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 Heart disease (HD) accounts for more deaths every year than other illnesses. 

World Health Organization (WHO) assessed 17.9 million life losses caused 

by heart disease in 2016, demonstrating 31% of all international life losses. 

Three-quarters of these life losses occur in low and middle-income nations. 

Machine learning (ML), due to advanced precision in pattern recognition 

and classification, demonstrates to be in effect in complementing decision-

making and threat prediction from the huge number of HD data created by 

the healthcare sector. Thus, this study aims to develop a logistic regression 

model (LRM) for predicting the risk of getting HD in ten years. The study 

explores the different methodologies for improving the performance of base 

LRM for predicting whether a person gets HD after ten years or not. The 

result demonstrates the capability of LRM in predicting the risks of getting 

HD after ten years. The LRM achieves 97.35% accuracy with the recursive 

feature elimination and random under-sampling. This implies that the LRM 

can play an important role in precautionary methods to avoid the risk of HD. 
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1. INTRODUCTION 

Heart disease (HD) denotes numerous kinds of disorders affecting the normal functioning of the 

human heart [1], [2]. The different types of HD include coronary artery, which disturbs the supply of blood to 

the heart, vascular HD that affects how the valves function to control blood flow, cardiomyopathies that 

affect heart muscles, heartbeat turbulences (arrhythmias) that affect the electrical conduction and hereditary 

heart illness where the heart has physical flaws that progress before birth [3]. 

Most HD are avoidable and modest lifestyle adjustments such as dropping tobacco use, consumption 

of healthily, fatness, and keeping fit and timely treatment improves their diagnoses [4], [5]. However, 

classifying high-risk patients is challenging because of the malfunctioning nature of several influential risk 

causes such as diabetes, high blood pressure, and cholesterol. Because of these limitations, scientists have 

turned concerning up-to-date methods of machine learning (ML) to predict the HD. The application of ML 

gained much research consideration in recognition of a pre-defined set of labeled data and classification, due 

to its proven effectiveness in assisting decision-making and risk assessment from the large quantity of data 

produced by the healthcare industry on HD [6]–[8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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This research aims to develop logistic regression model (LRM) for recognizing whether a patient 

has a 10-year chance of developing HD by employing the Framingham dataset. Various performance 

evaluation metrics, such as accuracy, precision, sensitivity, recall, and receiver operating characteristics 

(ROC), are employed to validate the LRM. The LRM was tested on the Framingham HD dataset. Moreover, 

the proposed model use of feature selection, and resampling have not been studied. Most of the studies focus 

on the early prediction of HD risks. However, preventative measures play a significant role in predicting the 

risks of HD. This study aims to develop a model for predicting the risks of getting heart disease in the next 

ten years, which helps the patient with high risks of getting HD to take preventative measure. 

Machine learning-based classification algorithms have become one of the most widely researched 

problems in predictive analytics for preventative measures in the healthcare industry. For instance, logistic 

regression (LR) effectively predicts cardiovascular data given that the dataset is processed, and standardized 

[9], [10]. The study highlighted that the LR predicts heart disease risk with an accuracy score of 72.85%. 

While the study has suggested the use of data pre-processing (such as synthetic minority oversampling) and 

standardization as effective methods of improving the predicted power of the LR model, the obtained result is 

not accurate enough to predict the risk of heart disease precisely. 

Similarly, several studies [11], [12] proposed standardization (min-max scaling) for improving the 

63 performance of machine learning-based methods for predicting human HD. Compared to 64 the study  

[13], [14], the result achieved in the study was much more promising with a prediction accuracy of 96.72% 

using a support vector machine (SVM). The study has also proven that the performance of the machine 

learning method improves by an accuracy of 8.78%. Even though the study has achieved higher accuracy 

compared to the previous work, result 68 has still scope for improvement for more accurate prediction of HD 

risk. The LRM proves to have an accuracy score of 86.11% for coronary heart disease risk prediction  

[15], [16]. The accuracy of the LRM model improves when trained on features that are highly correlated to 

HD risk. Even though the proposed model was viable for the prediction of HD risks, the model has scope for 

future improvement. Additionally, research articles [17]–[19] have developed different machine learning 

systems for HD risk prediction. The HD risk prediction system was developed by employing boosting, and 

support vector machines for HD risk prediction [20], [21]. The boosting and SVM has been validated on the 

test set showing 99.75% accuracy. Although the boosting SVM has shown the highest accuracy in the 

literature, the model is not tested with other performance measures such as the receiver operating 

characteristic curve for testing the viability of the model’s performance for real-time use. 

The experimental result conducted in different studies [22]–[26] suggests that the performance of 

the machine learning method improves with feature selection, and preprocessing. During pre-processing, the 

missing values are replaced or removed, and the class distribution of the dataset is examined. Furthermore, 

the most significant features are selected, and the others are removed in the training phases. Some studies 

have employed ensemble methods, which combine multiple basic learning algorithms to improve HD risk 

prediction accuracy. However, the performance of ensemble methods can further be improved with feature 

selection, and by applying other data pre-processing techniques such as resampling the original dataset. 

From the findings of the review of literature, the researchers have found the following research gaps 

to be addressed by this study. The following research gaps were identified in the literature survey: i) The 

result achieved by the previous study has scope for improvement. Most of the studies applied accuracy for 

HD risk prediction, which is the major flaw in the literature, as accuracy cannot measure the effectiveness of 

the model on imbalanced datasets such as the Framingham HD risks dataset; ii) While it is shown that feature 

selection, and resampling as effective methods for improving the performance of machine learning models 

for HD risk prediction, simultaneously methods use of feature selection, and resampling have not been 

studied; and iii) Most of the studies focus on the early prediction of HD risks. However, preventative 

measures play a significant role in predicting the risks of HD. This study aims to develop a model for 

predicting the risks of getting heart disease in the next ten years, which helps the patient with high risks of 

getting HD to take preventative measure. The organization of the study is as follows: section 2 discusses the 

methodology, section 3 presents the results and discussion, and section 4 presents the conclusion and 

recommendation for further work. 

 

 

2. METHOD 

The HD dataset is available on the Kaggle repository, containing a continuing heart study on 

residents of Framingham, Massachusetts. The goal of the prediction is to recognize if a patient has a 10-year 

risk of future HD. The dataset includes over 4,133 records and 15 features. Each characteristic represents a 

potential HD risk problem. Risk factors include demographic, behavioral, and homoeopathic factors. The 

Framingham HD dataset containing different HD risk indicator variables such as current medical conditions 

total cholesterol level, systolic and diastolic blood pressure, body mass index, heart rate and glucose level. In 
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addition to the current medical condition, medical history such as hypertension, diabetes, and blood pressure 

medication. The HD dataset also contains behavioral variables such smoking status, and number of cigarettes 

smoked per day. Some demographic information such as age and sex are included in the dataset.  

The steps used to build the LRM for predicting heart disease in 10 years are discussed as follows. 

To begin, the HD dataset is acquired from the Kaggle repository. Secondly, the dataset is analyzed for 

missing values, the number of distributions in each class. Thirdly, the dataset is pre-processed with under-

sampling, and recursive feature elimination (RFE) to improve the benchmark LRM on heart disease risk 

prediction. Figure 1 presents the flowchart of the proposed model. 

The number of features associated with the risks of getting HD disease is indicated in Figure 2. As 

indicated in Figure 2, age is a highly correlated feature to the risks of getting HD in the next ten years. The 

other highly important features to the prediction of getting HD in the next ten years are the prevalence of 

hypertension, diastolic blood pressure, and diabetes. 

 

 

 
 

Figure 1. Proposed methodology 

 

 

 
 

Figure 2. HD feature correlation 
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3. RESULTS AND DISCUSSION  

The ROC curve scores of 7-fold stratified cross-validation on the dataset obtained by the LRM 

indicate that the LRM outperforms the under-sampled dataset compared to the RFE, and the benchmark 

dataset. The results indicate 85.13%, 87.85%, and 87.68% on the benchmark, under-sampled, and RFE 

respectively. However, the model achieves high accuracy on the benchmark imbalanced dataset; the 

distribution of the positive and negative classes is unequal. This study applied under sampling for balancing 

the class destitution of positive and negative classes. Thus, the under-sampling method achieves more ROC, 

and accuracy scores compared to the benchmark and RFE. Moreover, the results show improvements in the 

accuracy compared to previous research outcomes on a similar dataset. 

 

3.1.  Result of the benchmark dataset  

The performance of the proposed LRM on predicting the risk of getting HD after ten years has been 

tested on the benchmark Framingham dataset. Figure 3 indicates the 7-fold cross-validation receiver 

operating characteristics curve of the LRM on the benchmark dataset. The LRM model achieves higher ROC 

value with the 6-fold Figure 3 indicates. 

 

3.2.  Result of the balanced dataset  

In addition to the ROC analysis presented in section A, the LRM model is evaluated on the under-

sampled dataset. To resample the majority class, random under-sampling techniques are applied to the 

original benchmark dataset. The resampling does not show improvement in terms of classification accuracy. 

However, the ROC curve of the model has shown significant improvement. Thus, resampling and other data 

pre-processing such as the scaling dataset feature substantially improve the performance of LRM for 

predicting the HD risk of a patient. Figure 4 indicates the 7-fold cross-validation ROC curve of the LRM for 

predicting the risk of getting HD after ten years. 
 

 

  
 

Figure 3. ROC on original dataset 

 

Figure 4. ROC on under-sampled dataset 
 

 

3.3.  Result of the RFE dataset  

The top ten HD risk features or factors are selected by employing the RFE method. The LRM is then 

trained on the selected feature subset by the RFE. The top ten features for getting HD in ten years are 

demonstrated in Table 1. The 7-fold cross-validation receiver operating characteristics curve is used for 

performance measures to evaluate the LRM effectiveness for predicting the risk of getting HD in the next ten 

years. Figure 5 indicates the ROC for different folds of the LRM on ten years of HD risk prediction. 

 
 

Table 1. Top nine heart disease risk 
Feature  Rank  

Age  1 
Previous medication 2 

Stroke  3 

Diabetes  4 
High blood pressure 5 

Sex  6 

Income  7 
High cholesterol 8 

Mental health 9 
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Figure 5. ROC of the model with RFE 

 

 

4. CONCLUSION AND RECOMMENDATION FOR FUTURE WORK 

This study proposed LRM for the recognition of HD in the next ten years. The study applied 

different techniques of data pre-processing to increase the performance of the proposed LRM. The RFE 

techniques showed and confirmed that clinical features and risk factors such as age, previous medication of 

HD, Stroke, Diabetes, and high blood pressure are among the most important features that help in the 

prediction of the presence of HD risk from medical records. Cardiologists can take advantage of the 

investigative data analysis conducted on the dataset to show correlations and relationships between patients’ 

data. 

HD is a foremost health concern of the world, and accurate prediction of the risk of developing HD 

can aid in preventive measures and personalized care. This paper explored the application of logistic 

regression for predicting the risk of developing heart disease in ten years. The performance of LRM depends 

on the nature of the data representing the HD under consideration. Even though the collected HD dataset has, 

the risk factors for predicting HD, with a set of features, under-sampling, and features selection with RFE 

potentially improving the prediction results of LRM. In future work, we plan to apply other machine-learning 

approaches to different HD datasets. We also plan to deploy the model with user interfaces application to 

allow medical experts to validate the model for real-world application. 
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