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 Respiration-related disease refers to a wide range of conditions, including 

influenza, pneumonia, asthma, sudden infant death syndrome (SIDS) and  

the latest outbreak, coronavirus disease 2019 (COVID-19), and many other 

respiration issues. However, real-time monitoring for the detection of 

respiratory disorders is currently lacking and needs to be improved. Real-

time respiratory measures are necessary since unsupervised treatment of 

respiratory problems is the main contributor to the rising death rate. Thus, 

this paper reviewed the classification of the respiratory signal using two 

different approaches for real-time monitoring applications. This research 

explores machine learning and deep learning approaches to forecasting 

respiration conditions. Every consumption of these approaches has been 

discussed and reviewed. In addition, the current study is reviewed to identify 

critical directions for developing respiration real-time applications. 
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1. INTRODUCTION 

All living things engage in respiration, which is a fundamental activity. It is the method by which 

cells transform oxygen and nutrients into energy, which is used to carry out numerous cellular processes. For 

example, the cells use this process to absorb oxygen and expel carbon dioxide as waste. Life cannot exist 

without respiration, which is vital for maintaining an organism’s metabolic processes. 

The act of respiration involves moving air into and out of the lungs to enable gas exchange with the 

internal environment, primarily to expel carbon dioxide and draw in oxygen. The breathing rate, often 

known as the respiratory rate, is one of the four leading vital indicators measured in respiratory cycles per 

minute. Under typical circumstances, several homeostatic systems that regulate the partial pressures of 

carbon dioxide and oxygen in the arterial circulation maintain consistent control over the depth and rate of 

respiration. Besides, respiration is the most crucial measure of a patient’s risk for life-threatening diseases. 

Therefore, various emergency medicine algorithms say that before pursuing further diagnostic or 

therapeutic procedures, normal respiration must first be confirmed and ensured [1], [2]. Moreover, the 

respiratory system is part of the body that delivers oxygen and removes carbon dioxide to tightly regulate 

the partial pressures of oxygen and carbon dioxide in arterial blood. These roles are partially accomplished 

by setting the respiratory rate and tidal volume. Normal tidal breathing comprises inspiratory and expiratory 

phases and occurs with synchronous movements of the thorax and abdomen [3]. Respiratory muscles 

https://creativecommons.org/licenses/by-sa/4.0/
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produce physiological signals known as respiratory signals during inhalation and expiration. The 

displacement of the chest wall, airflow sensors, and pressure transducers are just a few of the methods that 

can be used to measure these signals. 

Besides, Figure 1 explains the respiratory signal's pattern over time. The amplitude or strength of the 

signal is shown on the y-axis, and time is shown on the x-axis. The signal usually consists of inhaled and 

exhaled breaths separated by pauses. As the diaphragm contracts during inhalation, the chest enlarges, 

drawing air into the lungs. The respiratory signal’s amplitude rises because of this. As the diaphragm relaxes 

and the chest contracts, the air is forced out of the lungs during exhalation. The respiratory signal’s amplitude 

decreases as a result. Numerous aspects of respiration, including the respiratory rate, the depth of each breath, 

and the variability of the signal over time, can be studied using the respiratory signal. Diagnosing respiratory 

disorders and gaining insight into how the respiratory system works by analyzing these features is possible. 

 

 

 
 

Figure 1. Respiration signal 

 

 

An indicator of ventilation, or the flow of air into and out of the lungs, the respiration rate, often 

known as the number of breaths per minute, is a clinical measure. As the body tries to keep the tissues’ 

oxygen supply going, a shift in respiration rate is frequently the first indication of deterioration [4], [5]. For 

pulmonary disorders, respiration rates and patterns may be used to diagnose and track a person's health 

concerns. While the average resting respiration rate varies from person to person, it generally ranges from 12 

to 20 bpm (breaths per minute). Besides, there are three types of abnormal respiratory rates which are 

tachypnea (high respiratory rate), bradypnea (low respiratory rate), and apnea (cessation of respiration) [6]. 

The primary respiratory muscle’s diaphragm flattens and contracts typically during inspiration, pulling on the 

belly and pushing the lower ribs forward and outward [7]. For thousands of years, Eastern civilizations have 

managed one’s breath to improve or restore one’s health. For instance, yogic respiration (pranayama) is a 

well-known, age-old regulated respiration technique frequently used with yoga or meditation because of it is 

purported spiritual and health-improving benefits.  

Pranayama is a type of yoga that focuses on controlling one’s breath. There are several forms of 

pranayama, each with its own set of advantages. Improved respiratory function, less stress and anxiety, 

increased energy levels, improved focus and attention, enhanced relaxation, and increased self-awareness are 

some of the benefits of pranayama. A person’s respiratory rate is regulated by a variety of factors, including 

age, exercise level, and body temperature. Although the typical respiration rate varies significantly across 

individuals, doctors and nurses regard a certain range to be normal. Table 1 presents the type of respiration 

rate condition according to age from newborn to adult. 

However, tachypnea is the earliest observable clinical symptom and the patient’s means of 

compensating for the restricted lung capacity caused by restrictive lung disease. The activation of auxiliary 

muscles results in further compensation. Patients with restricted illness may occasionally take  

larger-than-tidal sighs to attract collapsing units. Infected lungs’ compensatory mechanisms also work to 

improve gas exchange [8]. Thus, each pattern is clinically essential and valuable in evaluating patients [9]. In 

medicine, respiration measurement is a crucial marker for the early identification of major human disorders. 

Reportedly, data on respiration can be used to predict pneumonia, cardiopulmonary arrest, and chronic heart 

failure. However, it has been discovered that the breath rate (BR) can distinguish between stable and unstable 

individuals more effectively than the heart rate (HR). Monitoring the respiratory signal may be used to 

identify and treat respiratory problems, including chronic obstructive pulmonary disease, one of the most 

prevalent long-term conditions, and to forecast cardiac arrest and diagnose hypoxemia or hypercarbia. 
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Table 1. Type of respiration rate condition 
Type of respiration condition Breath per minute 

Gender Age (year) 

Male Female Newborn 

(Birth-1 y) 

Infant 

(1-3 y) 

Toddler 

(3-6 y) 

Child  

(6 y and 
older) 

Adult 30 y and above 

Normal respiration 12-16 14-18 30-50 20-40 20-30 18-24 12-16 Respiratory rate 

remains constant 

Abnormal 
respiration 

Tachypnea (high respiratory rate) >20 >60 >40 >30 >20 
Bradypnea (low respiratory rate) <8-10 <16 <8-10 

Apnea (cessation of respiration) >20 

 

 

Due to many cases of abnormal respiration occurring, many researchers study the use of technology 

in managing respiratory diseases. Generally, respiratory system technology has two different types of 

approach: contact and non-contact respiratory diseases. Generally, respiratory system technology has two 

types of approaches: contact and non-contact respiration measurement. Conventionally, contact-based 

measurement has been used widely, such as wearable sensors which can be installed within clothing [10], 

belts [11], [12], directly attached to the skin [13], [14], or used in other ways as wearable sensors for 

respiratory monitoring. There are many different approaches to creating wearable technology, and some of 

them are covered individually in the following sections according to the primary sensor type. The sensor, or 

the measured component, must be in contact with the subject's body when using contact-based measurement 

procedures [15]. Table 2 shows the advantage and limitations of the method of respiration measurement 

wearable contact based. 

 

 

Table 2. The advantage and limitation of wearable contact-based respiration measurement  
Type of contact-

based 

Advantages Limitations 

EMFit Less invasive, and it was effective in detecting 
respiratory rate 

The sensor was only effective for patients who were stationary 
or only moderately active since body motions influence the 

accuracy of the measurement [12]. 

Spirometry Can be used to screen for respiratory disease in 
some high-risk scenarios. It helpful in separating 

cardiac disease from respiratory disease [16]. 

The result will be poor, and the interpretation will be tough 
when patient not follow the instruction while using the 

spirometry. 

Smartphone’s 
microphone 

For nasal respiration noises recorded by a 
smartphone's microphone, the accurate 

respiration rate can be calculated as the 

estimation errors [17], [18]. 

As background noise gets louder, accuracy began to decrease 
progressively the further users were from the source of the 

respiration sound. 

Impedance 

pneumography 

Accurate assessment of several respiratory 

parameters. This portable, affordable device 

could help with healthcare [19]. 

Analyses are difficult to complete and require specialized 

equipment. 

 

 

 

Due to the inconvenient limitation of contact-based, more research introduces non-contact 

respiration measurement. The non-contact measurement of respiratory motion is an innovative method of 

evaluating respiratory function. Briefly, non-contact measurements are more comfortable for the patient, 

especially when performing contact measurements is particularly challenging regarding the specialized 

equipment and complicated setup process [20]. Therefore, several techniques that do not require touch 

sensors to be connected to the patient have been developed to reduce patient pain and increase the 

accessibility of respiratory data, including thermal imaging, microwave-based, and radar-based techniques. 

For instance, these are a few examples that are frequently used in a clinical setting which are doppler radar 

[21], depth sensors [22], laser vibrometry [23], and RGB cameras [24], [25]. However, the practical use of 

these techniques is constrained by the requirement for rather large periods and assumptions regarding the 

regularity of respiration rate [26]. Table 3 displays the advantage and limitation of the type of non-contact 

method reviewed. 

Non-contact techniques for measuring respiration have drawn more attention in recent years. Thus, 

the creation of new technologies and the rising demand for non-invasive and remote monitoring solutions in 

healthcare and wellness applications. Compared to contact methods, non-contact techniques for measuring 

respiration have a few benefits. They are non-invasive, which means the user can use them more easily and 

comfortably because no sensors or electrodes need to be affixed to the body. They also eliminate the potential 

for skin infections or rashes that contact sensors may bring on. Non-contact techniques can also be used when 

it is impractical to use contact techniques, such as when the user is sleeping or moving around. In the current 

coronavirus disease 2019 (COVID-19) pandemic context, where there is an increasing need for telemedicine 
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solutions, they can also be used for remote monitoring. The ability to analyze non-contact signals, such as 

those obtained from cameras or microphones, and extract valuable data about respiration, such as the 

respiratory rate, depth, and variability, has been made possible by advances in computer vision and machine 

learning. As a result, new opportunities for tracking changes in respiration patterns over time and monitoring 

and diagnosing respiratory disorders using non-contact techniques have come to light. In the climax, the 

advantages of non-contact methods for measuring respiration over contact methods, the development of new 

technologies, and the rising need for non-invasive and remote monitoring solutions in healthcare and 

wellness applications all contribute to the growing interest in these methods. 

 

 

Table 3. The advantage and limitations of non-contact respiration measurement 
Type of non-

contact method 

Advantages Limitations 

RGB video 
camera system 

[24], [27], [28] 

A simple camera using standard-resolution images can 
be used. Some methods are easy to use and could be 

used in the ward or home environment. 

Body movement can shift the face from the 
camera’s range of view for long-term (like 

nighttime) surveillance. A feedback system would 

be required. The monitoring cannot continue if 
hands, blankets, or any hide the face. 

Doppler radar 

[21] 

It can be used at long distances. Possibility of wireless 

transfer of respiratory rate data to the central unit. 

Movement creates artefacts which alter the 

respiratory rate signal. Currently expensive and 
challenging to set up. 

Laser vibrometry 

[29] 

The post-processing is primary and uses real-time 

output. However, it is a significant stand-off distance 
non-contact displacement measurement as well. 

Less accessibility 

Ultra-wideband 

[30], [31] 

The ultra-wide band (UWB) radar sensor demonstrated 

very accurate respiration measurement. 

The accuracy could suffer from obstacles between 

the human body and the sensor. 
Thermal imaging 

[32] 

Compared to other techniques for measuring respiratory 

rate, it could be more impartial and reliable [33] 

Successive evaluations of the object's distance 

from the camera, its variations in movement, 

temperature, and humidity, as well as the creation 
of a costly monitor. 

 

 

Breathing signals are a form of physiological signal used to evaluate respiratory health. It can be 

used to diagnose respiratory disorders, follow changes in respiratory health over time, and monitor patients 

with respiratory illnesses. The data review in this research paper is based on both contact and  

non-contact-based methods. Data classification is the process of labelling a data point. The data classification 

also can be used to classify respiratory signals as normal or abnormal in the context of breathing signals. 

There are two approaches to respiration classification: machine learning and deep learning. Knowing the 

differences between machine and deep learning is better before classification. Table 4 exposes the differences 

between machine learning and deep learning in general. Deep learning and machine learning are the two 

suggested methods for respiratory classification, and both are categories of artificial intelligence. 

Figure 2 shows the critical difference between artificial intelligence (AI) and machine learning. In a 

nutshell, machine learning is AI that can automatically adapt with little human help. Hence, there are four 

categories of machine learning algorithms: supervised, semi-supervised, unsupervised and reinforcement 

learning. 

In supervised learning, the computer uses guidance to infer a function from the data, and it is 

divided into three main types: classification, regression and forecasting. The typical algorithm is k-nearest 

neighbor (KNN), naive Bayes (NB), decision trees (DT), linear regression (LR), support vector machines 

(SVM) and neural networks. Besides, semi-supervised learning uses labelled and unlabeled data comparable 

to supervised learning. Unlabeled data has no meaningful tags, whereas labelled data has them, so the 

algorithm can interpret them. Machine learning systems can learn to categorize unlabeled data using this 

combination. Whereas in unsupervised learning, the computer finds a pattern on its own. Clustering and 

association rule learning algorithms are the two primary categories of unsupervised learning algorithms. The 

typical algorithm used is k-means clustering and association rules. Other than that, the Reinforcement 

Learning approach uses observations from interacting with the environment to adopt behaviors that maximize 

the reward or minimize the risk. The agent, a reinforcement learning algorithm, iteratively continually learns 

from the environment. The agent gradually gains knowledge from encounters with the environment until it 

has investigated every state. Machine learning, which includes reinforcement learning, is a subset of artificial 

intelligence. It enables software agents and machines to automatically decide the best course of action within 

a particular situation to maximize performance. The reinforcement signal, or simple reward feedback, is 

necessary for the agent to learn its behavior. Thus, the standard algorithm consists of Q-learning, temporal 

difference (TD) and deep adversarial network. 
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Table 4. Comparison between machine learning and deep learning 
Parameter Machine learning Deep learning 

Execution time While testing a model with a machine learning 
algorithm takes longer, it takes less time to 

train the model than deep learning. 

Deep learning requires much processing time during 
model training but less during model testing. 

Hardware dependency Machine learning models can be used on low-
end machines because they do not require 

much data. 

A high-end system with graphics processing unit 
(GPUs) is required because the deep learning model 

requires a large amount of data to operate effectively. 

Data dependency Even though machine learning requires a large 
quantity of data, it can function with less data. 

For deep learning algorithms to perform well, users 
must feed them with much data because they rely 

heavily on it. 

Feature engineering Before moving forward, machine learning 
models require feature extraction by a 

professional. 

Since deep learning is an improved form of machine 
learning, it does not require the creation of a feature 

extractor for every issue but instead attempts to learn 

high-level features independently from the data. 
Interpretation of result For a specific problem, the result is simple to 

interpret. Furthermore, because it can quickly 

analyze the results when using machine 

learning, it is clear why a result occurred and 

how the process worked. 

It is exceedingly difficult to interpret the results for a 

specific problem. For example, while using a deep 

learning model, it is difficult to determine why the 

specific result that occurred is a better solution than a 

machine learning model. 

Problem solving 
approach 

The standard machine learning methodology 
divides a problem into smaller components and 

solves each separately before producing the 
final answer. 

A deep learning model accepts input for a specific 
problem and produces the solution, which differs from 

a typical ML model’s problem-solving approach. 
Consequently, it adheres to the end-to-end method. 

Type of data Most often, structured data is needed for 

machine learning models. 

Deep learning models rely on artificial neural network 

layers and can process structured and unstructured data. 
Suitable A simple or complex problem can be solved 

using machine learning models. 

Deep learning models are appropriate for resolving 

challenging issues. 

 

 

 
 

Figure 1. The difference between AI and machine learning [34] 

 

 

Machine learning algorithms can analyze vast information and uncover complicated patterns that 

people cannot see. As a result, machine learning algorithms can produce better predictions than traditional 

statistical methods. Furthermore, machine learning algorithms can analyze data that cannot be simply 

represented numerically, such as photos, audio, and text. The ability of machine learning algorithms to 

analyze data that cannot be easily represented numerically has opened up new study avenues. This is 

particularly true in healthcare, where machine learning algorithms are being utilized to produce new 

diagnostic tools and therapies. 
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Deep learning is a kind of machine learning that uses artificial neural networks (ANN) to simulate 

how the human brain learns. The popularity of deep learning, a branch of machine learning, has grown 

recently as researchers’ access to data has multiplied quickly. These techniques enable the algorithm to 

automatically find the unique features and transformations necessary for the task in the raw data instead of 

depending on a researcher’s judgement and experience to choose and engineer characteristics [35]. 

Therefore, deep learning is currently being used to improve speech significantly [36], [37] and picture 

recognition, respectively. In the field of computer vision and pattern recognition (CVPR), deep learning is one 

of the most effective and popular methods [35], [36], [38], and could lead to a better understanding of behavior 

and physiological patterns to an individual’s affective moods such as distress, anxiety and any else.  

To solve problems involving unstructured data, deep learning networks are the mathematical models 

used to mimic human brains [39], [40]. Besides, Figure 3 represents the simple neural network. These 

mathematical models are developed as neural networks, which are made up of neurons. The input layer 

(initial layer of the neural network), the hidden layer (all the middle layer of the neural network), and the 

output layer are the three main layers (last layer of the neural network). While self-learning representations 

are a feature of deep learning algorithms, they also rely on ANNs that simulate how the brain processes 

information [41]. Algorithms exploit unknown elements in the input distribution throughout the training 

phase to extract features, classify objects, and identify relevant data patterns. It takes place on several levels, 

employing the algorithms to create the models, much like training machines to learn for themselves. There 

are a few lists of deep learning algorithm methods that can be used in this era of globalization to classify the 

signal of respiration, such as convolutional neural networks (CNNs), long short-term memory networks 

(LSTMs), recurrent neural networks (RNNs), generative adversarial networks (GANs), radial basis function 

networks (RBFNs), multilayer perceptrons (MLPs), self-organizing maps (SOMs), deep belief networks 

(DBNs), restricted Boltzmann machines (RBMs) and autoencoders [41]. 

 

 

 
 

Figure 3. Simple neural network 

 

 

Depending on the application and the available data, deep learning and machine learning may be 

effective for classifying respiratory signals. Classifying respiratory signals can be accomplished using either 

deep learning or machine learning; the chosen approach depends on the task and available data. For example, 

deep learning will be a good alternative if they want to achieve high accuracy and have a large dataset of raw 

respiratory signals. On the other hand, if they need more interpretability or have a limited dataset, machine 

learning may be the better choice. 

 

 

2. METHOD  

In this section, the data classification approaches are reviewed. We used Scopus to do a database 

search and it is about more than 100 kinds of literature searches on the topic of the data classification of 

breathing signals. However, not all of the literature searches were included in the final review. Luckily found 
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66 relevant article papers which are 10 article papers on machine learning classification, 16 article papers on 

deep learning classification and the remaining article papers about radar sensor-based. The research topic had 

to employ machine learning or deep learning to categorize breathing signals, use a dataset of breathing 

signals from healthy controls and patients with respiratory diseases, and describe the classification 

algorithm’s accuracy. At the same time, the research topic was excluded because the research paper was not 

in English and did not report the classification algorithm’s accuracy. The advantages, the limitations, and the 

main applications of the methods were described along with their technical classification by their algorithm 

use in the review. 

 

2.1.  Classification of respiration using machine learning  

For the classification of respiration patterns for both real-time and simulated respiration data, 

various machine learning techniques were used. Nevertheless, in this paper, supervised learning is a suitable 

algorithm for respiration classification. Furthermore, it has been demonstrated that using simulated data for 

training purposes increases accuracy. The article suggests a framework for enhancing machine learning 

datasets to increase the precision of classifiers. Using a supervised learning methodology, Rehman et al. [42] 

evaluate several machine learning algorithms, such as DT, SVM, and ANN. The dataset is made up of 

respiratory signals that were captured from 35 patients, including healthy people and those who had different 

respiratory conditions. The authors divided the dataset into training and testing sets before using data 

augmentation methods like random cropping and rotation to produce more training data. Then, using metrics 

like accuracy, precision, recall, and F1 score, the authors trained several machine learning classifiers on the 

improved dataset. They discovered that adding augmented data increased the classifiers’ accuracy, with 

ANNs producing the best outcomes. 

The KNN algorithm categorizes the test data based on the majority class of the KNN after 

identifying the KNN in the training data. The SVM algorithm divides the data into various classes using 

hyperplanes and maximizes the distance between the hyperplanes to achieve the best classification. Then, the 

random forest (RF) algorithm builds multiple decision trees and combines the classification [43]. The authors 

used accuracy, sensitivity, and specificity metrics to assess the performance of the three algorithms. 

According to the results, the KNN algorithm had the highest accuracy (97.2%), followed by the SVM 

algorithm (94.6% accuracy) and the RF algorithm (92.9% accuracy). 

The comparison with different machine learning methods was included in this. The system consists 

of three components: data preparation, disease prediction, and user interface development. Other than that, 

the dependability of machine learning algorithms is significantly impacted by these discrepancies in variable 

input coding, and the algorithm’s external validity is constrained by the variation in input variables among 

institutions [44]. Like subject population variations, machine learning model generalizability is constrained.  

Then another one of the simplest machine learning methods to comprehend is the KNN 

classification technique [45]. This review [46] recognized pulmonary acoustic signals from 10 healthy 

volunteers and 95 patients with respiratory illnesses. They took 20 features out of the signals and trained and 

tested the SVM and KNN classifiers with them. The study’s findings demonstrated that, in terms of accuracy, 

sensitivity, and specificity, the SVM outperformed the KNN method. Furthermore, the SVM and KNN were 

employed as two separate classifiers, and it shows that the KNN classifier is better than the SVM classifier. 

Thus, the classification accuracy results were satisfactory despite the small amount of data utilized to train 

and test the classifiers. 

The study combines patient demographic and medical information with respiratory rate to achieve 

robust performance. Several machine learning classifiers are used by the authors [47], including NB, SVM, 

RF, KNN, AdaBoost, and two deep-learning models a CNN and an LSTM network. The proposed approach 

performs well when additional variables are combined with the respiration rate, and a comparison to earlier 

research attests to its superiority. The findings show that, with 93% accuracy, the LSTM model beats all 

other models used. Also, the performance of the suggested approach is contrasted with that of previous 

studies, demonstrating the proposed approaches superior performance. 

The author developed an “Ensemble of regression trees” a computer vision method, to automatically 

follow the nostrils in the presence of significant head movement and object occlusion [48]. Also, they created 

a revolutionary “Breath detection algorithm” (BDA) that distinguishes between normal and abnormal breaths 

based on predetermined thresholds and calculates breaths per minute automatically. The proposed 

algorithm’s accuracy, sensitivity, spurious cycle rate, and missing cycle rate metrics were tested on 80 

respiration waveforms under various conditions. To categorize the human volunteer as having normal or 

abnormal respiration or experiencing Bradypnea or Tachypnea, the parameters obtained from the proposed 

BDA were then input to a 10-fold cross-validation KNN classifier. Therefore, Table 5 [42]–[44], [46], [48]–

[51] summarizes the advantages and disadvantages of using a machine learning algorithm. 
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Table 5. The advantages and disadvantages of using a machine learning algorithm 
Algorithm Data input Finding Advantage Limitation 

Cosine KNN, 

complex tree, 

ensemble 

boosted tree 

and linear 

SVM [42] 

RF-based technologies were used 

to collect a dataset of respiratory 

abnormalities. There are eight 

types of breathing irregularities in 

the dataset: eupnea, bradypnea, 

tachypnea, Biot, sighing, 
Kussmaul, Cheyne-stokes, and 

central sleep apnea (CSA). 

It entails building a high-

quality dataset using data 

augmentation methods and 

instructed supervised 

learning classifiers to 

classify respiration 
abnormalities precisely. 

Classifier accuracy 

can be increased by 

using data 

augmentation 

techniques, and a 

supervised learning 
approach 

Improved datasets could still 

have flaws and biases that 

reduce classification 

precision. The 

generalizability of the 

algorithms used in this study 
to more extensive and more 

varied datasets is unknown 

KNN, SVM, 

and RF [43] 

Breathing sounds from persons 

with respiratory problems were 

recorded and utilized to generate 

spectrogram images. The images 

were then used to train a CNN 

model, which was capable of 
reliably classifying various 

respiratory diseases. 

The potential of using lung 

sounds to accurately 

classify respiratory lung 

diseases for the rapid and 

precise diagnosis of 

respiratory diseases. 

Useful for analyzing 

respiratory sounds 

and spotting patterns 

that might be 

suggestive of 

respiratory diseases 

Only respiratory sounds were 

used in the research as the 

input data for the machine 

learning algorithms. 

SVM, DT, 

RF, and 

gradient 

boosting [44] 

When vitals are examined more 

regularly, an algorithm trained on 

electronic medical record (EMR) 

data may learn that a patient is 

more prone to decompensate. 

Using data from electronic 

health records (EHRs) to 

predict the onset of acute 

respiratory failure (ARF) 

and acute respiratory 
distress syndrome (ARDS) 

in hospitalized patients. 

It shows the use of 

ML to anticipate the 

onset of ARF and 

ARDS, which can 

help with early 
diagnosis and 

treatment of these 

illnesses and improve 

patient outcomes. 

The lack of external 

validation for the machine 

learning models in the study 

restricts the generalizability 

of the findings beyond the 
study's patient group and 

EHR system. 

KNN and 

SVM [46] 

A dataset of respiratory sounds 

from the R.A.L.E lung sound 

database was used as the study's 

data input. Normal, airway 
obstruction pathology, and 

parenchymal pathology are the 

three classes of pulmonary 

acoustic signals that are manually 

classified. 

Pulmonary acoustic signals 

can be used to identify 

respiratory illnesses 

accurately 

The study emphasizes 

the significance of 

feature selection 

strategies to decrease 
the dimension of the 

data and enhance 

classification 

accuracy. 

It only used a tiny dataset, 

which might make the 

findings less generalizable. 

KNN [48] A dataset of thermal camera 

recordings of human nostrils 

from healthy adults and babies 
was used as the study's data 

input. The breathing rate is 

labelled on the recordings as 

normal or abnormal. 

The resulting respiration 

waveform is subsequently 

processed with the 
appropriate filtering 

techniques to increase the 

signal-to-noise ratio 

(SNR). 

The suggested 

algorithm can 

discriminate between 
fast and slow 

respiration and 

between normal and 

abnormal breaths, 

which can help 

diagnose and treat 

respiratory illnesses. 

The research does not 

mention the performance of 

the proposed algorithm 
compared to previous non-

contact respiratory 

monitoring algorithms. 

Therefore, how the suggested 

algorithm stacks up against 

other cutting-edge techniques 

is unknown without this 
comparison. 

Naïve Bayes 

[49] 

The exhaled airflow collected by 

the microphone serves as the 

input data for the real-time 

contactless respiration monitoring 

system. The airflow is converted 

into an electrical signal via the 

microphone, which is then 
analyzed using blind source 

separation (BSS) and the NB 

classifier. 

Employing BSS enables 

the ICA algorithm to 

distinguish between 

respiratory signals. 

When used for 

disease 

categorization, the 

Nave Bayes classifier 

is computationally 

effective and can 

produce good results 
with limited data sets. 

External elements like noise 

and motion artefacts could 

have an impact on this. 

LDA, SVM, 

FNN, DT, RF, 

and ANN [50] 

A dataset of breathing sounds is 

used as input for the respiratory 

pattern classification task. The 

dataset includes recordings of 
respiratory sounds from both 

healthy people and people with 

respiratory disorders. Some of the 

recordings in the collection have 

missing data since they were 

made in loud environments. 

The issue of missing data 

in respiratory signals can 

be effectively solved by 

using various imputation 
strategies. 

Enhancing the 

classification of 

respiration patterns is 

highlighted in the 
paper. 

Utilized a limited dataset, so 

it is possible that the findings 

would not apply to a more 

extensive dataset. 

KNN [51] Seismocardiography (SCG) 

signals were gathered from both 
healthy individuals and people 

with heart conditions. The 

breathing and lung volume 

phases of the recordings were 

noted, and they were saved as 

digital audio files. Either 

inspiration or expiration are the 

phases of respiration. 

The dataset contains 

seismocardiographic 
signals from ten healthy 

participants, and 

independent component 

analysis (ICA) is used to 

disentangle the signals into 

their parts. 

The algorithm 

successfully separated 
the respiratory and 

non-respiratory 

components and 

correctly classified 

the signals with high 

sensitivity and 

specificity. 

The KNN technique differed 

from other machine learning 
algorithms in the study, 

which would have shed light 

on the relative performance 

of various approaches. 
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2.2.  Classification of respiration using deep learning  

Recently, researchers have demonstrated the effectiveness of CNN based models in a range of 

issues, from image classification to semantic segmentation, proving that the models can produce better 

learning performances than earlier deep learning approaches [36], [38], [52]. The CNN-based model predicts 

respiration signal values from the subject action waveform. The design was first set forward and researched 

for use in a variety of identification processing applications, including gender recognition, and more recently 

for the detection of behavior (e.g. depression) [53]. Additional research has been done to clarify how this 

method models the source and system-related information in the linked signal. This architecture was included 

in the article under review because the respiration signal can be closely tied to the signal's source. Other than 

that, this author [54] developed a unique algorithm to categorize abnormal and normal respiration episodes 

using the signal decomposition method. Additionally, the system performed better in accuracy than the 

current best practices.  

CNN, recurrent neural networks (RNN), or hybrid architectures are the most common deep learning 

classifiers used today to analyze respiratory sound spectrograms. The architectures used by CNN-based 

systems range widely, including LeNet6 [55], [56], VGG5 [57], two parallel VGG16s [58], and ResNet50 

[59]. A CNN was initially utilized to translate a spectrogram input to a temporal sequence in relation to the 

hybrid architectures suggested in [58], [60]. Prior to classification using fully-connected layers, sequence 

structures were first learned using LSTM or gated recurrent unit (GRU) layers.  

For instance, Perna and Tagarelli [61] offers a RNN-based system to forecast respiratory 

abnormalities and illnesses using lung sounds. The analysis of the classification of abnormal respiratory 

sounds and respiratory illnesses using a LSTM network. The approach comprises three steps: feature 

extraction, classification, and data pre-processing. The authors employ a digital stethoscope to record the 

patients’ lung sounds during the data preparation stage. The data is then separated into fixed-length segments 

after pre-processing to reduce noise and artefacts. Next, the authors turn each segment into a spectrogram 

representation during the feature extraction stage using a time-frequency analysis approach known as the 

short-time Fourier transform (STFT). A trained RNN is then fed the spectrogram to extract pertinent features 

from the lung sounds. The retrieved RNN features are used to predict the presence or absence of respiratory 

abnormalities and illnesses during the classification step. Finally, the authors calculate the probability of each 

class for each segment using a machine learning algorithm. Then they add the probabilities for all segments 

to get a final prognosis for the patient. The method is assessed using a dataset of patients with various 

respiratory diseases. The findings demonstrate that the overall algorithm is highly accurate in identifying 

respiratory abnormalities and illnesses. 

The other paper introduced a novel design called the noise masking RNN [62], which intended to 

discriminate noise and strange respiratory sounds by utilizing LSTM and GRU cells in an RNN-based 

network. The approach is divided into four steps: feature extraction, noise masking, classification, and data 

pre-processing. First, the authors record patient respiration sounds with a digital stethoscope during the data 

preparation stage. After that, the data is pre-processed to eliminate any noise and artefacts. Next, the authors 

apply a STFT to turn each segment into a spectrogram representation during the feature extraction stage. 

Then, to extract pertinent features from the respiratory sounds, the spectrogram is passed to a trained RNN. 

Next, to increase the robustness of the RNN to fluctuations in respiratory sounds, the scientists add random 

Gaussian noise to the retrieved features during the noise masking stage. Finally, the features with the 

additional noise are utilized to predict the presence or absence of respiratory illnesses during the 

classification stage.  

Moreover, Alqudah et al. [63] focused on using several deep learning models, as demonstrated by 

the combination of CNN and LSTM neural networks. The developed models attained high levels of 

performance. The hybrid CNN-LSTM model yielded the highest accuracy, sensitivity, and specificity results, 

which pave the path for applying deep learning in clinical contexts at 100%, 100%, and 100%, respectively. 

This paper reviewed proposed a deep learning model based on a combination of LSTM, CNNs, and both. As 

classification techniques, various deep learning models like CNN, LSTM, and CNN-LSTM were used, and 

the results were compared. According to the experimental findings, the hybrid CNN-LSTM classification 

model performs better than the CNN and LSTM methods frequently used in the literature. Through 

developing and applying deep learning models in clinical contexts, this research paves the path for doctors to 

make highly accurate decisions. Therefore, according to the papers that have been reviewed, it is shown that 

CNNs is the most popular deep learning algorithm used to classify the respiration rate system. 

Kim et al. [64] suggests using deep learning to classify respiratory sounds such as crackles, 

wheezes, and rhonchi in the clinical setting. It is found that 1,918 datasets of respiratory sounds captured in a 

clinical context was divided into categories by the author using deep learning CNN. By fusing a pre-trained 

picture feature extractor of series, respiratory sound, and CNN classifier, they create a prediction model for 

respiratory sound classification. The authors state that their work provides good classification accuracy for 

respiratory sounds, although the categorization excludes pneumonia.  
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The author classifies the data into several respiration patterns, such as typical respiration, shallow 

respiration, deep respiration, and rapid respiration, using a deep learning technique, namely a CNN [65]. The 

study found that the suggested strategy highly accurately classified various respiration patterns using 

information gathered from wearable sensors. To further highlight the potential for clinical applications, the 

authors also demonstrated how their technique might be used to detect respiration patterns in real-time. Using 

a convolutional neural network, [55] suggests classifying respiratory sounds. To achieve this, they created a 

visual representation of each audio sample that allows identifying resources for classification using the same 

techniques used to classify images with high precision. They also extracted resources using Mel frequency 

cepstral coefficients (MFCCs) to classify respiratory diseases. Therefore, Table 6 summarizes the advantages 

and disadvantages of using a deep learning algorithm. 

 

 

Table 2. The advantages and disadvantages of using a deep learning algorithm 
Algorithm Data input  Finding Advantage Limitation 

CNN, RNN 

and hybrid 

CNN+RNN 

[53] 

A dataset of speech data is used as 

the study’s data input. The data is 

gathered from a variety of 

speakers, including those who are 

healthy and those who have 
respiratory conditions. 

Suggest a unique method for 

estimating respiratory 

parameters from speech 

recordings using deep 

learning architectures. 

This study shows that the 

suggested method can 

estimate respiratory 

parameters with high 

accuracy and little error. 

The small sample size may 

affect how generalizable the 

findings are and the absence of 

comparisons with established 

techniques for measuring 
respiratory parameters. 

CNN and 

ANN [59] 

The study’s data input is a dataset 

of digital respiratory sounds. The 

optimized S-Transform is a signal 

processing approach for 

emphasizing the characteristics of 

wheeze, crackle, and normal 

noises. 

Suggest a novel technique for 

recognizing wheeze, crackle, 

and normal respiratory 

sounds utilizing deep residual 

networks and optimal S-

transform (OST) (ResNets). 

In the multi-classification of 

respiratory sounds, the 

suggested method using 

optimal S-transform (OST) 

and deep residual networks 

(ResNets) showed good 

accuracy, sensitivity, and 
specificity. 

The study did not compare the 

proposed method to other 

cutting-edge approaches that 

use various feature extraction 

and classification strategies, 

which might have revealed 

more information about the 
performance of the suggested 

method. 

RNN [61] Patients with a range of respiratory 

diseases contributed to a dataset of 

respiratory auscultation sound data. 

To create data features related to 

respiratory illnesses, the data was 

pre-processed using state-of-the-art 
feature extraction methods. 

The approach suggested in 

this paper is well-designed 

and efficient in using lung 

sounds to predict respiratory 

abnormalities and illnesses. 

The algorithm has high 

accuracy in identifying 

respiratory abnormalities 

and disorders, making it a 

reliable tool for respiratory 

categorization. 

The algorithm can only 

categorize respiratory 

abnormalities and diseases 

based on lung sounds. 

Noise 

masking 

recurrent 

neural 

network 

(NMRNN) 
[62] 

A dataset of lung sound data was 

used as the study’s data input. Data 

is gathered from patients suffering 

from various respiratory disorders. 

The algorithm attempts to 

isolate only critical 

respiratory-like frames free of 

extraneous noise and 

classifies lung sounds into 

four groups: normal, 
containing wheezes, 

containing crackles, and 

containing both wheezes and 

crackles. 

The computational cost and 

time needed for feature 

extraction are decreased by 

the NMRNN algorithm, 

which effectively extracts 

pertinent features from lung 
sounds using a pre-trained 

RNN. 

The NMRNN algorithm, like 

many deep learning algorithms, 

is tricky to interpret, making it 

challenging to comprehend 

how it generates its predictions. 

CNN-

LTSM [63] 

A dataset of raw lung auscultation 

sounds was used as the study’s 

data input. Data is gathered from 

patients suffering from various 
respiratory disorders. 

This study focuses on applying 

deep learning models for 

detecting respiratory diseases 

utilizing raw lung auscultation 
sounds. It emphasizes the 

significance of choosing 

suitable deep learning models 

for this task. 

Evaluating various deep 

learning models on both 

augmented and non-

augmented datasets offers a 
thorough analysis of various 

methods for diagnosing 

respiratory diseases. 

The study is constrained by the 

comparatively small dataset 

size, which can affect how 

broadly the findings can be 
applied. 

CNN [65] The study’s data input is a dataset 

comprising accelerometer and 

gyroscopic data. The information 
was gathered from 100 healthy 

individuals who simulated various 

breathing episodes. 

The wearable sensors and 

deep learning are combined to 

present a novel approach for 
classifying and detecting 

respiration patterns. 

The use of wearable sensors 

to collect data on respiration 

patterns, the deep CNN 
used for classification, and 

the high level of accuracy 

attained while classifying 

various respiration patterns. 

Using a limited sample size 

could affect how generalizable 

the findings are. 

CNNs [66] The study’s data input is a dataset 

of respiratory sound data. The 

information is gathered from 

patients suffering from various 
respiratory disorders. Fourier 

analysis is a mathematical 

approach for separating a signal's 

constituent frequencies. This can 

be used to visualize a signal’s 

spectrum, which can then be used 

to distinguish different sorts of 

sounds. 

This study proposed to create 

an augmented dataset. The 

authors first add synthetic 

noise to the original 
respiratory sounds. The 

sounds are then divided into 

four groups using a deep 

CNN: normal, wheezing, 

crackles, and both. 

The deep CNN model 

performed better due to the 

application of artificial 

noise augmentation, 
highlighting the value of 

augmented data in 

enhancing the robustness of 

deep learning models. 

The study needs to analyze the 

deep CNN model’s 

interpretability in detail, which 

may limit its clinical use. 
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3. DISCUSSION  

Both feature engineering and feature visualization are critical strategies for machine learning and 

deep learning classification for respiratory disorders. The process of changing raw respiratory signal data into 

features that are more informative and relevant to the classification task is known as feature engineering. 

Feature visualization is a method for comprehending the features utilized by machine learning classifiers. For 

respiration-related challenges, feature engineering is more significant in machine learning classification than 

in deep learning classification. This is because deep learning algorithms can automatically learn features 

from data. However, feature engineering can still be applied to improve deep learning classifier performance 

for respiration-related difficulties. Besides, feature visualization is a valuable tool for both machines  

learning and deep learning classification of respiration-related difficulties. It can assist in identifying the 

features that are most significant for the classification process as well as identifying any potential problems 

with the data. However, feature visualization is not as frequent in deep learning classification as it is in 

machine learning. 

In respiration classification, where the characteristics of the signals may differ significantly between 

individuals and even within the same individual over time, overfitting can be particularly problematic. Due to 

this variability, developing a machine learning model that generalizes well to novel, unexplored data may be 

challenging. The requirement for high-quality, labelled data to train the models effectively is another concern 

related to machine learning for respiration classification. Labelling respiration signals can be challenging, 

and labelling mistakes can introduce bias and impact how well machine learning models perform. The 

development and application of machine learning-based systems for respiration classification can be 

hampered by the time and expense of obtaining high-quality labelled data. In some clinical applications, 

where it is critical to comprehend how the model makes its predictions, machine learning models can be 

challenging to interpret. The ability of clinicians to make wise decisions based on the model’s outputs may be 

constrained due to the black-box nature of some machine learning models, which can make it difficult to 

pinpoint the specific features of the respiration signals driving the model’s predictions.  

Thus, deep learning is a better approach to classifying the respiration signal. Respiration signal 

classification can benefit significantly from deep learning, which has several benefits, including learning 

complex features, achieving high accuracy, scaling effectively, and being versatile. When it comes to 

respiratory signal classification, where the signals can have complex patterns and structures, deep learning 

models are especially advantageous because they can automatically learn complex features from raw data 

without manual feature engineering. When it comes to various tasks, deep learning models can perform at the 

cutting edge, including the classification of respiratory signals, which is essential for both diagnosis and 

treatment. Deep learning models are scalable for respiratory signal classification because they are simple to 

scale up to handle even larger datasets. Deep learning models can also be used for various signal 

classification tasks, such as the analysis of respiratory sounds, the monitoring of respiration rates, and the 

diagnosis of sleep apnea. The use of deep learning for respiration classification has some drawbacks. Some 

respiratory signal classification tasks can be challenging because deep learning models frequently need more 

data to train effectively. It is true if the data is limited and challenging to obtain. Deep learning model 

training can be computationally expensive, particularly for large datasets or complex models, and it may also 

call for specialized hardware or cloud computing resources. In addition, deep learning models can be 

challenging to understand because of their complicated and opaque internal workings. It can be a drawback 

in medical applications where it is crucial to comprehend how the model generates its predictions. 

 

 

4. CONCLUSION  

In conclusion, deep learning methods outperform machine learning algorithms for categorizing 

respiratory signals because they can automatically learn features from data, discover complicated correlations 

between features, and scale to enormous datasets. Deep learning classifiers, on the other hand, do not require 

as much feature engineering as machine learning classifiers, can be more accurate for jobs involving 

complicated interactions, and can be trained on huge amounts of respiratory signal data. The respiration 

signal is a complex signal that includes a variety of data on respiratory function. The general state of one's 

respiratory system can be evaluated using simple respiratory activity indicators like respiratory rate, 

inspiratory time, and expiratory time. Specific respiratory illnesses can be identified using more intricate 

patterns and structures, like Cheyne-Stokes respiration and Biot's respiration. Healthcare workers can more 

accurately identify and treat respiratory problems by comprehending these patterns and structures. Deep 

learning models are created to automatically learn data representations that can capture intricate patterns and 

structures. CNNs, a popular kind of deep learning model and effective at analyzing signals like respiration 

signals, are one example. Because the features of interest in respiration classification may be localized to 

parts of the signal, CNNs are built to detect local patterns in the input data automatically. Compared to 

machine learning algorithms, deep learning algorithms are more complicated and require more training data. 
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The advantages of deep learning algorithms, however, outweigh these difficulties. Complex correlations 

between the features can be learned using deep learning algorithms, which may improve performance. They 

can also be used to personalize treatment and remotely monitor patients, as well as to diagnose disorders that 

are challenging to diagnose using conventional techniques. Deep learning algorithms are consequently 

growing in popularity in the area of medical diagnosis. 
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