
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 14, No. 5, October 2024, pp. 5055∼5063
ISSN: 2088-8708, DOI: 10.11591/ijece.v14i5.pp5055-5063 ❒ 5055

Model reference adaptive control of networked systems
with state and input delays

Moh. Kamalul Wafi, Katherin Indriawati, Bambang L. Widjiantoro
Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember,

Surabaya, Indonesia

Article Info

Article history:

Received Mar 26, 2024
Revised May 20, 2024
Accepted Jun 4, 2024

Keywords:

Adaptive control
Distributed control
Input and state delays
Model reference adaptive control
adaptation
Networked systems

ABSTRACT

Adaptive control strategies have been developed in response to more advanced
complex systems and to deal with uncertain systems while maintaining the de-
sired conditions. This paper addresses the networked unknown and unstable
heterogeneous systems following a stable reference (leader), which is related to
network synchronization. We deliver two different scenarios; each agent both
fully communicates to the leader and shares communication among neighbor-
hood agents and the leader. The communication among agents and the leader
are weighted using Laplacian-like matrix and the model weight matrix in turn.
Also, the state and input delays are induced to the systems to capture the real
limited communication while the prediction of the reference signals and the aug-
mented systems are proposed to deal with them. Moreover, the rigorous mathe-
matical foundations of two adaptive laws, the stability analysis, the threshold of
network, and the communication network are thoroughly presented. Also, the
numerical illustrations of the two scenarios are given to show the effectiveness
of the proposed method in the networked system. The results show that for both
scenarios working on the required setting, the perfect tracking to the leader is
guaranteed. Beyond that, the future research would implement the distributed
adaptive control-oriented learning of networked system under some faults.
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1. INTRODUCTION
With the more advanced complex systems, the developments of control methods have been intriguing

from the perspective of classical, modern and learning-oriented algorithms. More specifically, to deal with
uncertain systems while maintaining the desired conditions, the interesting methodology leads to adaptive con-
trol [1]. The challenges to this adaptive control problem have been always available, such as the stability
analysis on model-free [2], [3], the time-varying parameterization [4] with asymptotic tracking [5], the distur-
bance rejection under time-varying frequencies [6], the linear matrix inequality (LMI) certification with some
frequency-limited [7], the scaling estimation [8]–[10] to the non-minimum phase systems for microgrid [11].
Furthermore, some choose converting to classical problem [12] for approximation, while iteration-based adap-
tive control is applied when the state estimation is avoided [13]. However, while those issues have been mostly
studied, the problem with the unknown distributive “not-lumped” delays have always existed in the model ref-
erence adaptive control (MRAC) methods [14]–[17]. To capture this issue, the dynamic switches [18], [19] and
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multivariable systems with uncertain time delays [20]–[22], accommodating time-varying control bounds and
exogenous noise in the systems have become the options. Note that, there are some famed methods used in the
references to design the MRAC, such as the Lyapunov [23], [24], the Massachusetts Institute of Technology
(MIT) rule [25] and the adaptation approach [26]. This paper applies the same method as [26] to handle the
delays and addresses the delayed system to deal with the real application due to limited signal communication.

Furthermore, the direct MRAC adaptation-based control is implemented for linear systems with input
and state delays and the construction method is relied on the concept of reference trajectory prediction, and
on the formulation of an augmented system using the Lyapunov–Krasovskii based updates. Here, we develop
the problem into networked systems [27]–[29] to see how the system behaves considering the lumped known
delays with completely unknown and unstable multi-agent system following a stable reference. It presents two
scenarios: one where each agent fully communicates with the leader and another where agents communicate
with both the leader and their neighbors. Communication weights are assigned using a Laplacian-like matrix
and a model weight matrix. The study also incorporates state and input delays to reflect real-world limited
communication, employing reference signal prediction and augmented systems to manage these delays.

Beyond that, for the future research, we will focus on the network of adaptive control-oriented learning
according to the recent surveys from [30], [31], and [32], promoting the breakthrough and the robust properties
of higher level intelligent systems with nonlinearities. Also, after analyzing the performance of the system and
sensitivity of the delays, the distributed control of nonlinear system or even the robust adaptive fault-tolerant
control of networked systems with various complex environments [33]–[39] have been the near future research.
In addition, we would like to apply the distributed adaptive control-oriented learning of networked system under
some faults [40], [41]. Finally, the structure in this paper is initiated from the problem statement of the adaptive
control of networked systems considering the delays in section 2. Moreover, the adaptation approach used and
the stability analysis are elaborated in section 3. While the numerical examples from two different networks
are given in section 4 to see how adaptation approach performs against the delays on inputs and states. The
conclusion and the possible future research are explained in section 5.

Notations. Rp represents the p−dimensional Euclidean space and Ip defines the identity matrix of
size Rp×p while P = diag{pi} denotes the diagonal matrix with entries pi,∀i. Moreover, 1p = [1, . . . , 1]⊤ is
the vector of all ones in Rp. The operator ⊗ and ⊙ denotes the Kronecker product and the Hadamard product
whereas operator tr[P ] defines the trace of matrix P . Furthermore, operator |P |, ∥P∥2, and ∥P∥F are the
absolute value of the element-wise, the Euclidean norm, and the Frobenius norm of matrix P .

2. ADAPTIVE CONTROL OF NETWORKED SYSTEMS
Let us introduce the networked linear uncertain systems of ℓ agents and a model, subscript m, with

state τx and input delays τu, with τx ≤ τu, as depicted in Figures 1(a)-1(c). The subsystems of ℓ agents are
written as (1),

ẋi(t) = Aixi(t)−Aζ
i xi(t− τx) +Biui(t− τu) (1)

where xi ∈ Rn and ui ∈ Rp denote the states and the inputs, for i = 1, . . . ℓ. The matrices of Ai ∈ Rn×n,
Bi ∈ Rn×p, and Aζ

i ∈ Ai are the uncertain constant real. The model reference is described as (2),

ẋm(t) = Amxm(t) +Bmr(t− τu) (2)

in which xm ∈ Rn and r ∈ Rp define the state and the reference signal of the model with constant matrices of
Am ∈ Rn×n and Bm ∈ Rn×p. The goal is to adjust the local control ui such that the behaviour of the agents
in (1) approaches the output of the model in (2). Note that, we define the ℓ agents and a model via weighted
digraph G := {V = {1, . . . , ℓ}∪m, E , wij} where V , E , and wij ∈ E show the set of agents, directed edges, and
the weight function respectively. We express the induced subgraph on ℓ agents as Gℓ and the model as Gm. The
incoming arrows for i−th agent imply the measurement from the neighbors j with weight wij . Furthermore, the
network is balanced where wi =

∑
j wij = 1, so that the degree for the agents is D := diag{d1, . . . , dℓ} = Iℓ.

The state errors between Gℓ and Gm are denoted as linear operation of x̄ = [x⊤
1 , . . . , x

⊤
ℓ ]

⊤ multiplied by the
Laplacian-like matrix of Gℓ, written as Lℓ := D − Aℓ, and subtracted by the model Am. Here, Aℓ shows the
adjacency matrix of Gℓ whereas Am ∈ Rn×n represent the diagonal matrix containing the weights from the
model to the connected agents only. The state error for system i, written as ei, the Laplacian-like matrix Lℓ
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and the model weight Am are formulated as (3),

ei := [(Lℓ ⊗ In)x̄− (Am ⊗ In)x̄m]i

=
∑ℓ

j=1
wij(xi − xj)− wimxm

−→ Ln =

w1 · · · w1ℓ

...
. . .

...
wℓ1 · · · wℓ

 ,Am =

w1m · · · 0
...

. . .
...

0 · · · wℓm

 (3)

and the goal is to ensure limt→∞ ē → 0 where ē = [e⊤1 , . . . , e
⊤
ℓ ]

⊤. Finally, we end the problem statement by
describing the interconnected dynamical systems of (1) of the form,

˙̄x(t) = Ax̄(t) +Aζ x̄(t− τx) +Bū(t− τu) (4)

where x̄ = [x⊤
1 , . . . , x

⊤
ℓ ]

⊤ ∈ Rn̄ with n̄ = n × ℓ defines the set of the states, while ū = [u1, . . . , uℓ]
⊤ ∈ Rℓ.

The matrices of A := diag{A1, . . . , Aℓ} ∈ Rn̄×n̄ and B := diag{B1, . . . , Bℓ} ∈ Rn̄×ℓ are diagonal blocks of
Gℓ. Also, we expand the model in (2) into diagonal block matrix of Am and Bm of the form,

˙̄xm(t) = Amx̄m(t) +Bmr̄(t− τu) (5)

where x̄m = 1ℓ ⊗ xm, r̄ = 1ℓ ⊗ r, Am := Iℓ ⊗ Am, and Bm := Iℓ ⊗ Bm with the same dimension as (4).
Note that, the interactions among agents Gℓ and the model Gm are constructed based on Lℓ and Am.

(a) (b) (c)

Figure 1. The two network scenarios shown in (a) example 1, (b) example 2, and the scheme in (c) defines the
block diagram of the proposed method

Moreover, to reach the tracking problem for the agents, the local control scenario ū = [u1, . . . , uℓ] is
designed as follows in which Θ and (Φx,Φζ ,Φr) are used interchangeably,

ū(t− τu) = Θ⊤(t)η̄(t) (6a)

=


[
θ1⊤x (t), θ1⊤ζ (t), θ1r(t)

]
· · · 0

...
. . .

...

0 · · ·
[
θℓ⊤x (t), θℓ⊤ζ (t), θℓr(t)

]


[
x⊤
1 (t), x

⊤
1 (t− τx), r(t− τu)

]⊤
...[

x⊤
ℓ (t), x

⊤
ℓ (t− τx), r(t− τu)

]⊤
 (6b)

= Φ⊤
x (t)x̄(t) + Φ⊤

ζ (t)x̄(t− τx) + Φr(t)r̄(t− τu) (6c)

where Φx = diag{θ1x, . . . , θℓx}, Φζ = diag{θ1ζ , . . . , θℓζ} and Φr = diag{θ1r , . . . , θℓr}. By substituting (6c) into
(4) and if the optimal parameterization is achieved, where the states of Gℓ is on par with that of Gm denoted as
x̄ ≡ x̄m, then there exist the following balanced equations,

A+BΦ∗⊤
x −Am = 0, Aζ +BΦ∗⊤

ζ = 0, BΦ∗
r −Bm = 0, (7)

and limt→∞ ē(t) = (Lℓ ⊗ In)x̄ − (Am ⊗ In)x̄m → 0 is fulfilled. Finally, the assumption and remarks are
required to guarantee the tracking and the consensus of the network Gℓ following the model Gm.
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Assumption 1 (Dynamics) : The dynamics of (4) is unknown but stable and the delays (τx, τu) are known.
Also, we assume the signs of θ∗r in Θi,∀i = 1 . . . , ℓ are known. The persistent excitation of exogenous noises
is less than that of r̄(t) and ū(t), also ∃Φ∗

x,Φ
∗
ζ ,Φ

∗
r for arbitrary Lℓ and Am such that Remark 1 and 2 hold.

Remark 1 (Threshold of network) : The eigenvalues of the Laplacian-like matrix Lℓ and the model weight Am

are greater than or equal to a constant ϑ = 0.1, denoted as λℓ
i ≥ ϑ and λm

i ≥ ϑ respectively. Note that this
threshold ϑ is user-design and depends on the complexity of the networks.

Remark 2 (Communication network) : The network is balanced [(Lℓ−Am)⊗In]1n̄ = 0. We design such that
there is always a directed path from the model Gm to each agent in Gℓ as shown in Figures 1(a) and 1(b). If this
is violated, then ∃λm

i = 0 < ϑ for some i and the design of the augmented model in (15) should be modified.

3. ADAPTATION ALGORITHMS AND STABILITY
We consider the closed form of the tracking error ē := (Lℓ ⊗ In)x̄ − (Am ⊗ In)x̄m to generate the

adaptive laws and to analyze the stability. Recalling (4), (5) and (7), we have the following formula,

˙̄e(t) = (Lℓ ⊗ In) ˙̄x− (Am ⊗ In) ˙̄xm

= (Lℓ ⊗ In)
[
Ax̄(t) +Aζ x̄(t− τx) +Bū(t− τu)

]
− (Am ⊗ In) [Amx̄m(t) +Bmr̄(t− τu)] (8a)

=
[
(Lℓ ⊗ In)Am − (Lℓ ⊗ In)BΦ∗⊤

x (t)
]
x̄(t)− (Lℓ ⊗ In)BΦ∗⊤

ζ (t)x̄(t− τx)

+ (Lℓ ⊗ In)Bū(t− τu)− (Lℓ ⊗ In)Amx̄(t) +Amē(t)− (Lℓ ⊗ In)BΦ∗
r(t)r̄(t− τu) (8b)

= Amē(t)− (Lℓ ⊗ In)B
([
Φ∗⊤

x (t)x̄(t) + Φ∗⊤
ζ (t)x̄(t− τx) + Φ∗

r(t)r̄(t− τu)
]
+ ū(t− τu)

)
(8c)

and by introducing a parameter error Θ̃ where Θ := Θ∗ + Θ̃, the formula in (8c) based on (6c) is denoted as,

˙̄e(t) = Amē(t)− (Lℓ ⊗ In)BΘ∗⊤(t)η̄(t) + (Lℓ ⊗ In)Bū(t− τu)

= Amē(t) + (Lℓ ⊗ In)B
[
Θ̃⊤(t)−Θ⊤(t)

]
η̄(t) + (Lℓ ⊗ In)Bū(t− τu).

(9)

However, this input-delay ū(t − τu) should be adjusted for the sake of eliminating the required prediction to
the control signal of ū(t + τu|t). To tackle this issue, the time-varying function of inputs is designed to come
from the model Gm, defined as η̄m(t), which is more easily to handle, such that,

ū(t) = Θ⊤(t)η̄m(t+ τu|t) (10)

where for the delay-term ū(t− τu), it becomes the following,

ū(t− τu) = Θ⊤(t− τu)η̄m(t)

= Φ⊤
x (t− τu)x̄m(t) + Φ⊤

ζ (t− τu)x̄m(t− τx) + Φr(t− τu)r̄(t− τu).
(11)

Therefore, the error in (9) is expressed as follows,

˙̄e(t) = Amē(t) + (Lℓ ⊗ In)B
[
Θ̃⊤(t)−Θ⊤(t)

]
η̄(t) + (Lℓ ⊗ In)BΘ⊤(t− τu)η̄m(t)

= Amē(t) + (Lℓ ⊗ In)B
[
Θ̃⊤(t)η̄(t)− ϕ(t)

] (12)

where the delay-term ϕ(t) is the inputs difference from two time-varying functions of η̄ and η̄m as (17),

ϕ(t) ∈ Rℓ = Θ⊤(t)η̄(t)−Θ⊤(t− τu)η̄m(t). (13)

Now, let us consider the auxiliary gain Φϕ where Φϕ = diag{θ1ϕ, . . . , θℓϕ} such that this B = BmΦ∗
ϕ holds.

The idea is to make the standard error in (12), therefore

˙̄e(t) = Amē(t) + (Lℓ ⊗ In)BΘ̃⊤(t)η̄(t)− (Lℓ ⊗ In)BmΦ∗
ϕ(t)ϕ(t)

= Amē(t) + (Lℓ ⊗ In)BΘ̃⊤(t)η̄(t) + (Lℓ ⊗ In)BmΦ̃ϕ(t)ϕ(t)− (Lℓ ⊗ In)BmΦϕ(t)ϕ(t)
(14)
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in which this Φϕ should be adjusted over time where ūa = Φϕϕ and to cancel the Φϕ term in (14), the auxiliary
model is required as written in (15). Here is some additional comments on Remark 2, if ∃λm

i = 0 < ϑ, then
∃λℓ

i = 0, then ∃uai
= 0, then ∃θ∗iϕ = 0, violating Bi = Bmθ∗iϕ for some i.

˙̄xa = Amx̄a(t) + (Lℓ ⊗ In)BmΦϕ(t)ϕ(t) (15)

This also means for some i, the unknown B is used in (19) instead of Bm, which is impossible. This forces the
existence of the directed path in Remark 2, considering ϑ in Remark 1. Then, the augmented error is defined
as,

ēa(t) = ē(t) + x̄a(t) (16)

where by adding (14) and (15), we have the standard error equation in adaptive control of networked system,

˙̄ea(t) = Amēa(t) + (Lℓ ⊗ In)BΘ̃⊤(t)η̄(t) + (Lℓ ⊗ In)BmΦ̃ϕ(t)ϕ(t) (17)

and this leads to natural form of adjustable parameterization. To achieve limt→∞ ēa = 0 and limt→∞ x̄a = 0,
the update schemes of Θ̇ and Φ̇ϕ are chosen as (22) and (23),

˙̃Θ⊤ = Θ̇⊤ = − sign(Φ∗
r)ΓθB

⊤
m(Lℓ ⊗ In)

⊤P ēa(t)η̄
⊤(t) (18)

˙̃Φϕ = Φ̇ϕ = −ΓϕB
⊤
m(Lℓ ⊗ In)

⊤P ēa(t)ϕ(t) (19)

where Γθ,Γϕ ∈ Rℓ×ℓ and P = P⊤ ≻ 0 ∈ Rn̄×n̄ satisfies the Lyapunov function A⊤
mP +PAm = −(Q+Qa)

for positive definite matrices of Q = Q⊤ ≻ 0 and Qa = Q⊤
a ≻ 0. The stability of the networked system given

(17) is presented by the opting the following Lyapunov function candidate V (ēa, Θ̃, Φ̃ϕ),

V (ēa, Θ̃, Φ̃ϕ) = ē⊤a (t)P ēa(t) +

∫ 0

−τx

ē⊤a (σ)Qaēa(σ) dσ (20a)

+ tr
[
Θ̃(t)Γ−1

θ |Φ∗−1
r |Θ̃⊤(t)

]
+

∫ 0

−τ1

tr
[
Θ̃(σ)Γ−1

θ |Φ∗−1
r |Θ̃⊤(σ)

]
dσ (20b)

+ tr
[
Φ̃ϕ(t)Γ

−1
ϕ Φ̃⊤

ϕ (t)
]
+

∫ 0

−τ2

tr
[
Φ̃ϕ(σ)Γ

−1
ϕ Φ̃⊤

ϕ (σ)
]
dσ (20c)

where the derivative along the trajectory is guaranteed to be negative definite considering tr[ab⊤] = b⊤a,

V̇ = ē⊤a (t)
[
A⊤

mP + PAm

]
ēa(t) + 2ē⊤a (t)P (Lℓ ⊗ In)BΘ̃⊤(t)η̄(t)

+ 2ē⊤a (t)P (Lℓ ⊗ In)BmΦ̃ϕ(t)ϕ(t)− ē⊤a (t− τx)Qaēa(t− τx)

+ 2 tr
[
˙̃Θ(t)Γ−1

θ |Φ∗−1
r |Θ̃⊤(t)

]
− tr

[(
Θ̃(t) + Θ̃(t− τ1)

)
Γ−1
θ |Φ∗−1

r |
(
Θ̃(t) + Θ̃(t− τ1)

)⊤
]

+ 2 tr
[
˙̃Φϕ(t)Γ

−1
ϕ Φ̃⊤

ϕ (t)
]
− tr

[(
Φ̃ϕ(t) + Φ̃ϕ(t− τ2)

)
Γ−1
ϕ

(
Φ̃ϕ(t) + Φ̃ϕ(t− τ2)

)⊤
]

= −ē⊤a (t)Qēa(t)− tr

[(
Φ̃ϕ(t) + Φ̃ϕ(t− τ2)

)
Γ−1
ϕ

(
Φ̃ϕ(t) + Φ̃ϕ(t− τ2)

)⊤
]

− tr

[(
Θ̃(t) + Θ̃(t− τ1)

)
Γ−1
θ |Φ∗−1

r |
(
Θ̃(t) + Θ̃(t− τ1)

)⊤
]
− ē⊤a (t− τx)Qaēa(t− τx)

+ 2ē⊤a (t)P (Lℓ ⊗ In)BΘ̃⊤(t)η̄(t)− 2 tr
[
η̄(t)ē⊤a (t)P (Lℓ ⊗ In)BmΓθΓ

−1
θ |Φ∗−1

r |Θ̃⊤(t)
]

(21a)

+ 2ē⊤a (t)P (Lℓ ⊗ In)BmΦ̃ϕ(t)ϕ(t)− 2 tr
[
ϕ(t)ē⊤a (t)P (Lℓ ⊗ In)BmΓϕΓ

−1
ϕ Φ̃ϕ(t)

]
(21b)

< 0. (21c)

For the chosen τ1 ≤ τx and τ2 ≤ τu and the designed ˙̃Θ and ˙̃Φϕ as (18) and (19) in turn. To end,
we deliver the sufficient condition for stability in the following remark and the theorem covering the proposed
idea.
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Remark 3 (Stability) : The non-integral parts in (20a)-(20c) are adequate for stability and tracking, since

Vd = ē⊤a (t)P ēa(t) + tr
[
Θ̃(t)Γ−1

θ |Φ∗−1
r |Θ̃⊤(t)

]
+ tr

[
Φ̃ϕ(t)Γ

−1
ϕ Φ̃⊤

ϕ (t)
]

(22)

and the derivative of Vd results in V̇d = −ē⊤a (t)Qēa(t) < 0 due to the cancellation of (21a) and (21b).

Theorem 1 : Consider the networked delayed-system (4) of Gℓ and (5) of Gm with Laplacian-like matrix
(Lℓ ⊗ In) and model weight (Am ⊗ In) satisfying Remark 1 and 2. The pairs of (A,B) is stabilizable
satisfying Assumption 1 and let control signal be ū(t) := Θ⊤(t)η̄m(t+τu|t) as in (10) where ηmi : R+ → Rq ,
η̄m = [η⊤m1

, . . . , η⊤mℓ
]⊤ be the measured time-varying functions and Θ ∈ Rq̄×ℓ = diag{Θ1, . . . ,Θℓ} with

[θi⊤x , θi⊤ζ , θir]
⊤, q̄ = q × ℓ be the adaptive term such that there exists the augmented model x̄a(t) in (15) and

the augmented error ēa(t) in (17), then the adaptive terms of,

˙̃Θ⊤ = Θ̇⊤ = − sign(Φ∗
r)ΓθB

⊤
m(Lℓ ⊗ I⊤n )P ēa(t)η̄

⊤(t)

˙̃Φϕ = Φ̇ϕ = −ΓϕB
⊤
m(Lℓ ⊗ In)

⊤P ēa(t)ϕ(t)
(23)

guarantee the stability and the tracking in which the equilibrium (x̄,Θ) is uniformly stable.
We summarize the proposed method graphically in Figure 1(c) in which the idea is to make the agents

in (5) affected by the network Lℓ follow the leader in (4) influenced by Am. To deal with the delays, we propose
the predictor signals from the leader and the augmented systems where the updated laws are presented in (23).
Note that, if the two remarks and the given assumption hold, then the theorem given above is guaranteed.

4. NUMERICAL RESULTS AND FINDINGS
In this section, we consider the dynamics of a model and the unknown ℓ := 4 agents with known

delays τx = 3 s and τu = 5s where the networks are shown in Figures 1(a) and 1(b) as follows,

˙̄xm(t) =

(
I4 ⊗

[
0 1
−2 −3

])
x̄m(t) +

(
I4 ⊗

[
0
−2

])
r̄(t− τu)

˙̄x(t) = diag

{[
0 1

−2− i −1− i

]}
x̄(t) + diag

{[
0 0

2 + i

10

2 + i

20

]}
x̄(t− τx) + diag

{[
0

2 + i

]}
ū(t− τu)

for all i = 1, . . . , 4. The degree matrix D = I4 for both examples and the Laplacian-like matrix {Lℓ|Lℓ =
D− Aℓ} are defined as follows, where the model weight is chosen such that [(Lℓ − Am)⊗ In]1n̄ = 0,

Lℓ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ In, Am = I4 ⊗ In Lℓ =


1 −γ 0 −γ
−γ 1 −γ 0
0 −γ 1 −γ
−γ 0 −γ 1

⊗ In, Am = 0.4I4 ⊗ In

for example 1 and 2 in turn where γ = 0.3. Here, we design Γθ = Γϕ = I4, Q + Qa = I4 ⊗ 0.1In while
P = I4⊗ ([p1, p2]/100) where p1 = [25 5]⊤, p2 = [5 5]⊤ satisfying A⊤

mP +PAm = −(Q+Qa). Moreover,
we design the initial conditions Θ(0) = −0.001 diag{12.5, 10, 7.5, 5} ⊗ 1q , Φϕ(0) = −0.1 diag{4, 3, 2, 1}.

The simulation is disturbed by the bounded noise vi(t), vm(t) ∈ Ω satisfying Assumption 1. It is
obvious for example 1 in Figure 1(a), since all agents are fully connected to the model wiℓ = 1,∀i, then the re-
sults converge faster as portrayed in Figures 2(a)-2(b). Regarding example 2 depicted in Figure 1(b), it requires
more communication among the linked agents given by γ = 0.3 which are unstable, and the leader, yielding
the slow convergences as shown in Figures 2(c)-2(d). However, due to the stable updated gains approaching
the optimal values, the perfect tracking is achieved.
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Figure 2. The results converge faster and slow: (a) tracking of states xi(t) for example 1 shown in Figure 1(a);
(b) r̄(t), ū(t), ūa(t) of example 1; (c) Tracking of states xi(t) for example 2 depicted in Figure 1(b); and (d)

r̄(t), ū(t), ūa(t) of example 2

5. CONCLUSION
The mathematical derivation of the unknown heterogeneous systems following a leader has been de-

livered, including the stability and some remarks. The threshold and the communication network have been
given, to show the boundary of the proposed problem. The results show that the proposed method could handle
the state and input lumped delays among the agents and the leader in the networked system to reach certain
consensus from the leader. The numerical simulation of two different networks is provided, yielding the perfect
tracking. The near future research would apply the distributed adaptive control-oriented learning of networked
system under some faults.
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