produced by BW-NGO is significant. BW-NGO is superior to 

PSO and POA by beating these algorithms in 22 and 20 functions, respectively. BW-NGO is also very 

competitive by creating better performance than GSO in 15 functions. Meanwhile, the draw between  

BW-NGO and GSO occurs in three functions: Branin, Goldstein Price, and Hartman 3. It means that GSO is 

better than BW-NGO in only 5 functions. BW-NGO is better than NGO in 11 functions and draws in 3 

functions. It means that NGO is still better than BW-NGO in 9 functions. 

The second simulation is carried out to evaluate the performance of BW-NGO with the population 

size variation. In this simulation, the population size is set at 5, 10, and 15. These values represent a low 

population size. The result is exhibited in Table 4. 
 

 

Table 4. Relation between population size and performance 
Function Average Fitness Score 

n(A)=5 n(A)=10 n(A)=15 

F1 8.689×10-22 8.975×10-21 9.152×10-21 

F2 0 1.270×10-215 2.891×10-170 

F3 5.925 4.201 7.580 

F4 3.159×10-8 2.438×10-8 2.753×10-8 
F5 4.888×101 4.877×101 4.874×101 

F6 9.346 8.282 7.678 

F7 1.714×10-2 1.221×10-2 1.371×10-2 
F8 -8.262×103 -7.907×103 -7.909×103 

F9 8.748×10-2 1.149 2.097×10-7 

F10 3.769×10-12 1.174×10-11 1.766×10-11 
F11 4.917×10-11 2.019×10-13 4.596×10-14 

F12 7.390×10-1 5.790×10-1 5.183×10-1 

F13 2.981 2.939 2.906 
F14 5.637 4.660 4.667 

F15 1.608×10-3 1.553×10-3 5.166×10-4 

F16 -1.030 -1.032 -1.032 
F17 3.981×10-1 3.981×10-1 3.981×10-1 

F18 1.088×101 3.000 3.000 

F19 -4.954×10-2 -4.954×10-2 -4.954×10-2 

F20 -3.014 -3.167 -3.191 

F21 -5.531 -5.914 -6.369 

F22 -5.702 -5.255 -5.576 
F23 -4.581 -5.554 -6.011 

 

 

4.2.  Discussion 

In this section, an in-depth analysis of the simulation result is carried out. This analysis is conducted 

based on the head-to-head comparison between BW-NGO and the benchmark algorithm. This analysis 

consists of the result and the strategy difference between BW-NGO and the benchmark algorithm. 

The first comparison is the comparison between BW-NGO and PSO. Overall, BW-NGO 

outperforms PSO in almost all functions. PSO outperforms BW-NGO only in solving Schwefel 2.22. This 

superiority can be seen as a significant gap implemented in PSO and BW-NGO. In PSO, all agents move 

toward the global and local best agents with a certain proportion or weight. PSO carries out random 

movement only in the initialization phase. It differs from BW-NGO, which carries out all strategies in every 

iteration. 

The second comparison is the comparison between BW-NGO and POA. Like PSO, BW-NGO also 

outperforms POA in almost all functions. BW-NGO outperforms POA on all functions in the second cluster. 

Meanwhile, POA outperforms BW-NGO on 1 and 2 functions in the first and third clusters. Different from 

PSO, POA focuses on random search and local search. POA conducts a full random search in the 

initialization phase. 

Meanwhile, POA conducts partial random movement in the first phase of every iteration. It is called 

partial because after the random target is generated, the agent can move toward or away relative to this target 

based on the quality. The local search is carried out in the second phase. 

The third comparison is the comparison between BW-NGO and GSO. Table 3 exhibits that  

BW-NGO is superior to GSO in the first and second clusters but inferior in the third cluster. It means that 

BW-NGO is superior to GSO in solving high-dimension problems. On the other hand, GSO is superior to 

BW-NGO in solving low-dimension problems. From the strategy perspective, GSO implements three of four 

movements in the SI. First, GSO implements a random search in the initialization. Second, GSO implements 

movement toward the global and local best with each iteration. In addition, GSO avoids the worst solution by 

replacing the worst agent in each iteration with a randomly picked agent. Thirdly, GSO implements local 

search with each iteration by combining this with the initial movement. 
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The fourth comparison is the comparison between BW-NGO and NGO. Table 3 exhibits that  

BW-NGO outperforms NGO in solving 11 functions. Meanwhile, Table 2 exhibits that BW-NGO is drawn to 

NGOs in solving four functions in the third cluster: Six Hump Camel, Branin, Goldstein-Price, and  

Hartman 3. It means that NGO is still superior to BW-NGO in solving eight functions: two functions in the 

first cluster, one in the second cluster, and five in the third cluster. It means that, in general, BW-NGO is 

superior to NGOs in solving big-dimension problems but less superior in solving low-dimension problems. 

 

 

5. CONCLUSION 

This work has demonstrated that the proposed algorithm, the BW-NGO, is a competitive 

metaheuristic. It can discover an acceptable solution in solving all functions. Moreover, it can discover the 

global optimal solution in solving three functions: Six Hump Camel, Branin, and Goldstein Price. BW-NGO 

is also competitive compared to the benchmark algorithms. BW-NGO is better than PSO, POA, GSO, and 

NGO in optimizing 22, 20, 15, and 11 functions. Overall, BW-NGO is superior in solving big-dimension 

problems. The simulation result also exhibits that the BW-NGO can provide an acceptable solution with a 

low population size. Several opportunities can be created based on this work. This work has proven that the 

modification of NGOs is still open. Future studies can also be conducted by comparing BW-NGO and NGO 

in solving various real-world optimization problems, from numerical to combinatorial problems. 
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