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 The length of a news article may influence people’s interest to read the 

article. In this case, text summarization can help to create a shorter 

representative version of an article to reduce people’s read time. This paper 

proposes to use weighted word embedding based on Word2Vec, FastText, 

and bidirectional encoder representations from transformers (BERT) models 

to enhance the TextRank summarization algorithm. The use of weighted 

word embedding is aimed to create better sentence representation, in order to 

produce more accurate summaries. The results show that using (unweighted) 

word embedding significantly improves the performance of the TextRank 

algorithm, with the best performance gained by the summarization system 

using BERT word embedding. When each word embedding is weighed 

using term frequency-inverse document frequency (TF-IDF), the 

performance for all systems using unweighted word embedding further 

significantly improve, with the biggest improvement achieved by the 

systems using Word2Vec (with 6.80% to 12.92% increase) and FastText 

(with 7.04% to 12.78% increase). Overall, our systems using weighted word 

embedding can outperform the TextRank method by up to 17.33% in 

ROUGE-1 and 30.01% in ROUGE-2. This demonstrates the effectiveness of 

weighted word embedding in the TextRank algorithm for text 

summarization. 
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1. INTRODUCTION 

According to the Datareportal statistics in 2022 [1], Indonesia is a country where 204 million (73%) 

of the population use internet. Every day, Indonesians spend an average of 20 percent of their internet time 

reading the news. Their interest in reading the news is also supported by the increasing number of Indonesian 

online news portals, which is estimated to reach 43,300 media based on the Press Council statistics in 2017 

presented in [2]. Even though the public’s interest in reading the news is quite large, reading long stories can 

take a long time. It then may discourage them to read through the news, especially because people in the 

digital era tend to expect to find information from various sources quickly [3]. As a result of this tendency, 

we often see the term “too long; didn’t read” or “tl:dr” which is an outline or summary of writings that are 

spread on the internet. This term is aimed to let other people quickly understand the main point of the text. 

The presence of the term “tl;dr” itself also shows that the length of a text affects one’s reading interest.  

It is beneficial if a lengthy text can be condensed into a more compact form, i.e., summary, so that it 

could save time and effort of readers to find important information from the text [4]. According to  

Radev et al. [5], a summary is a text produced from one or more texts, which conveys important information 

https://creativecommons.org/licenses/by-sa/4.0/
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from them and the length is normally less than half the length of the original text. A specific research field 

that explores the task of generating summaries from textual documents is called text summarization. 

According to the way the summary is generated, text summarization can be categorized as extractive and 

abstractive summarization [6]. In the former type of summarization, the method only extracts sentences from 

the original text, while in the latter type of summarization, some additional processes are performed to the 

extracted sentences which makes the resulting summary contain different sentences from the text [7]. 

TextRank [8] is an extractive summarization method that uses graph to capture the relationship 

between sentences. and use this relationship to identify the importance of sentences. TextRank is an 

unsupervised method that has been used in many previous work on summarization, either as main or baseline 

method, because of its proven effectiveness [8]–[11]. Previously, many studies have also been conducted to 

enhance the performance of the TextRank algorithm for text summarization or keyword extraction, such as 

using word embedding [12]–[18], term frequency-inverse document frequency (TF-IDF) [19], [20], the 

combination of 1 gram, 2 gram, and Hidden Markov models [21], knowledge graph sentence embedding and 

K-means clustering [22], statistical and linguistic features for sentence weighting [23], variation of sentence 

similarity functions [24], and fine-tuning the hyperparameters [13]. 

In this work, we propose to use weighted word embedding using a variation of word embeddings, 

and TF-IDF weighting to enhance the effectiveness of the TextRank algorithm. Word embedding is used to 

obtain a better word representation that can capture semantic information, resulting in better sentence 

representation. Then, TF-IDF is used to weigh the generated word embedding to further improve sentence 

representation; this is based on our intuition that more important words, which are estimated using corpus 

statistics, should be valued more when generating the vector representation of sentences. TF-IDF is chosen 

because it has been shown to perform well for term weighting in various natural language processing tasks 

[19], [20], [25]–[27], and it also has been proven to significantly outperform the bag-of-words (BoW) 

technique [28]. The combination of word embedding and TF-IDF weighting components are then expected to 

improve the estimation of sentence relationships in the TextRank algorithm. We use two traditional word 

embedding models, i.e., Word2Vec [29] and FastText [30]), and one contextualized word embedding model, 

i.e., bidirectional encoder representations from transformers (BERT) [31] that has been pre-trained using a 

large-scale Indonesian corpus, referred to as Indonesian BERT (IndoBERT)-based model [32]. 

We divide some previous works on text summarization that are related to our work into three 

groups. First, the works that used word embedding in TextRank. Second, the works that used TF-IDF 

weighting in TextRank. Third, the works that used weighted word embedding. They are explained in more 

detail in the following three paragraphs. To the best of our knowledge, none of the previous works has 

incorporated weighted word embedding in TextRank summarization algorithm. In addition, none of them 

have investigated the use of contextualized word embedding from IndoBERT in TextRank for text 

summarization. Therefore, these become the research gaps that will be filled in this work.  

Many attention has been given to the use of word embedding in TextRank algorithm for text 

summarization [12]–[16]. These works use different kinds of word embeddings, such as Global Vectors for 

word representation (GloVe) [12], [14], [17], Word2Vec [13], [14], FastText [14], and sentence-BERT 

(SBERT) [15], [16]. All of these works, however, did not use weighted word embedding, so the embedding is 

not weighed according to the collection statistics. In addition, they also did not investigate the contextual 

word embedding from IndoBERT, which becomes one of the words embedding studied in this work to be 

incorporated with TextRank. These things differentiate between our work and their work.  

Using TextRank and TF-IDF to generate extractive summaries from documents has been explored 

by relatively a few studies [19], [20]. Zaware et al. [19] used TF-IDF as a vector representation of sentences 

to be inputted into the TextRank algorithm. More specifically, a sentence is represented using an n-

dimensional vector space containing the TF-IDF scores of words. Different from them, Guan et al. [20] did 

not incorporate TF-IDF and TextRank, but they used them separately to extract keywords from the text and 

the comments given to the text, respectively. The resulting keywords were then used to score the sentences. 

In contrast to Zaware et al. [19] and Guan et al. [20] we use TF-IDF to weigh the word embedding to 

improve the vector representation of sentences. 

There are relatively very few works that have investigated weighted word embedding for summarization 

[11], [33], but they did not use them with TextRank algorithm. Rani and Labiyal [11] used weighted word 

embedding, combined with a set of linguistic and statistical features to rank sentences in the clusters generated 

using K-means algorithm. You et al. [33] explored the use of IDF weight and Word2Vec embedding as one of the 

reconstruction mechanisms in their sequence-to-sequence summarization model. Our work is different to them as 

we incorporate the weighted word embedding into the TextRank summarization algorithm. 

Our research questions in this work are as follows: i) How is the effectiveness of using word 

embedding from Word2Vec, FastText, and BERT in the TextRank algorithm for extracting text summaries in 

the Indonesian dataset? and ii) To what extent does the performance of the summarization systems differ 

when the word embeddings are weighed using TF-IDF? The rest of the paper is then organized as follows. 
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Section 2 describes the dataset, system framework, and evaluation method. Section 3 describes our 

experimental results together with the analysis. At last, section 4 concludes our study. 

 

 

2. METHOD 

2.1.  Dataset 

This work uses Liputan6 dataset [9], a large-scale Indonesian dataset for text summarization. The 

documents in this dataset come from news articles on the Indonesian online news portal Liputan6. It covers a 

variety of topics, such as: politics, business, and technology. This dataset was automatically built by 

Koto et al. [9], extracting the short description contained in the webpage metadata for each news article in the 

Liputan6 website, as the ground truth summary for the article. We use the Canonical set of the Liputan6 dataset, 

which is a complete version of this dataset, to obtain more comprehensive results in our experiment. Since the 

main summarization method used in this work is unsupervised, i.e., TextRank algorithm, we then only use the 

test split of the dataset which consists of 10,972 documents. The statistics of this dataset is presented in Table 1. 
 

 

Table 1. Statistics of our dataset 
Characteristic Statistic 

Total documents 10,972 documents 

Average length of document (in sentences) 11.71 sentences 
Average length of document (in words) 218.55 words 

Average length of document sentence 18.67 words 
Average length of ground truth summary (in sentences) 2.06 sentences 

Average length of ground truth summary (in words) 26.20 words 

 

 

It appears from the Table 1 that the documents in our dataset are short to moderate in length, which 

is around 12 sentences per document. The ground truth summary is also relatively short with 2 sentences on 

average, ranging from 1 to 5 sentences. For evaluation purposes, the length of document summaries 

generated by our summarization system will vary, following the length of ground truth summaries for the 

corresponding documents. For example, if a ground truth summary for a document has 3 sentences, then our 

summarization system will also produce a 3-sentence summary for that document. 

One of the conveniences provided by Liputan6 dataset is that the tokenization has been done on 

each sentence of the news document, and each sentence has also been tokenized into words. This makes us 

easier to preprocess the data. A preprocessing that we performed on the dataset is only case-folding. Figure 1 

illustrates an example of a document in the Liputan6 dataset that is used in this work (see the right column of 

the table). We can see that the documents in the Liputan6 dataset are in the form of a list of sentences, where 

each sentence is in the form of a list of words. It also does not include the document titles. The original 

document is presented in the left column of the table. Note that the English translation is not a part of the 

dataset, but we display it in the table to help readers understand the content of this document. This document 

example consists of nine sentences, and its ground truth summary consists of two sentences. 

 

 

 
 

Figure 1. A sample of text in Liputan6 dataset (right) and its original text in the Liputan6 website (left) 
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We also use another dataset to train the embedding models from which the word embeddings are 

extracted. A detailed explanation of the word embedding methods used in this work is explained in section 

2.3.1. To train Word2Vec and FastText embedding models, we use a dump of the Indonesian Wikipedia on 

September 20th, 2022 (idwiki-20220920-pages-articles.xml.bz2) which consists of 3,309,595 pages (according 

to the page count statistic presented in the idwiki-20220920-site stats.sql.gz) or 135,678,726 words. For BERT 

embedding, we use a pertained language model BERT [32] that was trained on a large-scale Indonesian corpus, 

i.e., Indo4B dataset which consists of a variety of data, such as Wikipedia pages, news articles, and tweets, with 

a total of 3,581,301,476 words. This model was called IndoBERT in Wilie et al. [32]. 

 

2.2.  System framework 

Figure 2 illustrates the flow of the process in our summarization system. Initially, embedding 

models are learned using a large corpus. For Wod2Vec and FastText models, we train them using Indonesian 

Wikipedia dataset. For the BERT model, we use Indonesian BERT-based pre-trained models from previous 

work, i.e., IndoBERT [32]. 

 

 

 
 

Figure 2. The framework of our enhanced TextRank summarization system 

 

 

When a document to be summarized is inputted into our system, at first it needs to be split into 

sentences (s). Then, word embedding for each word in the sentences is generated from the embedding 

models. The red box in the figure highlights a slightly different process in generating word embedding using 

Word2Vec/FastText and BERT models. The dashed blue arrows inside the red box indicate conditional flow. 

When we want to generate word embedding using Word2Vec/FastText, then we follow the top dashed arrow. 

Otherwise, we follow the bottom dashed arrow when we want to generate BERT word embedding. 

Because Word2Vec and FastText are traditional word embedding, there is only one static vector 

representation for each word. Therefore, each sentence needs to be split into words first. Then, given a word (𝑤), 

the Word2Vec/FastText model will generate a word embedding or word vector (𝑤𝑣). This is different from 

BERT which is a contextualized word embedding, so it considers context from the right and left word sequences 

when computing a word embedding. As a result, the model will give different embedding for a word depending 

on its context, therefore, the word embedding for any word is not static. Since the model needs context, then we 

directly input a sentence into the model to produce word embedding for each word in the sentence. 

Further, TF-IDF weighting is computed using our Liputan6 dataset to assign a weight for each word 

based on their occurrence statistics in the dataset. The TF-IDF scores are used to weigh the word embedding 

generated earlier and then produce the weighted word embedding or the weighted word vector (𝑤𝑤𝑣). Next, 

sentence vectors (𝑠𝑣) are formed by taking the average weighted word vectors that compose the sentences. 

After sentence vectors are obtained, cosine similarity between any two sentences in the document is 

computed to build a sentence similarity matrix. TextRank summarization algorithm is then applied to score 

the sentences based on their importance among all other sentences in the document using graph-based 

method. To generate a summary, a top-k sentences with the highest scores will be extracted and then ordered 

according to the order of sentences in the document. 

In general, our summarization system contains three main components. They are word embedding, 

TF-IDF weighting, and TextRank summarization algorithm. More detailed explanation about these 

components is given in the following subsections. 

 

2.2.1. Word embedding 

Word embedding concept was initially introduced by Bengio et al. [34] as a distributed 

representation of words, obtained after jointly training word embeddings with a model’s parameter in a 
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neural network model, that can preserve the semantic and syntactic relationship between words. Word 

embedding represents a word as a vector learned from a large collection of data, in which words that have 

similar meanings (semantically similar) will have vectors that are close in the vector space. Word embedding 

is generally more effective than classic bag-of-words vector representation because of its ability to capture 

the semantic relationship between words. In addition, since word embedding has dense representation, then it 

also solves the sparsity problem in the classic representation, which makes the computation more effective 

and efficient. Therefore, most of the current research in text processing uses word embedding as the word 

representation [35]–[38]. There are three variants of word embedding that are explored in this work: 

Word2Vec, FastText, and BERT. They are detailed in the following. 

a) Word2Vec  

Mikolov et al. [29] introduced two neural architectures to learn Word2Vec word embeddings: the 

continuous skip-gram model and the continuous bag of words (CBOW) model. Both models learn vector 

representations of words that can capture semantic information as well as linguistic regularities and patterns. 

CBOW works on the task of predicting the current word 𝑤(𝑡) based on context words 𝑤(𝑡 ± 𝑖), where  

𝑖 = 1,2,3, … , 𝑛, with n denotes the window size. On the contrary, Skip-gram works on the task of predicting 

context words 𝑤(𝑡 ± 𝑖) based on current word 𝑤(𝑡). Window size is one of the hyperparameters in the 

Word2Vec algorithm, which can be set during the training process, that indicates the maximum distance 

between the current and predicted words within a sentence. The weights in the neural network learned during 

the training process will serve as the elements of word embedding. Mikolov et al. [29] found that the skip-

gram model can capture semantic relationships better than the CBOW model. Therefore, the skip-gram 

model is chosen in this work to build the Word2Vec model. 

We use a Python library Gensim to implement the Word2Vec algorithm and train the corresponding 

embedding model using Indonesian Wikipedia dataset. We use Gensim’s default value for the 

hyperparameter values to build the Word2Vec model, as follows: learning 𝑟𝑎𝑡𝑒 = 0.025, 𝑒𝑝𝑜𝑐ℎ = 5, and 

window 𝑠𝑖𝑧𝑒 = 5. We train the Word2Vec model using Indonesian Wikipedia dataset because it is a large 

dataset that is publicly available. Using the same reason, there are also many previous researchers who also 

learned their Word2Vec models using Wikipedia dataset [39], [40]. 

b) FastText  

FastText is an extension of Word2Vec embedding proposed by Bojanowski et al. [30] that takes into 

account the morphology of words (i.e., subwords). In the original Word2Vec embedding, every word has its 

word embedding that is generated without considering the similarity in the word morphology. So, it is 

possible that two morphologically similar words do not have similar word representations. This is considered 

a drawback of Word2Vec for a language that is rich in morphology [30]. FastText operates at a more 

granular level which is at the character n-gram level, while Word2Vec works at the word level. Character  

n-gram is a sequence of n characters within a given character window. In FastText, a word is represented by 

a sum of its character n-grams. Therefore, word embedding is obtained by summing up the vector 

representation of its character n-grams. For example, Indonesian word “melihat” (English translation: “see”) 

with a window size of 3 for example, will be split up into seven subwords (character 3-gram): “<me”, “mel”, 

“eli”, “lih”, “iha”, “hat”, “at>”, and the word embedding for that word is the sum of vectors for those seven 

subwords. 

Using the above mechanism, FastText can learn representations for morphologically rich languages 

better. Words that have similar morphology (sharing many overlapping character n-grams) will be closer in 

vector space. In addition, it also enables rare words to be represented appropriately by taking the summation 

of embedding of its subwords. As a result, we can infer the embedding of unseen words that do not exist in 

the training corpus, which therefore helps to tackle the out of vocabulary (OOV) issue. Similar to Word2Vec 

implementation, we also use a Python library Gensim and Skip-gram architecture to implement the FastText 

algorithm and train the corresponding embedding model using Indonesian Wikipedia dataset. 

c) Bidirectional encoder representations from transformers 

BERT is a contextualized language model that was first introduced by Devlin et al. [31]. BERT 

architecture contains a stack of encoders from the transformer model [41], that learns the word context of a 

language in a bidirectional way. While Word2Vec and FastText belong to a traditional word embedding in 

which one word will always have one embedding, no matter what words exist before or after it, BERT 

belongs to the contextualized word embedding in which the word embedding is assigned by looking at the 

context around that word. Therefore, it is designed to better understand the contextual relationship between 

words. BERT model can be fine-tuned to directly solve the downstream tasks. In this work, however, BERT 

is only used in a feature-based approach to extract word embedding to be incorporated with the TextRank 

algorithm. The performance will then be compared against Word2Vec and FastText models. 

Recently, BERT was pre-trained on a large-scale of Indonesian corpus consisting of around 4 billion 

words, referred to as IndoBERT [32]. IndoBERT has some variants that differ in the model architecture, such 
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as the number of encoder layers, the number of hidden layers, and the number of attention heads. Two main 

variants of IndoBERT that will be investigated in this work are IndoBERTbase and IndoBERTlarge. Table 2 

highlights the differences in the architecture between IndoBERTbase and IndoBERTlarge. 

 

 

Table 2. The architecture of IndoBERTbase and IndoBERTlarge models 
IndoBERT Model #Layers Hidden size #Attention heads Vocab size #Parameters 

IndoBERTbase 12 768 12 30,522 124.5M 
IndoBERTlarge 24 1,024 16 30,522 335.2M 

 

 

It appears from the table that IndoBERTlarge has twice more encoders and almost three times more 

neural network parameters than IndoBERTbase. To examine to what extent this difference will affect the 

effectiveness of the resulting word embedding, we compare the results of our summarization system using 

contextualized embeddings from these two architectures. To use pre-trained IndoBERT models, we use 

library transformer in the hugging face website that provides application programming interface (APIs) and 

tools for downloading and training some state-of-the-art pre-trained language models. 

 

2.2.2. TF-IDF weighting 

TF-IDF is an attempt to give weight to words contained in a text based on their occurrence in the 

collection. In this work, TF-IDF score is used to weigh the word embeddings (word vectors). In general,  

TF-IDF estimates how important words are in a document, while also considering their importance in the 

collection. The formula to compute TF and IDF scores are (1) and (2), 

 

𝑡𝑓(𝑡, 𝑑) =
𝑓(𝑡,𝑑)

∑ 𝑓(�̂�,𝑑)�̂�∈𝑑
  (1) 

 

𝑖𝑑𝑓(𝑡) =
|𝐶|

|𝑑∈𝐶:𝑡∈𝑑|
  (2) 

 

where 𝑓𝑡,𝑑 represents the term frequency (TF) of a word 𝑡 in a document 𝑑, and ∑ 𝑓(�̂�,𝑑)�̂�∈𝑑  indicates the 

document length, i.e., the total terms in the document 𝑑. The higher the number of occurrences of a term in a 

document, the more important that word in the document. Then, 𝑖𝑑𝑓(𝑡) represents the inverse document frequency 

(IDF) of a word 𝑡 in the collection 𝐶, where |𝐶| is the number of documents in the collection and |𝑑 ∈ 𝐶: 𝑡 ∈ 𝑑| is 
the number of documents in the collection that contain a word 𝑡. The more documents in a collection containing a 

particular word, the more general the word is. To sum up, words that often appear in a document, but do not often 

appear in the corpus will be assigned a high TF-IDF weight, indicating that they are important words. 

 

2.2.3. TextRank 

TextRank is a graph-based ranking algorithm for scoring the text [8], where the text unit can be 

specified, such as keywords or sentences. TextRank is an extension of PageRank [42] which was originally 

aimed for webpage ranking. In this paper, TextRank is used for sentence ranking purposes. The relationship 

between sentences in the document is a factor that contributes to the score given by TexRank to each 

sentence. To calculate the relationship between sentences, we use cosine similarity, following  

Barrios et al. [24]. The resulting pairwise cosine similarity scores between sentences are then used to 

construct a similarity matrix that serves as a basis to form a weighted graph of sentences. 

In the weighted graph representation, a vertex represents a sentence, and an edge between two 

vertexes represents the relationship/connection between two sentences. The similarity score is used as the 

weight of the edge between those two sentences. Two sentences that are more similar will have a higher 

weight on the edge connecting them. Based on this graph representation, we then apply TextRank algorithm 

to score each sentence in the document using (3), 

 

𝑆(𝑉𝑖) = (1 − 𝑑) + 𝑑 ∗ ∑
𝑤𝑗𝑖

∑ 𝑤𝑗𝑘𝑣𝑘 ∈ 𝑂𝑢𝑡(𝑉𝑗)
∗ 𝑆(𝑉𝑗)𝑉𝑗 ∈ 𝐼𝑛(𝑉𝑖)   (3) 

 

where 𝑉𝑖 is the 𝑖-th vertex and 𝑆(𝑉𝑖) denotes the score for the 𝑖-th vertex, which basically represents the 

sentence score. 𝐼𝑛(𝑉𝑖) and 𝑂𝑢𝑡(𝑉𝑗) respectively denotes the set of vertexes that go into 𝑉𝑖 and the set of 

vertexes that go out from 𝑉𝑗. 𝑑 is a damping factor, which is the probability of randomly moving from one 

vertex to another vertex in the graph. 𝑤𝑗𝑖  and 𝑤𝑗𝑘  respectively denotes the weight of edge between sentences 

𝑗 and 𝑖, and the weight of edge between sentences 𝑗 and 𝑘. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5472-5482 

5478 

TextRank is an iterative algorithm that will stop the iteration when convergence is achieved. It is 

when there is a sentence in the document whose the difference between its scores in two successive iterations 

is already very small so we can assume that in the next iterations the scores will not significantly change 

anymore. When convergence is achieved, all sentences in a document have final scores. We will then take N 

sentences with the highest scores as a summary. Since the length of the summary in our ground truth dataset 

is varied, then N is adjusted with the actual length of the summary for a document. In our implementation, we 

use Python library sklearn to compute the cosine similarity between sentences. Then, the Python library 

NetworkX is used to implement the TextRank algorithm. The damping factor is set to 0.85, following the 

implementation of original PageRank [42] and TextRank [8]. For an original TextRank that is used as a baseline 

method in our experiments, the word representation uses a vector of bag-of-words as in the original paper [8]. 

For our summarization methods, we use word embedding from Word2Vec, FastText, and IndoBERT as word 

representations. 

 

2.3.  Evaluation method 

The evaluation of our experiment results is performed using recall-oriented understudy for gisting 

evaluation (ROUGE) metric [43], which is a common metric for extractive text summarization. In general, 

ROUGE calculates the word overlap between automatic summaries and ground truth summaries. The types of 

ROUGE to be used are ROUGE-N and ROUGE-L. While ROUGE-N counts the number of n-grams  

overlapping between two summaries, ROUGE-L counts the LCS (longest common subsequence) between two 

summaries. We choose F-1 score as the type of measurement for our ROUGE scores calculation since it considers 

both Precision and Recall. A Python library rouge_score is used to calculate ROUGE scores for our 

summaries. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  The effectiveness of enhanced TextRank using (unweighted) word embedding 

Table 3 describes the performance of our TextRank-based summarization systems using 

(unweighted) word embedding from Word2Vec, FastText, and IndoBERT. These systems are compared to 

the original TextRank method as the baseline. We can see that the ROUGE scores of all systems using word 

embedding are higher than the baseline system. Here, the use of word embedding is shown to significantly 

increase the performance of the original TextRank algorithm. 

 

 

Table 3. Performance comparison between systems using (unweighted) word embedding 
Summarization System ROUGE-1 ROUGE-2 ROUGE-L 

TextRank 0.3479 0.2339 0.3302 

TextRank+Word2Vec 0.3822∗ 0.2693∗ 0.3646∗ 

TextRank+FastText 0.3776∗ 0.2644∗ 0.3598∗ 

TextRank+IndoBERTbase 0.3929∗+× 0.2837∗+× 0.3768∗+× 

TextRank+IndoBERTlarge 0.3940∗+× 0.2854∗+× 0.3779∗+× 
Symbols *, +, ×, and ÷ denote significant differences against TextRank, TextRank + Word2Vec, 

TextRank + FastText, and TextRank + IndoBERTbase methods, respectively, according to the 

paired t-test (p <0.05). 

 

 

It also appears from the table that the systems using IndoBERT are significantly more effective than 

those using Word2Vec and FastText. This confirms one of our contributions in this work which is using the 

contextualized word embedding BERT in the TextRank algorithm. The advantage possessed by BERT occurs 

because its word embeddings are generated by looking at the context of the surrounding words (this is 

different from Word2Vec and FastText models that adopt static word representation as it does not consider 

the context when generating word embedding). As a result, the word embedding from BERT is more accurate 

to capture semantic relationships between words. A better word representation then results in a better 

sentence representation, which further contributes to a better estimate of sentence importance by the 

TextRank method. This explains the success of BERT embedding in enhancing the performance of the 

TextRank method the most. 

TextRank using IndoBERTlarge gains slightly higher ROUGE scores than that using 

IndoBERTbase, and this result is consistent with the findings reported in previous work [44]. The statistical 

test, however, shows that this difference is not significant. This slight superiority of IndoBERTlarge over 

IndoBERTbase is affected by the higher number of layers as well as parameters used in its neural model, 

which makes it slightly better at capturing the meanings of words. 
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3.2.  The effectiveness of enhanced TextRank using weighted word embedding 

Table 4 shows the performance of the enhanced TextRank methods using weighted word 

embedding. Compared to the results using unweighted word embedding presented in Table 3 earlier, it is 

clear that the application of TF-IDF weighting to the word embedding gives significant performance 

increases to all summarization systems. This increase can occur because by using weighted word embedding, 

the importance of words in the collection is considered when making the sentence representation. 

Consequently, it improves the generated sentence vectors which then results in enhancing the performance of 

TextRank method to estimate the importance of sentences. 

 

 

Table 4. Performance comparison between systems using weighted word embedding 
Summarization System ROUGE-1 ROUGE-2 ROUGE-L 

TextRank 0.3479 0.2339 0.3302 

TextRank+Word2Vec+TF-IDF 0.4082‡∗ 0.3041‡∗ 0.3926‡∗ 

TextRank+FastText+TF-IDF 0.4042‡∗ 0.2982‡∗ 0.3879‡∗ 

TextRank+IndoBERTbase+TF-IDF 0.4039‡∗ 0.2974‡∗ 0.3880‡∗ 

TextRank+IndoBERTlarge+TF-IDF 0.4044‡∗ 0.2982‡∗ 0.3884‡∗ 
Symbol ‡ illustrates the significant difference against the corresponding methods without using TF-IDF 

weighting, as displayed in Table 3. Then, symbols *, +, ×, and ÷ denote significant differences against 

TextRank, TextRank + Word2Vec + TF-IDF, TextRank + FastText + TF-IDF, and TextRank + IndoBERT-

based-methods + TF-IDF, respectively, according to the paired t-test (p <0.05) 

 

 

The increased levels of systems performance over those without using weighted word embedding are 

2.64% to 7.04% in ROUGE-1, 4.48% to 12.92% in ROUGE-2, and 2.78% to 7.81% in ROUGE-L. Systems that 

are benefited the most from the TF-IDF weighting are those using the Word2Vec and FastText models, which 

respectively achieve 12.92% and 12.78% increases in ROUGE-2. For systems using IndoBERTbase and 

IndoBERTlarge models, they only gain 4.83% and 4.48% increases in ROUGE-2, respectively. Here, we can see 

that the performance increases obtained by the systems using Word2Vec and FastText models are almost 

three times higher compared to those using the BERT models. We analyze that this could happen because the 

TF-IDF weighting can help to reduce the limitation of static word embeddings generated by Word2Vec and 

FastText, which do not see the contextual meaning of a word. Therefore, the TF-IDF weighting can give 

extra information on the importance of words in the collection to the word representation. In addition, the 

way TF-IDF works is almost the same as word embedding from Word2Vec and FastText, where each word 

has only one TF-IDF weight no matter what words occur before or after it as it does not consider the context. 

Consequently, it is more effective for Word2Vec and FastText, rather than BERT. 

 

3.3.  More about the summary results 

We analyze some examples of the summaries generated using our systems and compare them with 

ground truth summaries. Table 5 shows an example of the results of our summaries generated for a document 

with id “16,379” in our dataset using TextRank and (unweighted/weighted) word embedding based on 

Word2Vec, FastText, and BERT. The ground truth summary as well as the baseline summary (TextRank) for 

this document are also displayed in the table for comparison. The text printed in boldface indicates the text 

that exists in the ground truth summary. The more the text in an automatically generated summary is bolded, 

the better the summary is, since it indicates that it is more similar to the ground truth summary. 

It appears that the summary generated using the baseline method contains only one sentence (out of 

two sentences) from the ground truth summary. The result is the same as those of TextRank+Word2Vec and 

TextRank+FastText systems. In this case, the use of unweighted word embedding from Word2Vec and 

FastText is unable to improve the baseline method, i.e., TextRank. 

However, after adding the TF-IDF weighting to the word embedding from TextRank and 

Word2Vec, it succeeds to enhance the TextRank method, which enables the summaries generated by these 

systems to be the same as the ground truth summary. This example demonstrates that weighted word 

embedding is effective for Word2Vec and FastText, as it can improve the performance of unweighted word 

embedding. Meanwhile, the use of the IndoBERTbase and IndoBERTlarge word embeddings, even without 

TF-IDF weighting, has succeeded to produce summaries that are the same as the ground truth summary. 

Further using the weighted word embedding does not change the summary results for IndoBERT-based 

systems. This confirms our results in the earlier subsection that since IndoBERT considers the context to 

produce word embedding, then using the original word embedding can already capture the semantics of 

words well. Therefore, the effect of TF-IDF weighting for this method is smaller compared to that for static 

word embeddings (Word2Vec and FastText). 
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Table 5. Example of summaries for a document id “16379” 
System Summaries 

Ground Truth Rakernas juga akan meminta penjelasan Fraksi PDI-P di DPR tentang proses Memorandum I, II, 
hingga menjelang SI MPR. Rakernas juga akan menanyakan kesiapan F-PDIP MPR menghadapi 

sidang istimewa. 

(English translation: The National Working Meeting will also ask for an explanation from the PDI-P 
faction in the People’s Representative Council regarding the process of Memorandums I, II, up to 

the time before the people’s consultative assembly (PCA) Special Session. The National Working 

Meeting will also ask about the PCA’s F-PDIP readiness for a special session.) 
  

TextRank (baseline) Di antaranya, membicarakan soal situasi politik terkini, termasuk pergelaran Sidang Istimewa 
MPR, 1 Agustus mendatang. Rakernas juga akan meminta penjelasan Fraksi PDI-P di DPR tentang 

proses Memorandum I, II, hingga menjelang SI MPR. 

(ROUGE-1=0.6875, ROUGE-2=0.6129, ROUGE-L=0.6875) 
(English translation: Among other things, discussing the current political situation, including the 

holding of the MPR Special Session, 1 August. The National Working Meeting will also ask for an 

explanation from the PDI-P faction in the People’s Representative Council regarding the process of 
Memorandums I, II, up to the time before the PCA Special Session.) 

  

TextRank+Word2Vec same as the summary of TexRank above 
  

TextRank+FastText same as the summary of TexRank above 
  

TextRank+ 
IndoBERTbase 

Rakernas juga akan meminta penjelasan Fraksi PDI-P di DPR tentang proses Memorandum I, II, 
hingga menjelang SI MPR. Rakernas juga akan menanyakan kesiapan F-PDIP MPR menghadapi 

sidang istimewa. 

(ROUGE-1=1, ROUGE-2=1, ROUGE-L=1) 
(English translation: The National Working Meeting will also ask for an explanation from the PDI-P 

faction in the People’s Representative Council regarding the process of Memorandums I, II, up to the 

time before the PCA Special Session. The National Working Meeting will also ask about the PCA’s F-
PDIP readiness for a special session.) 

  

TextRank+ 

IndoBERTlarge 

same as the summary of TexRank+IndoBERTbase above 

  

TextRank+Word2Vec+ 
TF-IDF 

same as the summary of TexRank+IndoBERTbase above 

  

TextRank+FastText+ 

TF-IDF 

same as the summary of TexRank+IndoBERTbase above 

  

TextRank+ 

IndoBERTbase+TF-IDF 

same as the summary of TexRank+IndoBERTbase above 

  

TextRank+ 

IndoBERTlarge+TF-IDF 

same as the summary of TexRank+IndoBERTbase above 

 

 

4. CONCLUSION 

We propose to use weighted word embedding to enhance TextRank algorithm for text 

summarization on Indonesian news dataset. A variation of word embeddings, such as traditional word 

embedding (Word2Vec & FastText) and contextualized word embedding BERT, combined with TF-IDF 

weighting are exploited in our methods to be incorporated with the TextRank. The effect of the weighted 

word embedding (as well as unweighted word embedding) on the performance of TextRank summarization 

method are examined in this work. 

Our experimental results show that the use of (unweighted) word embedding improves the 

performance of the TextRank method by up to 13.25% in ROUGE-1 and up to 22.02% in ROUGE-2. The 

system using word embedding from BERT is shown to achieve the highest performance increase. BERT-

based summarization systems gain 5.98% and 7.94% higher ROUGE-2 scores as compared to the systems 

using Word2Vec and FastText, respectively. This indicates that BERT word embedding, which is generated 

by considering the context of the surrounding words, produces better word representation than Word2Vec 

and FastText, which further results in better estimation of sentence importance in TextRank. When each 

word embedding is weighed using TF-IDF score, we found that the performance for all systems using 

unweighted word embedding significantly improve. However, BERT-based systems only gain a little 

improvement (with 2.64% to 4.83% increase), while the biggest improvement is achieved by the systems 

using static word embeddings, i.e., Word2Vec (with 6.80% to 12.92% increase) and FastText (with 7.04% to 

12.78% increase). Overall, our systems using weighted word embedding can outperform the original 

TextRank method by up to 17.33% in ROUGE-1 and 30.01% in ROUGE-2. This shows that our proposed 

methods succeeded to give a significant improvement over the original TextRank method. 
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