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 Optical wireless communication (OWC) enables wireless connectivity using 

ultraviolet bands, infrared or visible. With its advantages features as high 

bandwidth, low cost, and operation in an unregulated spectrum. Free-space 

optical (FSO) communication systems are near terrestrial as a communication 

link between transceivers, the link is line-of-sight and successfully 

transmitted optical signals. Nevertheless, the optical signals transmissions 

over the FSO channels bring challenges to the system. To overcome the 

challenges posed by the FSO channels, the most common technique is to use 

relay stations, the most recent is the reconfigurable intelligent surfaces 

(RISs) technique. This study introduces a Weibull distribution model for a 

free-space optical communication link with RISs assisted, the parameter 

used to evaluate the performance of the system is the average symbol error 

rate (ASER). The RISs effect is examined by considering the influence of 

the transmitter beam waist radius, shape parameter, aperture radius, scale 

parameter, and signal-to-noise ratio on the ASER. 
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1. INTRODUCTION  

With the advantages of free-space optical (FSO) communication compared to other wireless 

communication links, FSO communication offers a high data rate to meet the high-speed link and specialized 

environments of the sixth generation and beyond wireless communication networks [1]. These advantages of 

FSO communication include cost-effectiveness, larger bandwidth, higher channel capacity, unlicensed 

spectrum, highly secured, and simplicity of system setup and design [1]–[5]. We perform to solve performance 

problems in FSO communication systems affected by transmitter beam waist radius, aperture radius, shape 

parameter, scale parameter, and signal-to-noise by using the reconfigurable intelligent surfaces (RISs) 

technique. RISs is considered a technique with many advantages and has been studied a lot in recent years. 

In recent years, there have been studies that have used the RIS technique, the results show the 

superiority of this technique. However, the transmission parameters have not been fully evaluated (atmospheric 

attenuation, atmospheric turbulence, and pointing errors); quadrature amplitude modulation (QAM) technique 

and average symbol error rate (ASER) have not been used yet [6]–[16]. RISs offer wireless communication link 
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advantages and features over technologies such as optical relays of FSO systems [17]–[26]. These advantages of 

RISs have recently been studied and triggered intensive investigations of the technology [27], [28]. 

In this study, we theoretically analyze the performance of FSO systems with RISs assisted over 

Weibull distribution channels. The study is organized as follows. System and channel models are present in 

Section 2. Section 3 presents the closed-form statistical analysis. Section 4 shows the ASER analysis. The 

numerical results and discussions are presented in Section 5. The study is included in Section 6. 

 

 

2. SYSTEM AND CHANNEL MODELS 

2.1.  System model 

The FSO link with RISs assisted under study is shown in Figure 1, where the signal is transmitted to 

RISs from the source node (S), and then after reflection on a RISs element the signal is transmitted to the 

destination node (D). Assuming in this case, because of obstructions there is no direct signal between the 

source node and the destination. We assume that both Source-RISs and RISs-Destination channels have the 

same atmospheric turbulence conditions. 

 

 

 

 

Figure 1. A diagram of RIS-assisted FSO channels 

 

 

The RISs module is located at a convenient location in the buildings, it is not shielded by obstacles 

and reflects the signal coming from the source. RISs are electromagnetic devices, they can scatter, reflect, 

refract, or extinguish the coming signal. We assume that both reflected and transmitted links exhibit both 

transmitted and reflected channels representing atmospheric turbulence conditions, and the intensity of the 

signal over them has the same attenuation level. 

 

2.2.  Weibull distribution 

Due to atmospheric turbulence conditions, a beam of optical wave is deformed and attenuated when 

it moves through atmospheric channels. Many models have been proposed to represent atmospheric channels. 

In this study, we perform FSO channels with RISs assisted over Weibull distribution. The irradiance intensity 

is modeled by the probability density function (PDF) given by (1) [2].  

 

𝑓𝑊(𝐼; 𝛽, 𝜂) =
𝛽

𝜂
(

𝐼

𝜂
)

𝛽−1

𝑒𝑥𝑝 [− (
𝐼

𝜂
)

𝛽

] (1) 

 

where 𝜂 > 0 is a scale parameter, 𝛽 > 0 is a shape parameter. The 𝑛−𝑡ℎ irradiance moment is given by (2).  

 

⟨𝐼𝑛⟩ = 𝜂𝑛𝛤 (1 +
𝑛

𝛽
)   (2) 

 

where 𝛤() is the gamma function, the brackets ⟨ ⟩ denote expectation. The scintillation index is given by (3). 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Average symbol error rate analysis of reconfigurable intelligent surfaces based free … (Duong Huu Ai) 

445 

𝜎𝐼
2 =

𝛤(1+2/𝛽)

𝛤(1+2/𝛽)2 − 1 ≈ 𝛽−11/6  (3) 

 

without loss generality, to take the derivative of the scale parameter, setting 𝑛 = 1 and the irradiance data is 

normalized in the sense that ⟨𝐼⟩ = 1. 
 

𝜂 =
1

𝛤(1+1/𝛽)
   (4) 

 

 

3. CLOSED FORM STATISTICAL ANALYSIS 

3.1.  Signal-to-noise ratio 

Firstly, assuming that the RISs module reflects light completely, no light is absorbed at the surface. 

Also, assume the channel stages are perfect knowledge at the RISs and destination. The signal at the 

destination node is given as (5) [3], 

 

𝑦 = √𝐸𝑠(𝑝𝜇𝑒𝑗𝜃𝑞)𝑥 + 𝑛  (5) 

 

where 𝑝 and 𝑞 are respectively the source-RISs and RISs-destination complex channel vectors, 𝐸𝑠 is the 

symbol energy, 𝜂𝑒𝑗𝜙 characterizes the RISs element, 𝜂 is amplitude reflection coefficient, 𝜙 is induced 

phase, 𝑛 is additive white Gaussian noise. The value of the signal-to-noise ratio is computed by (6) [3]. 

 

𝛾 = �̄�|𝑝𝜇𝑒𝑗𝜃𝑞|
2
   (6) 

 

where �̄� =
𝐸𝑠

𝑁0
 is the average value of SNR in both source-RISs and RISs-destination channels, 𝑁0 is the noise 

power spectral density. 

  

3.2.  PDF of the end-to-end SNR 

Secondly, the overall gain of the system is 𝑝𝜂𝑒𝑗𝜙𝑞, where 𝑝 and 𝑞 are random variables. The 

quantity 𝜂𝑒𝑗𝜙 is deterministic. The pdf, 𝑓𝛾(𝛾), of the SNR is evaluated as [4], 

 

𝑓𝛾(𝛾) = ∫ 𝑓𝛾𝑝
(𝑡)𝑓𝛾𝑞

(
𝛾

𝑡
)

1

𝑡
𝑑𝑡

∞

0
  (7) 

 

where 𝑓𝛾𝑝
(⋅) is the pdf of the source-RISs and 𝑓𝛾𝑞

(⋅) is the pdf of the RIS-destination. 

Thirdly, assuming that with stable weather conditions, the channel model is represented by Weibull 

distribution, 𝑓𝛾𝑖
(𝛾𝑖) is expressed as (8). 

 

𝑓𝑊(𝛾𝑖; 𝛽, 𝜂) =
𝛽

𝜂
(
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𝜂
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]   (8) 

 

where 𝑖 ∈ {ℎ, 𝑔}, perform variable change 𝛾𝑖 by 𝑡 and 
𝛾

𝑡
 in (8), and pdf function of channels for 𝑓𝛾𝑝

(𝑡) and 

𝑓𝛾𝑞
(

𝛾

𝑡
) respectively as (9) and (10). 
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We substitute (9) and (10) into (7), and the probability density function of end-to-end SNR 𝑓𝛾(𝛾) can be 

evaluated as (11). 
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Put 𝑑𝑧 =
1

𝑡
𝑑𝑡, so that 𝑡 = 𝑒𝑧, (11) can given by (12). 
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𝑓𝛾(𝛾) = (
𝛽

𝜂
)

2

(
𝛾

𝜂2)
𝛽−1
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With the help of (13) and get the exact PDF of SNR. We analyze the integral in (12), the exact PDF of SNR, 

𝑓𝛾(𝛾), as in (14). 

 

𝑙𝑖𝑚
𝑛→∞

∑ 𝑓(𝑡𝑘)𝑛
𝑘=1 (𝑧𝑘 − 𝑧𝑘−1) = ∫ 𝑓(𝑧)𝑑𝑧  (13) 
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4. AVERAGE SYMBOL ERROR RATE ANALYSIS 

We consider the ASER with RISs assisted for FSO system that uses quadrature amplitude 

modulation (QAM) technique over atmospheric turbulence. It is counted as (15) [5], 

 

�̄� = ∫ 𝑃(𝛾)𝑓𝛾(𝛾)𝑑𝛾
+∞

0
  (15) 

 

where 𝑓𝛾(𝛾) is the pdf of SNR, 𝑃(𝛾) is the conditional error probability (CEP). With using the QAM scheme, 

the CEP is presented as (16), 

 

𝑃(𝛾) = 1 − [1 − 2𝑞(𝑀𝐼)𝑄(𝐴𝐼)√𝛾][1 − 2𝑞(𝑀𝑄)𝑄(𝐴𝑄√𝛾)]   (16) 

 

where  

 

𝐴𝐼 = √6/[(𝑀𝐼
2 − 1) + 𝑟2(𝑀𝑄

2 − 1)], 

𝐴𝑄 = √6𝑟2/[(𝑀𝐼
2 − 1) + 𝑟2(𝑀𝑄

2 − 1)],  

𝑞(𝑥) = 1 −
1

𝑥
, 

𝑄(𝑥) =
1

2
𝑒𝑟𝑓𝑐( 𝑥/√2): Gaussian Q-function 

 

with the conditional error probability, 𝑃(𝛾) determined by (16), (15) of average symbol error rate, �̄� can be 

represented as (17). 
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−

 



  (17) 

 

 

5. NUMERICAL RESULTS AND DISCUSSION 

In this section, we present the results of ASER for FSO link with RISs assisted over Weibull 

distribution channels. ASER is computed as aperture radius, transmitter beam waist radius, and SNR. Many 

different effects conditions are investigated when the performance analysis: shape parameter and scale 

parameter in case RISs assisted and without RISs. 

First, we analyze the ASER against transmitter beam waist radius, 𝜔0 with RISs and without RISs 

of FSO link for two values of shape parameter, scale parameter. The results are shown in Figure 2, in this 

figure it is clearly depicted that for a given condition and with aided of RIS, the minimum symbol error rate 

can be reached to a specific value of transmitter beam waist radius (𝜔0 ≈ 0.022 𝑚). The ASER is 

significantly reduced when the system is supported by RIS.  

Figure 3 describes the ASER performance again the aperture radius for various link distance shape 

parameters, and scale parameters. As a result of the figure, ASER significantly decreases with the values of 

aperture radius increase and RIS assisted. It is clearly depicted that, in high-value regions when the aperture 

radius increases, ASER is much changed. 
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Figure 2. ASER performance versus transmitter beam waist radius 

 

 

 
 

Figure 3. ASER performance versus the aperture radius 

 

 

Figure 4 illustrates the ASER performance against the SNR under three value shape parameters and 

scale parameters, link distance, 𝐿 = 2,000 𝑚, in the case without RISs and with RISs. As it is clearly shown, 

the ASER of the system is improved significantly with the RISs-assisted FSO channels. The impact of the 

RISs is that the ASER improves significantly as shape parameters increase. 
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Figure 4. ASER performance versus the signal-to-noise ratio 

 

 

6. CONCLUSION 

This study presents unified and closed form expression for the ASER of an FSO link with RISs 

assisted over Weibull distribution channels. The system performance has been evaluated through ASER with 

RISs assisted, considering aperture radius, transmitter beam waist radius, and SNR. We have derived 

theoretical expressions performance of ASER systems taking into account the SNR and transmitter beam 

waist radius, aperture radius for the value of shape parameter, scale parameter, and link distance. The results 

showed the impact of RISs assisted on the performance of systems. It has been shown that the ASER 

decreases with RISs assisted. 
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