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 The use of deep learning algorithms for the classification of crop diseases is 

one of the promising areas in agricultural technology. This is due to the need 

for rapid and accurate detection of plant diseases, which allows timely 

measures to be taken to treat them and prevent their spread. One of them is 

to increase productivity and maintain land quality through the timely 

detection of diseases and pests in agriculture and their elimination. 

Traditional classification methods in machine learning and algorithms in 

deep learning were compared to note the high accuracy in detecting pests 

and crop diseases. The advantages and disadvantages of each model 

considered during training were taken into account, and the Inception V3 

algorithm was incorporated into the application. They can monitor the 

condition of crops on a daily basis with the help of new technology-

applications on gadgets. Aerial photographs used by research institutes and 

agricultural grain centers do not show the changes that occur in agricultural 

grains, that is, diseases and pests. Therefore, the method proposed in this 

paper determines the types of diseases and pests of cereals through a mobile 

application and suggests ways to deal with them. 
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1. INTRODUCTION 

Thanks to the development of new technologies, with the help of drones in agriculture, farmers can 

access information about the state of the field and each specific crop. But private farmers, and small 

agricultural centers do not have the opportunity to purchase drones. Therefore, with the help of an accessible 

mobile application and for small plots owned by individual farmers, the proposed method is effective.  

90,893 images were trained on a pre-trained database. Among them, for example, corn [1], wheat [2],  

oats [3], beans [4], peas [5], and other grains and their common diseases and pests have been considered. In 

this paper, the object of study is a deep learning algorithm for object and pattern recognition. The study aims 

to develop a cross-platform application that will determine what type and species a plant belongs to, as well 

as issue a certificate about it. This system provides for the main function of “determinant of plant diseases” 

according to a photo taken in real-time or stored in the gadget's storage. When developing an object 

recognition application, several important tasks had to be solved. The first task is to choose how to measure 

or calculate features, and the second task is related to the presentation of the resulting data. It is necessary to 
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select the maximum possible number of features for recognizable images, taking into account the complexity 

and accuracy of determining the result for each feature. 

Images in the database are not tied to the types of diseases and pests depending on climatic 

conditions. That is, many types of diseases and pests found in all possible grains have been studied. 

Improving objects [6]–[8] and increasing their quality in various applied tasks, in particular, in the field of 

agriculture, is one of the topical issues. Therefore, this paper considers a modified type of machine learning 

method aimed at improving reliability and reducing the number of errors. It has been observed that 

depending on the camera resolution of various gadgets, the image quality deteriorates when the image is 

enlarged. To solve this problem, machine learning methods were used to automate the scaling and 

enhancement of objects in images. The difference between this work from other works is the classification of 

the magnification result while maintaining image quality. 

Nikhitha et al. [9] developed an easy-to-use tool that recognizes the stage of the disease and 

classifies it accordingly. Researchers use only Inception V3, but in this work, a combination of methods 

(ESRGAN+ResNet52V2)+Inception V3 is used for classification to improve the accuracy of plant disease 

detection. MNet: An interconnected network [10] created and published a database consisting of 12,000 color 

images of India's top fruits, labeled as “good” and “poor” quality. By testing Inception V3 as the proposed 

framework on the most popular deep learning model, conflicts and results for Inception V3, FC_Inception 

V3, and MFC_Inception V3 would be obtained. Experimental results show that the MFC_Inception V3 

model achieved 99.92% accuracy. Based on the results achieved by these researchers, this work used the 

Inception V3 algorithm in combination with ESRGAN+ResNet52V2 to determine the classification accuracy 

of plant diseases. Ukwuoma et al. [11] use functional descriptions to implement the model and the problem 

of using deep learning to detect and classify fruits. The authors also implemented a deep learning model for 

fruit classification from scratch using the popular Fruits 360 dataset to help novice agronomists understand 

the role of deep learning in agriculture. 

 

 

2. METHOD 

Super high-resolution single image (SISR) is a computer vision task that reconstructs a high-

resolution (HR) image from a low-resolution (LR) image. Given that images taken from various sources such 

as gadget cameras, computers, and satellite images are not always high resolution. Therefore, improving the 

quality of images used to solve important problems, for example, identifying a plant disease, requires the use 

of new technologies. In this work, to detect plant diseases according to the architecture, which is shown in 

Figure 1, the enhanced super resolution generative adversarial network module (hereinafter ESRGAN 

[12]–[14]) based on the generative adversarial network (GAN) structure [15]–[17] Figure 1 was added. 

 

 

 
 

Figure 1. Enhanced super resolution GAN module architecture 

 

 

As method of convolutional neural networks (CNNs), the ResNet152V2 method was used, which 

makes it possible to improve images. As a result of the experiment, the quality of the image obtained by the 

ResNet152V2 method [18], [19] is significantly improved. Solving the problem of improving image quality 

using neural networks, the choice was made in favor of CNNs, as they are better than others at coping with 
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image enhancement tasks. Structured numerical data helps to train the model for further use, while deep 

learning does not require human intervention, when training data that has been divided for training, methods 

detect features on their own using layers and filters. The initial version 3 consists of symmetric and 

asymmetric building blocks, including convolutions, mean pooling, peak pooling, concatenation, elimination, 

and fully connected layers Figure 2. Batch normalization is widely used throughout the model and applied to 

activation inputs. 

With the help of modern technologies, problems that one has to face daily are solved. One of them is 

monitoring the condition of crop plants [20]. In this work, it is recommended to identify and prevent diseases 

during their growth to obtain a good harvest of fruits. To solve the tasks, machine learning methods were 

considered to improve the image and the Inception V3 [21]–[23] deep learning algorithm for classification by 

plant diseases [24]–[26]. 

 

 

 
 

Figure 2. Inception V3 convolutional neural network architecture 

 

 

3. RESULT AND DISCUSSION 

3.1.  Data analysis for plant disease classification 

Depending on the climatic conditions of each country, the types of diseases and pests found on crops 

may be different. Therefore, this work involves more than one region, the preliminary database includes 

currently known crops and types of their diseases. The training dataset contains 30,542 pre-trained image sets 

taken from the Kaggle open access database. Figure 3 shows healthy and diseased varieties of the most 

common crops, i.e., the affected leaf of wheat as shown in Figure 3(a), the affected leaf of rice as shown in 

Figure 3(b), the affected leaf of corn as shown in Figure 3(c), the healthy leaf of wheat as shown in  

Figure 3(d). Including wheat-5215, potatoes-4793, rice-3719, corn-3534, oats-3518, peas-1946, beans-1983, 

flax-3200, soybeans-1785, sugar beet-799. 

In this work, machine learning was performed on images of crops and their types of diseases by 

architecture, which is shown in Figure 1. During the experiment, the accuracy of the result when learning 

without improving the quality of images in the database was, on average, quite low, i.e., 85%. To improve 

image quality, in addition to the GAN model, the ResNet52V2 algorithm was trained, and the accuracy of the 

result obtained by retraining using the Inception V3 classification algorithm averaged 98% Table 1. 

 

3.2.  Implementing a mobile application with deep learning algorithms 

 To start the application, you need to select the type of image upload. Users can upload an image 

through the gallery or take a picture through the smartphone's cameras. Thus, an input image is introduced, 

which passes through the first trained GAN-based model, with the ESRGAN method, which performs the 

function of improving image quality as shown in Figure 4. After obtaining a high-quality image, the drawing 

is passed through a second trained CNN-based model with the Inception V3 method, which in turn performs 

classification to detect crop diseases such as wheat, rice and corn. After passing the models, a percentage 

prediction is eventually provided for any plant disease. 

Based on the experiment, 30542 sets of images were examined. To see the likelihood of disease 

development, the model was fitted with and without the ResNet152v2 method improvement. The original 

image has been pre-processed according to sample requirements. Figure 5 shows the learning curves for the 

Inception V3 algorithm, i.e., the accuracy plot in Figure 5(a) and the data loss plot for testing in Figure 5(b) 

assumed in this article. 
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Inception V3 was initially trained on a pre-trained dataset that contains 30542 images. The accuracy 

of deep learning when training with the Inception V3 method was 94%, and when testing it was 92%. 

According to this model, the losses during training were about 6%, and during testing -8%.  

 In Figure 6 shows the interface of the developed mobile application, that is, the definition of 

diseases of crops, namely the definition of diseases of wheat is shown in Figure 6(a) and rice is shown in 

Figure 6(b). Figure 6 shows the interface of the developed mobile application. The interface of the created 

mobile application is simple and clear to the user. The mobile application is designed for farmers. The user 

can upload and save any image and determine the crop and its status in real-time through the application. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 3. Original images of plant leaves (a) affected leaf of wheat, (b) affected leaf of rice, 

(c) affected leaf of corn, and (d) healthy leaf of wheat 

 

 

Table 1. The average accuracy of determining diseases of indoor and garden plants 
Source images Inception V3 (ESRGAN+ResNet52V2)+Inception V3 

Potatoes 85% 93% 
Rice 87% 95% 

Corn 84% 90% 

Oats 86% 95% 
Peas 87% 93% 

Beans 84% 90% 

Linen 87% 95% 
Soy 86% 93% 

Sugar Beet 89% 95% 

 

 

 
 

Figure 4. The architecture of the mobile application for plant disease detection 
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(a) (b) 

 

Figure 5. The result of learning Inception V3 (a) accuracy plot and (b) loss plot 

 

 

  
(a) (b) 

 

Figure 6. Definition of disease of crops (a) definition of diseases in wheat and (b) in rice  

 

 

4. CONCLUSION  

The data was pre-trained and trained with super-resolution advanced generative adversarial network 

models and combined with the ResNet152V2 CNN. A study with combined use of a CNN showed high 

accuracy rates. That is, the joint use of the ESRGAN algorithm with a CNN showed an average of 
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ESRGAN+ResNet152V2+Inception V3 94% accuracy than Inception V3 86%. In this work, 30,542 pre-

trained datasets of many common crop species and their diseases are included. As image classification 

methods, the performance of a deep learning method such as Inception V3 has been analyzed. Many 

scientific studies use the ESRGAN model to improve the image. In our work, a CNN was added to the 

existing ESRGAN model, and a better result was achieved than the Inception V3 deep learning method itself. 

Using a mobile application, the user can determine the type of crops and the presence of diseases in them 

from photographs stored in the gallery, or using a camera in real-time. In the future, taking into account the 

climatic conditions of the region, changes in the environment, and scientific innovations in the field of 

agriculture, we will include new types of crops and their diseases in the database. 
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