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 A humanoid robot called BarelangFC was designed to take part in the 

Kontes Robot Indonesia (KRI) competition, in the robot coordination 

division. In this division, each robot is expected to recognize its opponents 

and to pass the ball towards a team member to establish coordination 

between the robots. In order to achieve this team coordination, a fast and 

accurate system is needed to detect and estimate the other robot’s position in 

real time. Moreover, each robot has to estimate its team members’ locations 

based on its camera reading, so that the ball can be passed without error. 

This research proposes a Tiny-YOLO deep learning method to detect the 

location of a team member robot and presents a real-time coordination 

system using a ZED camera. To establish the coordinate system, the distance 

between the robots was estimated using a trigonometric equation to ensure 

that the robot was able to pass the ball towards another robot. To verify our 

method, real-time experiments was carried out using an NVDIA Jetson NX 

Xavier, and the results showed that the robot could estimate the distance 

correctly before passing the ball toward another robot. 
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1. INTRODUCTION 

Humanoid robots, i.e., robots resembling human beings, have developed rapidly in recent years. 

Many researchers have developed these kinds of robots for various purposes, such as learning assistance for 

primary education [1], clinical applications [2], [3], playing games [4], [5], assisting the elderly [6], and even 

playing soccer. Humanoid robots have been developed to play football in the same way as human beings, 

such as passing the ball to a nearby player, kicking the ball towards the goal, and recognizing other team 

members on the field in real time. In order to allow a robot to play football on a field, we need to consider the 

robot's vision and coordination strategies. 

Numerous researchers have proposed several methods of achieving a vision system for detecting an 

object. As reported previously, we can forward a modest object detection system using CVblobs and the 

Hough circle method (CBHM) to detect a white ball on the field. Another method for detecting objects was 

introduced in [7], [8]; Maiettini et al. [7] used a convolutional neural network (CNN) to train a network in an 

end-to-end manner on larger datasets with 2D bounding objects, while in [8], a CNN was used to predict the 

class of an object from the proposed region. Aslan et al. [9] introduced semantic segmentation algorithms to 

a simulation and compared the accuracy, segmentation performance, and number of parameters. A year later, 

they combined a semantic algorithm with deep reinforcement learning (DRL) to recognize an object moving 

toward the robot [10].  

https://creativecommons.org/licenses/by-sa/4.0/
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In the domain of vision detection algorithms, some studies have used a fast and accurate detection 

system called you only look once (YOLO). This method can process images for real-time applications at a 

rate of 45 frames per second (FPS). The YOLO algorithm was later extended to YOLOv2, which could 

predict object classes without the need for labeled detection data. Redmon and Farhadi [11] then introduced 

YOLOv3, and presented results that were more accurate from a model that was three times faster than solid 

state drive (SSD). Another object detection method called XNOR-Networks could estimate the convolutions 

using a primary binary operation. In our previous work, we adapted this network and combined it with 

YOLOv3 to detect the ball and goal, using a model where the layer configuration resembled the Tiny-YOLO 

and the model was run on an NVIDIA Jetson TX1 [12].  

Another important aspect of developing a humanoid robot for soccer playing is robot localization. 

This helps the robot to move automatically across the field to get the ball, pass it to other team members, and 

kick it towards the goal. In recent years, many methods of robot localization have been developed, and 

particularly for humanoid robots. Fourmy et al. [13] proposed a visual-inertial navigation system to localize a 

robot in a 3D indoor environment by employing sensors such as inertial measurement unit (IMU), coders, 

vision, and/or light detection and ranging (LiDAR). Another popular localization algorithm is simultaneous 

localization and mapping (SLAM), which has been implemented in different ways; for example, 

Raghavan et al. [14] combined the state-of-art odometry with mapping based on LiDAR data and inertial 

kinematics, while Zhang et al. [15] implemented a graph-based segmentation from RGB-D point clouds to 

achieve robust, dense RGB-D environment reconstruction. In [16], an RGB-D camera was combined with a 

depth descriptor to track features even in a sequence with seriously blurred images, and the scheme in [17] 

used odometry data acquired from the fusion of visual and robot odometry information. A Kinect sensor can 

also be used for robot localization, as described in [18], in which a depth map was used to extract the location 

and a global planning algorithm was applied to understand the surrounding environment. In addition to 

localization, a fuzzy Markov decision process (FMDP) can also be used for path planning for robot 

localization [19]. Moreover, Monte Carlo localization (MCL) can be considered in order to achieve robot 

localization. Hartfill [20] developed an MCL scheme based on a 2D RGB image to retrieve the localization 

information and evaluate it in simulation. Dalmasso et al. [21] used a Monte Carlo tree search (MCTS) to 

decentralize one robot with human to understand the location.  

In recent research on robot localization, the robot’s self-position on a global map has been estimated 

based on its sensor measurements. However, self-localization is not sufficient for a typical robot soccer 

competition, as team coordination is required. In addition to estimating its self-position, the robot must 

estimate the locations of the ball, the goal, and the other robots on the global map. In addition, the position 

estimation of the object must be carried out using a sensor mounted on the robot, without relying on an 

unstable communication system. This work focuses on utilizing the results of object detection to estimate the 

location of a team member robot. The estimated location of the other robot is used as input to the 

coordination system. For object detection, we use Tiny-YOLO, a deep learning architecture similar to the one 

described in [22], which was run on an embedded computer (NVIDIA Jetson Xavier NX). The object 

detector recognizes the ball, the goal, and opponent/team member robots via the vision sensor. In order to 

locate the other robots, we calculate the proponent distance using a ZED camera [23], [24]. We then estimate 

the robots’ locations using a simple trigonometric equation. 

 

 

2. CONFIGURATION OF BARELANGFC  

Our BarelangFC humanoid robot is equipped with 20 servo motors to generate motion for the joints 

with a total of 20 degrees of freedom (DOF). Of these, the legs have 12 DOF, each arm has three DOF, and 

the neck has two DOF. The design of the robot is depicted in Figure 1 in 3D and 2D, and its dimensions are 

710.22 mm in height and 267.74 mm in width. Each part of the robot was made of aluminum alloy and 

produced using a CNC machine. Prototypes of the robot are illustrated in Figure 2, where Figure 2(a) depicts 

a magenta robot and Figure 2(b) a cyan robot. These two prototypes formed the objects of the experiment 

carried out to verify the robot’s detection and measurement system while passing the ball on the field. A 

stereo camera (ZED camera) was used for the robot vision system and mounted on the top joint, while an 

NVIDIA Jetson NX Xavier was chosen as the main processor.  

A block diagram of the system can be seen in Figure 3, and involves several stages: 

a. The robot is activated by the strategy button to move, following the strategy that has been installed. It 

then collects data from the ZED camera and processes the strategy and image data in the Jetson Xavier 

NX. The outputs, which are the detected team member robot and its location, are then used to guide the 

movement of the robot. 

b. The motion controller handles the movement of the robot, and uses the Lua scripting language. 

c. The servo controller sends the signal to each servo motor to move following the trajectory given by the 

main controller. The specifications of the servo controller and servo motor are summarized in Table 1. 
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Figure 1. Mechanical design of the BarelangFC humanoid robot 

 

 

  
(a) (b) 

 

Figure 2. Prototypes of BarelangFC, showing (a) the magenta robot and (b) the cyan robot 

 

 

 
 

Figure 3. Block diagram of the BarelangFC robot system 
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Table 1. Specifications of the actuators and servo controller 
Category Description Data 

Actuator MX-64 
(arm) 

Stall torque 
No load speed 

Resolution [pulse/rev] 

6.0 Nm 
63 rpm 

4096 

Actuator MX-106 
(leg) 

Stall torque 
No load speed 

Resolution [pulse/rev] 

8.40 Nm 
45.0 rpm 

4096 

Servo controller OpenCR Microcontroller STM32F746ZGT6/32-bit ARM Cortex®-M7 with FPU (216 MHz, 462DMIPS) 

 

 

3. COORDINATION SYSTEM ESTIMATION 

The main purpose of developing the BarelangFC humanoid soccer robot was to enable it to play 

football like a human being. A coordination system for soccer playing needs to allow the robot to pass the 

ball toward the goal or a team member. Hence, the object recognition system on the robot side must 

recognize the other robots on the field. In order to establish the coordination system, several processes are 

involved, as shown in Figure 4. It can be seen from the figure that three steps are necessary before the 

position of the robot is estimated for the coordination system: object detection, distance measurement, and 

estimation of the position of the team member robot. 

First, the ZED camera is used to collect an image of the conditions on the field. After this, the data 

collected from the camera is fed to the Tiny-YOLO to carry out object detection, in order to identify the color 

of the other robot and to generate an object bounding box to obtain the coordinates of the object. The  

Tiny-YOLO detects four classes (the ball, the goal, opponent robots, and team member robots). The 

architecture of Tiny-YOLO can be seen in Figure 5, and consists of seven convolution layers and six  

max-pooling layers. The max-pooling layers extract the image features from the depletion layer. We used the 

real number of tensors in the convolutional layer. We then reduced the spatial input number, and then 

collected the biggest number from the input number. Based on this, we could identify the coordinates of each 

object represented in the camera frame. 

 

 

 
 

Figure 4. System for estimating the position coordinates of the robot 

 

 

 
 

Figure 5. Architecture of the Tiny-YOLO system 

 

 

The object coordinates generated by Tiny-YOLO were then used as the input to the distance 

measurement process. In order to calculate the distance to the team member robot, we used the principle shown 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 6926-6939 

6930 

in Figure 6. We used a stereo ZED camera, consisting of two cameras installed in parallel, and computed the 

depth information between the images produced by each focal. The depth information was then calculated from 

triangulation (pre-projection) from the non-distorted rectified camera’s geometric model, as shown in Figure 6. 

The depth points in Figure 6 are denoted as Z, and are determined using (1), where f represents the focal length 

of the camera, a is the baseline distance, and 𝑥𝑖𝑙 − 𝑥𝑖𝑟 is the disparity value (d) [23]. 

 

𝑍 =
𝑓𝑎

𝑥𝑖𝑙−𝑥𝑖𝑟
 (1) 

 

An illustration of the position and angles obtained from the ZED camera can be seen in Figure 7. 

Figure 7(a) shows the angles and coordinates from the ZED camera, while Figure 7(b) depicts the distance 

estimation between two points of interest and the disparity value (d) for the object that has been detected. To 

determine the X, Y, and Z coordinates from any reflected point, we used (2) to (4) [24]. The parameter a 

denotes the fixed distance between the two cameras. In this case, the distance is 20 cm, and the values of B, 

C, and β are the angles of objects detected generated from the camera. The ZED camera used in this research 

is capable of capturing the two object references in real time, as shown in Figure 7(b). This means that 

distance measuring can be carried out when coordinate object detection penetrates the overlapping view 

[distance dan size measurement] as shown in Figure 7(b). 

 

 

 
 

Figure 6. Triangulation principle and geometric model used with the ZED camera 

 

 

  
(a) (b) 

 

Figure 7. Diagrams showing (a) the coordinates and angles generated by the ZED camera and (b) distance 

estimation measurements from the position and point of interest of the ZED camera detection generation 
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The estimation of the disparity 𝑑 can be obtained from (5), and can be used to monitor the 

displacement of the object in a real-time situation [24]. In this work, the results for the displacement d were 

used as an estimate of the Distance measurement to obtain the (x, y) position of the robot on the field. 

 

x = 𝑎
sin𝐶∗sin𝐵

sin(𝐵+𝐶)
 (2) 

 

𝑦 = 𝑎 (
1

2
−

sin𝐶∗cos𝐵

sin(𝐵+𝐶)
) (3) 

 

𝑧 = 𝑎 (
sin 𝐶∗sin 𝐵∗sin 𝛽

sin(𝐵+𝐶)
) (4) 

 

𝑑 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 (5) 

 

𝑋𝑝𝑜𝑠 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑐𝑜𝑠(𝛼) (6) 

 

𝑌𝑝𝑜𝑠 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑠𝑖𝑛(𝛼) (7) 

 

In contrast to our previous work [25], [26], we utilized a distance value drawn from the 

measurement calculation from the ZED camera (Distance), and combined it with the heading angle from the 

IMU sensor to estimate the position of the robot. In order to determine the X and Y positions (𝑋𝑝𝑜𝑠, 𝑌𝑝𝑜𝑠), 

as illustrated in Figure 8, a simple triangular equation was applied. The variable 𝛼 in Figure 8 represents the 

angle that is generated from the robot heading. The X and Y positions (𝑋𝑝𝑜𝑠, 𝑌𝑝𝑜𝑠) were obtained using (6) 

and (7), where the value of Distance was generated based on the distance estimation measurement from the 

ZED camera. To implement this calculation in the real-time application, we used a grid layout consisting of 

54 squares with dimensions 100×100 cm on the field, as illustrated in Figure 8. The magenta and cyan dots in 

Figure 8 represent the robots’ positions; when the distance estimation has been made, the magenta robot 

estimates the position of the cyan robot and passes the ball to it. As illustrated in Figure 8, the magenta robot 

stands between squares 11 and 12, while the cyan robot is positioned between squares 27 and 28. 

 

 

 
 

Figure 8. Estimation of the X and Y positions in the field based on a grid 

 

 

4. RESULTS 

In this section, we report the results of the experiments carried out to understand the performance of 

the Tiny-YOLO on a NVIDIA Jetson NX Xavier. All of the experiments were carried out in real time. First, 

we tasked the robot to detect team members by detecting the color of the body. As shown in Figure 9, the 

robot was commanded to detect two team members, one of which was colored cyan and the other magenta. 

The system detects the cyan robot with a dark purple bounding box and the magenta robot with solid red. 

From the results in Figure 9(a), we see that the robot recognized both team members with a frame rate of  

30 FPS for detection and 29 FPS for capturing the image. Figure 9(b) shows the results when the system was 

commanded to detect the magenta robot alone on the field, which was achieved with detection and capture 

rates of about 29 FPS. We placed the robot away from the front line and near the goal area for this 

experiment. 
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(a) (b) 

 

Figure 9. Results for the detection and capture of robots of different colors (a) cyan and magenta and 

(b) magenta robot alone 

 

 

In order to understand the performance of the object detection method, we also tasked the robot to 

detect the cyan and magenta robots, as representations of team member and opponent robots, while varying 

the background lighting. The results of this experiment are illustrated in Figures 10 and 11. In this 

experiment, we altered the light conditions from 125.8 lux (for the brighter light) and 0.45 (for the darkest). 

Figures 10(a) and 11(a) show the results for 20 lux, Figures 10(b) and 11(b) show 4.3 lux, Figures 10(c) and 

11(c) 0.45 lux and Figures 10(d) and 11(d) 125.8 lux. We also set the position of the robot differently, as 

illustrated in Figures 10(d) and 11(d), from the middle to the corner, to verify how well our system could 

detect the robot in different positions. More detailed data on these two pictures are presented in Table 2, 

where the highest confidence score for detection of the cyan robot was 99.50% under illumination of  

125.8 lux and 96% for 0.45 lux. 

The highest score for the magenta robot was 98% and the lowest was 80%, under the same levels of 

illumination. From Table 2, it can be seen that the cyan robot had a higher confidence score than the magenta 

robot. To verify these results, we generated a precision-recall curve (PR Curve), as shown in Figure 12. We 

generated an interpolation of the PR curve based on 101 points, and showed that the cyan robot yielded better 

performance than the magenta robot.  

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 10. Results from the detection system for the cyan robot for (a) very bright lighting, (b) low light, 

(c) very low light, and (d) robot placed at a different position 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Tiny-YOLO distance measurement and object detection coordination system for the … (Susanto) 

6933 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 11. Results from the detection system for the magenta robot for (a) very bright lighting, (b) low light, 

(c) very low light, and (d) robot placed at a different position 

 

 

Table 2. Illumination and confidence scores for the results in Figures 10 and 11 
Robot name Figure Robot position Illumination value (LUX) Confidence score (%) 

Cyan robot Figure 10(a) In the middle 20.0 99 

Figure 10(b) In the middle 4.3 96 

Figure 10(c) In the middle 0.45 96 
Figure 10(d) At the corner 125.8 99.50 

Magenta robot Figure 11(a) In front of goal post 20.0 90 

Figure 11(b) In front of goal post 4.3 89 
Figure 11(c) In the middle 0.45 80 

Figure 11(d) At the corner 125.8 98 

 

 

 
 

Figure 12. PR curve interpolation for robot detection 

 

 

Another consideration was whether our robots could measure the distance from each other while 

passing the ball on the field. To answer this question, we carried out experiments in other scenarios; as seen 

in Figure 13, we experimented with measuring the robot distance with a maximum distance of about 8 m, the 

same as the length of the field. The figure shows that the robot was able to detect the cyan robot and measure 
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its distance at about 158.75 cm with capture and detection rates of 16 FPS and 15 FPS, respectively, and the 

system was also able to generate the coordinates for the other robot that was measured and detected. We 

carried out this experiment several times under different conditions, and the results are given in Table 3. An 

average error of about 0.75% was found in the distance estimation. A comparison with the results from other 

authors shows that in [27], the researchers implemented a CNN method and reported an average error of 

4.7% in estimating the robot distance, while Pathi et al. [28] used a Euclidean method with an RGB camera 

and achieved an average distance error of 3.5%. Sudin et al. [29] carried out distance estimation using an 

analytic geometric estimation (AGE) and produced an average error of 1.35%. Vajgl et al. [30] estimated the 

distance between cars in a parking situation using a YOLOv3 with an average error of 0.46%; however, this 

work did not involve moving objects such as mobile or humanoid robots that need to detect an object directly 

in a real-time situation.  

For the position estimation, we experimented by commanding the robot to move to grids 34, 35, and 

36, as shown in Figure 14, before passing the ball. The estimation results from the ZED camera can be seen 

in Table 4, and the results of this experiment can be seen in Figure 15. Figure 15(a) shows that the robot 

stayed in grid 34 and then kicked the ball, whereas Figures 15(b) and 15(c) display the robot’s position in 

grid 35 before kicking the ball, and Figure 15(d) depicts the robot’s position in grid 36. This grid position 

was set as the starting point that the robot that should reach before kicking the ball. 

 

 

  
 

Figure 1. Results of measuring how much farther the robot’s distance can be detected using a roulette ruler 

 

 

Table 3. Distance measurement statuses for different initial conditions of the robot 
Robot 

position 

Illumination 

values (LUX) 

Actual distance (cm) Estimated distance (cm) Error (%) Robot heading (°) Status 

Right side 125.8 655 653 0.31 −39 Detected 
125.8 330 329 0.30 −42 Detected 

125.8 317 315 0.63 −31 Detected 

125.8 345 342 0.87 −3 Detected 
Left side 125.8 359 356 0.84 −19 Detected 

125.8 420 417 0.71 −9 Detected 

125.8 530 526 0.75 4 Detected 
125.8 440 433 1.59 −10 Detected 

 

 

The aim of this research was to create a robot to take part in the Kontes Robot Indonesia (KRI) 

contest, held once a year. In 2021, one of the themes of the competition was to command the robot to pass the 

ball in the same way as a human playing soccer, on the field shown in Figure 16 with a length of 8 m and a 

width of 5 m. The rule was that the robot should chase the ball on the field, and then pass it through the 

middle line on the field to a team member. The experiment carried out in this work therefore aimed to verify 

that our method could achieve cooperation while playing soccer. As can be seen from Figure 17, the cyan 

robot first passed the ball to the middle line of the field, and the magenta robot then chased the ball and 

kicked it to the other side of the line until it reached the goal. The performance of our robots in the 

competition can be watched in [31] minutes 48:38 on the BarelangFC side. The real test in the competition 

showed that our robot could pass the ball very well in cooperation with another robot. 
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Figure 14. Grid positions used by the robot to pass the ball 

 

 

Table 4. Results for robot movement coordinates and estimates generated from the ZED camera 
Robot position Coordinate estimation Coordinates from ZED camera 

Grid Coordinates (x, y) (z, x, y) 
34 100, 50 98, 77 400, 340, 212 
35 100, 150 93, 167 450, 345, 200 
36 100, 250 91, 272 500, 333, 216 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 15. Position of the ball after being kicked by the robot (a) and (b) the robot stays in grid 36 and detects 

the position of the ball, (c) the robot moves to grid 35, and (d) the robot moves to grid 34 to reach the ball 
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Figure 16. Schematic of the field used in the robot competition 

 

 

   

   

   
 

Figure 17. Result of robot coordination in the field as the cyan robot passes the ball toward the magenta robot 
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5. CONCLUSION  

This paper has presented an implementation of a deep learning method called Tiny-YOLO in which 

an NVIDIA Jetson NX Xavier was used to detect the ball, the goal, and the allay simultaneously. Moreover, 

robot cooperation was achieved during the competition. Our Tiny-YOLO employed approximately 512 to 

1,024 convolutional filters, which generated a significant number of parameters, leading to large memory 

requirements and a limited detection area with a slow response. Although these drawbacks could not be 

avoided, we overcame this problem by using a NVIDIA Jetson NX Xavier, with outstanding results, by 

detecting and estimating the object distance in a parallel manner using a ZED camera. All of the experiments 

were carried out on a real-time application. To verify the proposed object detection system, we altered the 

environmental light over a range from 4.3 to 125.8 lux, and found that the confidence score for the cyan robot 

was higher than for the magenta robot. We also estimated the robot distance under illumination of 125.8 lux 

with different angles of robot headings for both the magenta and cyan robots. All of these experiments were 

applied to the competition, and it was shown that the robot could recognize a team member and pass the ball 

toward it. However, when passing the ball to the other robot, an error sometimes arose, because the ball was 

moving away from the landmarks after being kicked by the robot. In future work, we will therefore focus on 

how to allow the robot to chase a ball that is moving away from the original landmark without error. 
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