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 The region of Beni Mellal, Morocco is heavily dependent on the agricultural 

sector as its primary source of income. Accurate temperature prediction in 

agriculture has many benefits including improved crop planning, reduced 

crop damage, optimized irrigation systems and more sustainable agricultural 

practices. By having a better understanding of the expected temperature 

patterns, farmers can make informed decisions on planting schedules, protect 

crops from extreme temperature events, and use resources more efficiently. 

The lack of data-driven studies in agriculture impedes the digitalization of 

farming and the advancement of accurate long-term temperature prediction 

models. This underscores the significance of research to identify the optimal 

machine learning models for that purpose. A 22-year time series dataset 

(2000-2022) is used in the study. The machine-learning model auto-

regressive integrated moving average (ARIMA) and deep learning models 

simple recurrent neural network (SimpleRNN), gated recurrent unit (GRU), 

and long short-term memory (LSTM) were applied to the time series. The 

results are evaluated based on the mean absolute error (MAE). The findings 

indicate that the deep learning models outperformed the machine-learning 

model, with the GRU model achieving the lowest MAE. 
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1. INTRODUCTION 

Temperature forecasting is critical for early warnings of weather impacts on numerous facets of 

human living. For example, temperature forecast is critical in agriculture. On one hand, low temperatures 

restrict water intake due to lower water viscosity and impede the photosynthetic process. On the other hand, 

warmth promotes vegetation development by increasing water and nutrient intake as well as total plant 

growth. It is clear that plant development and soil temperature are inextricably linked [1], [2]. Therefore, 

accurate temperature forecasts can be very helpful in agriculture 4.0 [3].  

Traditional theory-driven numerical weather prediction [4] systems face various hurdles [5], such as 

an insufficient understanding of physical principles and difficulties extracting valuable knowledge from a 

flood of recorded observations. The successful integration of deep learning techniques, driven by data, has 

been observed across several industries including natural language processing [6], autonomous vehicles [7] 

[8], and fraud detection [9], [10]. The proficiency of deep learning in discovering intricate patterns in data 

and making accurate predictions results in its widespread adoption in these sectors. We wish to extend this 
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success further in favor of agriculture [11], [12] through weather prediction, temperature forecast in 

particular, and try to improve the accuracy of the weather forecast obtained in our previous work [13].  

The main approaches in the literature range from classical methods to the more advanced machine 

learning and deep learning approaches [14]. For instance, Yalçın [15] proposes a deep hybrid neural network-

based weather forecasting technique using time series. The suggested model trains and predicts the essential 

parameters for weather forecasting such as temperature using a hybrid long short-term memory (LSTM) 

convolutional neural network (CNN) model. According to the results obtained with the proposed method, the 

mean absolute percentage error (MAPE) value for temperature is 1.21. In study [16], the seasonal auto-

regressive integrated moving average (SARIMA) and the Prophet model were used to forecast the air 

temperature. The Prophet model outperforms the SARIMA model in terms of accuracy, with a root mean 

square percent error of 3.2%. In research [17], LSTM used to estimate the sea surface temperature anomalies 

based on the previous year's sea surface temperature anomalies. The LSTM model is evaluated using a time 

series containing 40 years, the model yields an error of 0.036, proves capable of predicting temperature 

anomalies, and has mean absolute error (MAE) of 0.14. Local weather data is used in another study [18] as 

input variables in greenhouses. The prediction accuracy of the random forest model is found to be better than 

the support vector machine and multiple linear regression (MLR) models for minimum temperature 

predictions. Deep learning models, such as the GRU and LSTM models, had a higher prediction performance 

than the generalized machine learning models. The GRU model has the best prediction performance overall, 

with an average R2 value 5.38% higher and root mean squared error (RMSE) 44.34% lower than the MLR 

model. Study [19] presents a new method for temperature forecasting using a convolutional recurrent neural 

network (CRNN), a combination of convolutional neural network and recurrent neural network (RNN). The 

model utilizes historical data to learn time and space correlations of temperature changes. Results of testing 

the CRNN model with daily temperature data from China between 1952 and 2018 show a prediction error of 

0.907 °C. In a different study [20], a hybrid SARIMA-LSTM model is developed to improve air temperature 

forecasting accuracy. The temperature series is decomposed into trend, seasonal, and residual components 

using seasonal-trend decomposition. SARIMA is used to predict trend and seasonal components, while 

LSTM is used to fit residual components. The prediction results of both models are combined to obtain the 

final prediction result. Evaluation of the model is performed using RMSE, MAE, MAPE, and Kupiec index. 

Results show that the SARIMA-LSTM hybrid model is more accurate than single models and other 

combination models, with an improvement of 10% to 27.7%.  

In this research, our objective is to evaluate the performance of four distinct algorithms namely 

SimpleRNN, LSTM, GRU, and ARIMA in forecasting temperature using a daily incremented time series 

from 2000 to 2022. We aim to determine the most suitable ARIMA model and juxtapose its performance 

with the well-fitted RNN models. Given the inherent properties of all stated models, we anticipate that RNN 

models, specifically LSTM and GRU, will surpass the ARIMA model in temperature prediction because of 

their capacity to capture time series data dependencies. 

 

 

2. METHOD 

2.1.  SimpleRNN 

SimpleRNN is the most basic technique for a neural network to retain information over time. The 

information is saved in the hidden variable h and is updated each time newer inputs are received. The hidden 

variable's output can be computed using the time distributed component [21]. 

 

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏) (1) 

 
𝑦𝑡 = ℎ𝑡 (2) 

 

The hidden state ℎ𝑡 and output 𝑦𝑡  are important variables in RNNs. ℎ𝑡 refers to the “hidden state” and is the 

output of the RNN at time step t. It is computed by taking the dot product of the previous hidden state (ℎ𝑡−1), 

the input at time step t (𝑥𝑡), and a bias term (b) and passing the result through a sigmoid function (σ). The 

output y𝑡 is equal to the hidden state ℎ𝑡. 

 

2.2.  Long short-term memory 

Hochreiter and Schmidhuber [22] propose the LSTM cell to address the issue of long-term 

dependence. They boost the standard recurrent cell's remembering capacity by putting a “gate” into the cell. 

The LSM model is displayed in (3)-(7). 

 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝐶𝑡−1) (3) 
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𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝐶𝑡−1) (4) 

 
𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝐶𝑡−1) (5) 

 
𝐶𝑡 = 𝑓𝑡  ⊙  𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1) (6) 

 
ℎ𝑡 = 𝑜𝑡  ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (7) 

 

where 𝑖𝑡 is the “input gate” variable, which controls how much of the new input (𝑥𝑡) to use in updating the 

cell state, 𝑜𝑡 is the “output gate” variable, which controls how much of the cell state (𝐶𝑡) to use in generating 

the output, 𝐶𝑡 is the “cell state” variable, which stores the current hidden state of the LSTM, ℎ𝑡 is the “hidden 

state” variable, which is the output of the LSTM at time step 𝑡, All these variables are computed from the dot 

product of input weight matrix 𝑊𝑥, hidden weight matrix 𝑊ℎ, and bias term. The variables are updated using 

the sigmoid function (𝜎) and tanh function (𝑡𝑎𝑛ℎ). 

 

2.3.  Gated recurrent unit 

The GRU RNN model reduces the gating signals of the LSTM RNN model to two. The update gate 

𝑧𝑡 and the reset gate 𝑟𝑡 are the two gates. The GRU RNN model is displayed in (8)-(11) [23]. 

 

𝑟𝑡 = 𝜎(𝑊𝑟ℎℎ𝑡−1 + 𝑊𝑟𝑥𝑥𝑡 + 𝑏𝑟) (8) 

 
𝑧𝑡 = 𝜎(𝑊𝑧ℎℎ𝑡−1 + 𝑊𝑧𝑥𝑥𝑡 + 𝑏𝑧) (9) 

 
ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ̃ℎ(𝑟𝑡  . ℎ𝑡−1) + 𝑊ℎ̃𝑥 𝑥𝑡 + 𝑏𝑟) (10) 

 
ℎ𝑡 = (1 − 𝑧𝑡). ℎ𝑡−1 + 𝑧𝑡  . ℎ̃𝑡    (11) 

 

The 𝑟𝑡 and 𝑧𝑡 terms represent the “reset” and “update” gates, respectively. These gates are used to control the 

flow of information from the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡 into the current hidden state 

ℎ𝑡. The 𝑊𝑟ℎ, 𝑊𝑟𝑥, 𝑊𝑧ℎ, and 𝑊𝑧𝑥 terms are weight matrices that are used to transform the previous hidden 

state and current input. 𝑏𝑟  and 𝑏𝑧 are bias terms. The ℎ̃𝑡 term is the candidate hidden state, which is computed 

by applying a tanh nonlinearity to a linear combination of the current input, the previous hidden state, and the 

reset and update gates. The final hidden state ℎ𝑡 is computed by combining the previous hidden state and the 

candidate hidden state, with the update gate determining the degree to which the candidate hidden state 

should be used. The GRU is identical to the LSTM in general, but with less external gating signal in the 

interpolation. This preserves one gating signal and its associated settings. 

 

2.4.  The ARIMA 

ARIMA as its name implies incorporates three methods, which are moving average, integration 

(differencing), and autoregression. ARIMA models rely on direct correlations and indirect correlations 

between lags via two functions, which are autocorrelation and partial autocorrelation. This makes it well 

suited for temperature predictions because temperature is correlated with an instance in a given time series, 

and a lagged version of itself. The stationarity is a critical aspect because nonstationary time series cannot be 

forecasted by the ARIMA models. 

 

𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞) = ∑ φ𝑖  𝐿
𝑖Xj

L
𝑝

𝑖=1
(1 − 𝐿)𝑑 . 𝑌𝑡 = ∑ (1 + θ𝑖  e𝑡−𝑖) 

𝑞

𝑖=1
𝑒𝑡 (12) 

 

where 𝐿 is the lag operator, 𝑌𝑡 is the time series at time 𝑡,  𝑒𝑡 is the error term, φ𝑖 are the autoregressive 

parameters, and 𝜃𝑖 are the moving average parameters. 

 

2.5.  Methodology and data description 

In this research paper, our objective is to predict the daily average temperature in Beni Mellal 

using time series data through four algorithms: ARIMA, SimpleRNN, GRU, and LSTM. After conducting 

comprehensive analyses and reviewing various approaches found in the literature, it becomes clear that the 

choice of ARIMA, SimpleRNN, GRU, and LSTM models in the study offers a well-rounded exploration of 

forecasting techniques. This selection ranges from traditional linear statistical models to advanced neural 

networks, striking a balance between simplicity, interpretability, and performance. In contrast, CRNNs, 
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which combine the strengths of CNNs and RNNs, are more suitable for tasks requiring both spatial and 

temporal feature extraction. However, for temperature time series forecasting, the added complexity of 

convolutional layers may not provide significant benefits over simpler models like RNNs, GRUs, and 

LSTMs this is because temperature time series data does not have any spatial information, so the 

convolutional layers would not be able to extract any useful features. Therefore, for temperature time 

series forecasting, it is better to use simpler models that are specifically designed for temporal feature 

extraction. Similarly, CNNs, primarily designed for image recognition [24], may not be the optimal choice 

for time series temperature forecasting. Although they can be adapted for time series data, they lack the 

inherent ability to capture temporal dependencies like RNNs, GRUs, and LSTMs. SARIMA, an extension 

of ARIMA that incorporates seasonality, is designed to handle non-stationary and seasonal data. The data 

used in this study can be easily transformed into a stationary form after the first differentiation which is 

the main reason why we choose to work with ARIMA because its models offer greater interpretability than 

SARIMA models, as they exclude seasonal components. This advantage aids in understanding the 

underlying patterns and relationships in the data. Additionally, ARIMA models are computationally more 

efficient due to fewer parameters, which is crucial for large datasets or limited computational resources. 

Furthermore, model selection is simplified with ARIMA, as it involves choosing optimal values for p, d, 

and q parameters, while SARIMA requires additional seasonal parameters, making the process more 

complex and time-consuming.  

The data used is mainly collected from the National Climatic Data Center (NCDC) website. They 

can be downloaded directly from their website. It concerns station ID 60191099999, which is the local Beni 

Mellal weather station. However, upon observing missing data, particularly for the year 2016, additional data 

was required. The missing data span from January 1, 2016 to May 23, 2016, and therefore, this specific 

period's daily data is acquired from Beni Mellal’s local weather station. Eventually, we managed to have 

more than 22 years’ worth of daily data from January 1, 2000, to December 31, 2022. The four algorithms 

are fed with data in the form of a comma-separated value (CSV) file. The file contains two columns: the first 

column contains the date in the format YYYY-MM-DD. The dates are incremented daily. The second 

column represents the temperature observed in Fahrenheit (F). The hardware characteristics is the following: 

8th gen Intel® Core™ i7, Processor frequency: 2.20 GHz with random access memory (RAM) 8 GB.  

We used Python 3.9.12 in Jupyter Notebook 3, leveraging Keras and TensorFlow. 

In both RNN and ARIMA, the initial step involves preprocessing temperature data. This process 

entails gathering data from the yearly CSV files downloaded from NCDC, merging them in ascending order 

from 2000 to 2022, and adding missing information when necessary. When the four models are fine-tuned, 

the data are split into two distinct sets: the training set covers the period from January 1, 2000, to December 

31, 2019, while the testing set encompasses the period from January 1, 2020, to December 31, 2022. 

For RNNs, the approach consists of defining the RNN architecture by experimenting with various 

parameters through grid search, by varying the following parameters: the number of units, embedding size, 

time lags, number of dense layers, learning rate, and batch size. For each combination we employ cross-

validation to determine the number of epochs. Cross-validation consists of splitting the training set into 

four equally sized, non-overlapping folds, each containing a smaller training set and a validation set. This 

division ensures the model is evaluated across various time periods, capturing different seasonal patterns 

and trends. The calculated average metrics across all four-time frames constitute the model's estimated 

metrics. The hyperparameter combination that yields the best average performance is then used on the 

entire training data. 

For ARIMA, the methodology includes additional steps beyond preprocessing temperature data. 

These steps involve checking data stationarity, which is easily achieved from the first differentiation, making 

d equal to 1. Determining the AR and MA components is done using the results obtained by Akaike 

information criterion (AIC); these results help to narrow down the scope of the search. As a result, we tried 

all possible combinations for p and q values that vary from 0 to 9. As for d values, they vary from 0 to 1 until 

the best-fitting model is found. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  The proposed RNN models and the parameters used 

Upon performing a grid search to determine optimal parameters, by arbitrarily changing the number 

of units, embedding size, time lags, number of dense layers, learning rate, and batch size, and employing 

cross-validation to determine the appropriate number of epochs, we observe that the MAE 

improvement/deterioration is consistent across all three models. The following parameters yield the most 

favorable outcomes when applied to our time series: number of units: 256, embedding size: 08, time lags: 07, 

number of dense layers: 32, learning rate: 1e-10, batch size: 32, number of epochs: 1817. We believe that 

these parameters serve as a valuable foundation for fellow researchers exploring the application of RNNs in 
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predicting temperature within the Beni Mellal region. These are the results of three deep learning algorithms 

that based on the chosen parameters have the same number of layers, that is, three layers in total. The first 

layer corresponds to the algorithm utilized, which can be a SimpleRNN layer, an LSTM layer, or a GRU 

layer, this first layer's output is a vector (None, 256). Following that comes a temporally distributed dense 

layer; it takes the form of (None, 32). The RNNs model’s architectures are shown in Tables 1, 2, and 3. The 

SimpleRNN model has the lowest parameter count (67,840) but may struggle with long-range dependencies 

due to its vanishing and exploding gradient issues. The LSTM model has the highest parameter count 

(271,360) expected to effectively address the vanishing gradient problem and be suitable for capturing long-

range dependencies. The GRU model, with a parameter count of 204,288, offers a balance between the other 

two models, addressing the vanishing gradient problem with fewer parameters than the LSTM. This balance 

was the key to the GRU model achieving the lowest MAE in this study with a value of 2.961 F, which is the 

best among LSTM and SimpleRNN, with MAEs of 2.973 F and 2.986 F respectively. We present the training 

MAE per epoch for the GRU model in Figure 1. 

 

 

Table 1. The proposed SimpleRNN architectures 
Layer (Type) Output shape Parameters 

simple_rnn (SimpleRNN) (None, 256) 67840 

dense (Dense) (None, 32) 8224 

dense_1 (Dense) (None, 1) 33 

 

 

Table 2. The proposed LSTM architectures 
Layer (Type) Output shape Parameters 

lstm (LSTM) (None, 256) 271360 
dense (Dense) (None, 32) 8224 

dense_1 (Dense) (None, 1) 33 

 

 

Table 3. The proposed GRU architectures 
Layer (Type) Output shape Parameters 

gru (GRU) (None, 256) 204288 

dense (Dense) (None, 32) 8224 

dense_1 (Dense) (None, 1) 33 

 

 

 
 

Figure 1. GRU MAE per epoch 
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3.2.  The proposed ARIMA model 

The methods to determine the stationarity of data vary from simple ones: from looking at the time 

series graph and observing if it meets the stationarity conditions, to more complex mathematical methods, 

such as augmented dickey fuller test (ADF) [25]. In this study, we work with ADF, a robust formal test. The 

results of the ADF test indicate that the data does not exhibit a unit root and is therefore stationary, which is a 

crucial assumption as it allows us to move forward without having to worry about the issue of non-

stationarity. Please note that ARIMA takes three parameters p, d, and q. These parameters need to be chosen 

with care as they directly influence the accuracy of the model. For that purpose, we choose AIC, which is a 

statistical measure used to compare different time series models. It is worth noting that because the AIC is 

not based on a hypothesis test, it cannot privilege a model's forecasting accuracy in reference to another 

model. The AIC simply indicates which model fits the available data even if it is by small margins [26]. We 

use the results obtained by AIC to narrow down the scope of the search. As a result, we try all combinations 

possible for p and q values that vary from 0 to 9. As for d values, they vary from 0 to 1. Based on the result 

obtained by testing various parameter combination, we are confident that ARIMA model (5, 1, 9) is the best 

for forecasting daily average temperature for in Beni Mellal taking the dataset as reference, as shown in 

Figure 2. The figure shows MAE obtained by varying 𝑝, 𝑑, and 𝑞. We include only the MAE values under 

3.26. The green points represent MAE values for 𝑑 = 0 with 𝑝 and 𝑞 ranging from 0 to 9, while the blue 

points represent MAE values for 𝑑 = 1 with p and q ranging from 0 to 9. The optimum ARIMA model with 

the lowest MAE of 3.1129 is indicated in red. 

 

 

 
 

Figure 2. 3D display of the performance of various ARIMA models for forecasting daily average temperature 

in Beni Mellal 

 

 

3.3.  GRU, LSTM, SimpleRNN and ARIMA comparison  

In this section, we use the results from the deep learning and machine learning sections for the aim 

of comparing the performances of the used algorithms. The best results produced by each algorithm, based on 

the MAE, are reported in Table 4. As demonstrated in Table 4, the MAE of GRU is the smallest when 

compared with the rest of the deep learning algorithms and the ARIMA model. The MAE of GRU model 

decreases by 0.40% when compared with the LSTM model, and when compared with the SimpleRNN, we 
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observe that it is low by 0.83%. As for ARIMA model, its MAE increases by 4.85% in comparison to the 

GRU's MAE. The experimental results indicate that the GRU has achieved the best predicting performance. 

The GRU's slightly better performance, in terms of MAE compared to LSTM, suggests that the GRU model 

is more effective at capturing the data's patterns. However, the small difference in MAE indicates that both 

models performed similarly. Furthermore, the GRU being slightly better is attributed to its simpler 

architecture, which has fewer parameters compared to LSTMs. This results in faster training times and a 

reduced risk of overfitting. While it is true that LSTM is known for its ability to capture long-term 

dependencies in time series data, the implication that GRU outperforms LSTM suggests that the data may 

lack significant long-term dependencies, or that the balance seen in GRU architecture and faster training 

times may have been sufficient to capture the relevant patterns in the data, leading to GRU being slightly 

better. The good performance seen in deep learning-based methods in forecasting temperature is due to the 

iterative optimization made possible by the extended version of stochastic gradient descent, formally called 

Adam optimizer, that solves optimization problems by minimizing the loss function. As a result, the best 

outcome is discovered. 

Even finding the best ARIMA model, the SimpleRNN with known vanishing gradient problem 

performs better. This makes it clear that the deep-learning algorithms have the upper hand in this case, which 

is understandable, because RNNs have the ability to learn complex relationships between inputs and outputs 

through multiple layers of neurons and can handle sequential information effectively. However, this also 

means RNNs can be more computationally expensive and harder to train. The ARIMA model outperforms 

the SimpleRNN, LSTM, and GRU in terms of execution time. The large number of parameters and the 

number of epochs used by the deep learning algorithms can account for the difference in the execution time. 

The GRU model is employed to perform temperature forecasting over a two-year period, from January 1st, 

2020 to December 31st, 2022. The results, depicted in Figure 3, showcase the model's efficacy in accurately 

predicting temperature values over the extended time frame, with a strong correlation between the observed 

and predicted values. Given this high level of accuracy and precision, the model can be relied upon in various 

industries, such as agriculture, to provide reliable long-term forecasting, enabling effective planning. 

 

 

Table 4. MAE, MSE, MAPE, and training execution time obtained for each algorithm 
 ARIMA model (5, 1, 9) SimpleRNN LSTM GRU 

MAE 3.112 2.986 2.973 2.961 

MSE - 16.177 16.027 15.894 
MAPE - 4.471 4.456 4.439 

Time (s) 60 10030 10060 9976 

 

 

 
 

Figure 3. Observed vs predicted temperature values using GRU model for the period of January 1st, 2020 to 

December 31st, 2022 

 

 

4. CONCLUSION 

In this study, we compare the forecasting accuracy of four algorithms: ARIMA, SimpleRNN, 

LSTM, and GRU using MAE as an evaluation metric. The results indicate the success of the GRU algorithm 

in predicting temperature values in Beni Mellal, making it a viable option for temperature forecasting. The 

close MAE obtained and decent performance of the four algorithms suggest that any one of them could be 

utilized for similar forecasting tasks. However, it is important to acknowledge several limitations that may 
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impact the performance and interpretability of our deep learning models. The dataset size, potential 

overfitting, and the “black box” nature of deep learning models may pose challenges in comprehending the 

underlying relationships between input features and predictions. Additionally, ARIMA models have their 

own limitations, such as the assumption of linearity and stationarity in the time series data, which may not 

always hold true in real-world scenarios. Future work will involve exploring the application of hybrid 

approaches for weather parameters’ prediction in Beni Mellal, while addressing the aforementioned 

limitations to improve model performance and interpretability. 
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