
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 5, October 2024, pp. 5366~5380

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i5.pp5366-5380 5366

Journal homepage: http://ijece.iaescore.com

A semantic-based approach for domain specific language

development

Eman Negm, Akram Salah, Soha Makady
Department of Computer Scence, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt

Article Info ABSTRACT

Article history:

Received Jan 25, 2024

Revised May 30, 2024

Accepted Jun 4, 2024

 A domain specific language (DSL) ties the business and technical models,

by letting technical developers write programs with the business domain

properties. Yet, DSLs are not used due to the cost of developing them. Such
cost stems from the needed expertise within both the domain knowledge and

language development technicalities for any DSL engineer who would

design such a language. This paper proposes a semantic-based DSL

development approach that utilizes an ontology as a formal way for domain
representation. The domain ontology is semi-automatically transformed into

a DSL. Then, an ontology reasoning algorithm provides reasoning services

on the DSL structure and the programs developed using such DSL by

application developers. Such reasoning services can automatically detect
flaws in the DSL design like possible inconsistency or the presence of

unsatisfiable or redundant classes thus serving the DSL engineer. The

reasoning services can also discover inconsistency or redundant classes in

programs built using the designed DSL, thus serving the application

developer. The proposed approach was implemented within a language

workbench using projectional-editing and was evaluated on two different

ontologies from varied domains. The results show correct transformation of

the input ontology, valid instantiation of designed application, and efficient
reasoning services.

Keywords:

Domain specific languages

Ontology

Projectional-editing

Reasoning

Software Engineering

This is an open access article under the CC BY-SA license.

Corresponding Author:

Soha Makady

Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University

5 Dr Ahmad Zewail St., Dokki, Giza, Egypt

Email: s.makady@fci-cu.edu.eg

1. INTRODUCTION

Domain specific languages (DSLs) [1] are languages that are designed to model a specific class of

problems. Such a class represents the domain of the language. DSLs have many advantages over general

purpose languages (GPLs) for representing a specific domain. On one hand, DSLs provide higher

abstractions for the given domain which raises the productivity and the quality of the development process,

by making the developer focus on the domain-specific modeling, rather than the low-level programming

details [2]–[4]. DSL also provides better validation and verification for the output programs since it utilizes

domain specific constraints. Such constraints verify that the generated program is meaningful within its

corresponding domain. For example, an internet of things (IoT) DSL does not allow configuring the same

sensor in two different locations at the same time. The error messages are also more meaningful since the

messages utilize the domain concepts. On the other hand, the use of domain concepts within DSLs allows

more involvement for the domain expert in the development process since the program itself becomes

readable for the domain expert [5], [6] thus enhancing the final products´ quality [7], [8].

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 A semantic-based approach for domain specific language development (Eman Negm)

5367

Problem statement: despite the advantages mentioned above, DSLs suffer from a problem due to the

cost needed to develop a new DSL [9]. Developing a DSL is an extremely difficult task that requires a mix

between domain knowledge and language development expertise [9]. Language workbenches [5] are

comprehensive environments that aim to reduce the cost of developing a DSL by providing high level tools

for building different DSL aspects [10]. However, the language engineer who would be using the language

workbench to build a new DSL, may lack the comprehensive domain knowledge to properly cover the

different aspects of such DSL.

A crucial phase of building a new DSL is the domain analysis phase which determines the concepts,

relations, and constraints inside the concerned domain [9]. Such a phase is essential in the DSL development

since a wrong analysis will lead to a DSL that incorrectly models the domain. The output of such a phase is

the representation of the given domain. Most language workbenches do not use standard and formal ways for

the domain representation. Furthermore, most of the DSLs depend on one general scenario instead of

multiple use-cases for analyzing the domain [11]. Such scenario is transformed manually into a DSL design

by the language engineer. The informal domain representation leads to the absence of any formal validation

for the generated DSL. Such formal validation could have been utilized to detect problems in the DSL design

like inconsistency. Alternatively, an ontology provides a formal conceptualization for a given domain that

determines the concepts, attributes, relations, and constraints of this domain [12]. A lot of effort has been

done to develop valid ontologies for different domains [13]–[15]. Accordingly, building a DSL from such

ontologies will generate a valid DSL and reduce the DSL development time. In addition, the DSL could

utilize existing ontology reasoning algorithms to provide semantic reasoning services within DSL editors.

To evaluate the feasibility of building DSLs from ontologies, we previously proposed an approach

to automatically generate OntIoT DSL [16], which models only parts of the IoT domain. The structure of

OntIoT was generated from the semantic sensor network (SSN) ontology [17]. However, the proposed

approach had several limitations as follows. First, the generation of aDSL from an ontology was only limited

to mapping a subset of the ontology (the structure information) but did not cover the constraints nor the

instance information. Second, the approach did not support the reasoning services. Third, the applicability of

the approach to different domains, other than the IoT domain, was not examined. Fourth, there was no

quantitative evaluation for the correctness of transforming input ontologies to their corresponding DSL, nor

for the correctness of generating the domain-specific programs.

Proposed solution: in this paper, we extend our semantic DSL generation approach to support

various domains in a generic way and provide support for reasoning services on domain-specific applications

that utilize the generated DSL. The paper makes the following contributions: i) utilizes an ontology as a

formal representation for the domain, ii) provides a semi-automated generation for the DSL from a domain

ontology that covers structure, constraints, and instance information present within a formal ontology, iii)

provides reasoning services for both the language engineer and the developer, and iv) evaluates the different

phases of the proposed approach, as well as its applicability to different domains in a quantitative manner.

Results: we evaluated the different phases of our proposed solution on two applications from

different domains, to ensure that applicability of the proposed approach to various domains. The evaluation

proved: i) the proper transformation of an ontology to a DSL with proper object and data properties; ii) the

correctness of generating an instance ontology for a DSL program; and iii) the ability of the reasoning service

to detect problems in the developed DSL programs.

The rest of the paper is organized as follows: section 2 describes the different phases of the

proposed approach. Section 3 presents the evaluation of the approach on two different domains. Section 4

reviews the current research for utilizing an ontology in developing DSLs and illustrates the differences

between the current research and the proposed approach. Finally, section 5. concludes the work and discusses

our future work.

2. METHOD

We propose a semantic-based DSL development approach that is not restricted to a specific domain

or ontology. The proposed approach is based on using ontology as a domain model in the domain analysis

phase. The ontology generated from the domain analysis phase is used to make a semi-automatic transformation

from the domain analysis phase into the design and implementation phases. The transformation is not fully

automated since some DSL aspects, like the editor aspect, cannot be auto-generated from the input ontology.

Figure 1 depicts the different phases of our approach. The input to the approach is the ontology that

has been developed in the domain analysis phase. The language engineer can utilize one of the already

published ontologies or build a new one from scratch according to his requirements. The approach mainly

consists of three phases, which are briefly explained here, then detailed within the following subsections.

a. Transformation phase: which is responsible for transforming the input ontology into a DSL abstract

representation. Two manual actions are done by the language engineer and the developer after the

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5366-5380

5368

transformation phase: i) The language engineer creates the final DSL editor based on the generated

representation through a projectional language workbench; and ii) The developer to build a DSL

application using the created DSL editor.

b. Instance phase: which is responsible for traversing the built DSL application and translating it into web

ontology language (OWL) constructs to generate an instance ontology that represents the given DSL

application.

c. Reasoning phase: the final phase which provides the reasoning services.

Figure 1. The process of applying our proposed approach

2.1. Transformation phase

This phase uses the domain ontology as an input, to generate the DSL abstract representation which

is the core representation in the projectional editing approach. The abstract representation is a tree

representation that encapsulates the semantic entities and relations in the DSL domain. The nodes of the tree

represent the concepts of the domain and the references among nodes represent the relations. Figure 2 depicts

the internal structure for the transformation phase. The core component for this phase is the transformation

engine that utilizes the ontology handler component to extract the concepts, attributes, and relations from the

input ontology. Then, the transformation engine uses a set of mapping rules to generate the different

components of the DSL abstract representation. In the following subsections, we describe the components of

the DSL abstract representation and how the transformation engine generates these components from the

given ontology.

Figure 2. Transformation phase architecture

2.1.1. DSL structure

The structure component of the DSL abstract representation includes the structure of the tree. It

contains the nodes of the tree and the references among these nodes. The transformation engine translates the

TBox statements in the domain ontology into a tree structure. It utilizes the mapping rules defined in Table 1

for applying the above transformation. The root node of the tree is mapped to the ontology itself. Each class

in the OWL ontology is mapped to a node in the tree representation. The class hierarchy in OWL (i.e.,

rdfs:subClassOf and rdfs:superClassOf) is translated into extension relations between the nodes of the tree.

A property in OWL is a directional binary relation between source entities called domain and target entities

called range. OWL defines three types of properties: object property, datatype property, and annotation

property. The object properties are translated into references among the nodes of the tree. The domain of the

property is the source node and the range is the target node. On the other hand, the datatype properties are

Int J Elec & Comp Eng ISSN: 2088-8708

 A semantic-based approach for domain specific language development (Eman Negm)

5369

added as attributes for the tree nodes. The data type of the generated node’s attribute is the same as the data

type of the property. Finally, the annotation property is added also as a node attribute with string data type.

A property restriction in OWL represents a constraint on a specific property. There are two types of

property restrictions: value constraints and cardinality constraints. A value constraint adds a constraint on the

range of the property while a cardinality constraint adds a constraint on the number of values for a given

property. owl:allValuesFrom(P C) is a value constraint that restricts the range of the property P to a class C.

This restriction is used to determine the target node for the reference of the property P. The second type of

OWL property restrictions is the cardinality constraints that are used to construct the constraints for the DSL

abstract representation as described in subsection 2.1.3.

a. Structure mapping limitations: some OWL constructs are not currently covered in the above mapping

since the abstract representation could not support it up to now:

− Multiple inheritance: OWL supports multiple parents for the same class which is not supported in the

DSL abstract representation as the tree node could extend only one parent.

− Multiple property ranges for the same domain: OWL property is mapped to a node reference from the

domain node to the range node. Accordingly, the same reference cannot contain multiple targets in the

DSL abstract representation.

− Restriction owl:someValuesFrom(P C): OWL property restriction owl:someValuesFrom(P C) is a

value constraint. It means that the range of the property P should contain some values from class C.

The DSL abstract representation contains one specific target node for each node reference.

Accordingly, the mapping does not support owl:someValuesFrom(P C) restriction up till now.

Table 1. Structure mapping rules
OWL 2 Construct Abstract representation

owl:Ontology Root node

owl:Class Node

rdfs:subClassOf Node extension

rdfs:superClassOf Node extension

owl:ObjectProperty Node reference

owl:DatatypeProperty Node attribute

owl:AnnotationProperty Node attribute

owl:Restriction (owl:allValuesFrom) Node reference target

2.1.2. DSL behavior

The behavior component of the DSL abstract representation includes the methods attached to each

node in the tree that represents the behavior of this node. We use this component to set the value of the

annotation properties (i.e. owl:annotationAssertion). As mentioned in the previous section, the annotation

properties are added as attributes for the specified node. A constructor is generated for each node to set the

value of the annotation property as a default value for the specified attribute.

2.1.3. DSL constraints

The constraints component of the DSL abstract representation includes constraints on the relations

among nodes. The constraints of each node are validated every time a new node is created or updated. The

transformation engine translates the cardinality constraints in OWL ontology into tree constraints. OWL

defines three types of cardinality constraints. For a class C the following constraints could be defined:

− Owl:ObjectMinCardinality(C P n): means class C should contain at least n values for property P .

− Owl:ObjectExactCardinality(C P n): means class C should contain exactly n values for property P.

− Owl:ObjectMaxCardinality(C P n): means class C should contain maximum n values for property P .

The above restrictions are mapped to constraints for the source node C on the number of references

of the property P. Table 2 shows the mapping among the above OWL property restrictions and the abstract

representation constraints. #{C.P} represents the number of references for property P from node C. Every

time a reference is added or removed for class C, the constraints are validated. The editor displays an error

message to the developer in case one of the constraints failed.

Table 2. Constraints mapping rules
OWL 2 construct Abstract representation constraint

Owl:ObjectMinCardinality(C P n) #{C.P} ≥ n

Owl:ObjectExactCardinality(C P n) #{C.P} = n

Owl:ObjectMaxCardinality(C P n) #{C.P} ≤ n

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5366-5380

5370

2.2. Instance phase

In the previous phase, the DSL abstract representation was generated from the input ontology. The

language engineer utilizes this representation to create a DSL editor. This editor is used by a developer to

write a concrete DSL program. The DSL program represents an instance from the language meta-model. In

the instance phase, the program, written by the developer, is mapped to an instance ontology. The instance

ontology is an extension of the input ontology with ABox statements. The input of the instance phase is the

DSL program and the output is the instance ontology. Figure 3 depicts the internal structure for the instance

phase. Since we depend on the projectional editing approach, the DSL program itself is represented by an

abstract tree representation. The first step in this phase is traversing this tree representation. Our approach

utilizes Breadth-First traversing algorithm. The second step is extracting the instances, properties values, and

relations among instances. The final step is using the instance mapping rules to create the instance ontology

through the ontology handler.

Figure 3. Instance phase architecture

Table 3 shows the instance mapping rules that are utilized to map a DSL program abstract

representation into an instance ontology. Unlike structure mapping rules that translate OWL TBox constructs

into DSL abstract representation elements, instance mapping rules translate program abstract representation

elements into OWL ABox constructs. Each instance in the program is mapped into an individual in the

instance ontology. This is done by adding owl:classAssertion. References among instances are translated into

owl:-objectPropertyAssertion. OWL could define the inverse property for a given property. Our approach

adds owl:-objectPropertyAssertion for the property and its inverse property if exist. The values of the

attributes are added as values for the dataType properties using owl:dataProperty-Assertion.

Table 3. Instance mapping rules
Abstract representation OWL 2 construct

Class instances owl:classAssertion

Instance’s references owl:objectPropertyAssertion

Attribute values owl:dataPropertyAssertion

2.3. Reasoning phase

The final phase is the reasoning phase. The goal of this phase is to use the instance ontology and the

original input ontology to provide reasoning services for the language engineer and the developer. Ontology

reasoning solves problems like checking satisfiability, check consistency, and find implicit facts that are not

explicitly defined in the ontology in the TBox or ABox statements. Figure 4 shows the internal structure of

the reasoning phase. The core component is the reasoning engine which provides three reasoning services

through the ontology handler: i) consistency checking, ii) satisfiability checking, and iii) equality checking.

While the language engineer benefits from the three services, the developer utilizes the consistency checking

and equality checking services only. The reasoning engine depends on the standard pellet reasoner [18] for

applying the reasoning services. We describe those three services in detail.

2.3.1. Satisfiability checking

For the ontology domain, satisfiability checking checks if the ontology contains unsatisfiable

classes. Unsatisfiable classes are classes that could not have any individuals (i.e., instances) due to some

constraints in the ontology definition. An ontology that contains at least one unsatisfiable class is called

incoherent ontology, but it remains a consistent ontology since it has no contradictions. Any model of an

incoherent ontology that contains an instance of an unsatisfiable class is an inconsistent model.

Int J Elec & Comp Eng ISSN: 2088-8708

 A semantic-based approach for domain specific language development (Eman Negm)

5371

Figure. 4. Reasoning phase architecture

For the DSL domain, satisfiability checking provides the language engineer with a list of

unsatisfiable concepts that should not be instantiated by the developer due to some constraints defined in the

ontology. These classes should be removed from the DSL structure or updated by the language engineer

since if the developer could create instances of them, then the program becomes inconsistent. On the other

hand, if the editor prevents the developer from instantiating those classes, such classes will become useless

and need to be removed. Since our approach maps the DSL structure into an ontology, the approach utilizes

ontology reasoning to check if the DSL structure contains unsatisfiable concepts. In addition, the approach

provides language engineers with a list of unsatisfiable concepts to fix them.

2.3.2. Consistency checking

An ontology is consistent if it has no contradiction. Consistency checking is a precondition for any

other reasoning service. If the ontology is inconsistent, then no reasoning algorithm can run on this ontology.

Our approach checks consistency on the DSL level and the program level. The language engineer can check

the consistency of the DSL structure and the developer can check the consistency of the DSL program. This

is done by checking the consistency of the mapped ontology. The source ontology is used to validate the

consistency of the DSL structure and the instance ontology is used to validate the consistency of the DSL

program. One reason for inconsistency is the initialization of an instance from an unsatisfiable concept.

2.3.3. Equality checking

Equality checking extracts the equal classes and individuals from a given ontology. The equality

check is done on the DSL level and the program level. The language engineer can retrieve a list of equivalent

classes. These classes may be redundant classes in the DSL structure that should be removed or may indicate

missing fields or methods that should be added to differentiate between those equivalent classes. On the

program level, the developer can retrieve a list of equivalent objects which should be removed or updated by

the developer.

2.4. Implementation

The approach is implemented as a new component for meta programming system (MPS) workbench

[19]. The component is integrated with MPS as a new plugin. MPS is an open-source DSL workbench. It

follows the projectional editing approach for the DSL development by providing a set of meta-languages that

allow a language engineer to define the different aspects of a DSL. New actions are added to the MPS

workbench as follows: i) loading language structure from ontology, ii) creating instance ontology, and

iii) running reasoning services. Ontology handler utilizes OWL API for OWL operations. It is a JavaAPI for

handling OWL 2 ontologies. The reasoning engine depends on the standard Pellet reasoner [18].

3. EVALUATION AND RESULTS

This section discusses two case studies that demonstrate how our approach could be used to build a

DSL for the IoT domain and the e-commerce domain. The case studies evaluate the three phases of the

approach. The first case study see section 3.1 involves an IoT application, whereas the second case study

see section 3.2 utilizes an e-commerce application. Such variance is intentional to illustrate that our proposed

approach can generalize to different domains. Each study explains the evaluation steps, and the

corresponding results based on some collected metrics.

3.1. Case study 1: OntIoT

In this case study, we show how the proposed approach can be utilized to build OntIoT DSL. The

OntIoT DSL is a DSL that models IoT domain based on the semantic sensor network (SSN) ontology [17].

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5366-5380

5372

The case study evaluates the results generated from the transformation and instance phases. In addition, an

evolution scenario for OntIoT is proposed to explain the benefits of the proposed reasoning services for the

language engineer and the developer. SSN ontology is an ontology to model the domain of sensors, actuators,

and samplers with their observations and actuations. The current version of SSN ontology is developed by

world wide web consortium (W3C) and open geospatial consortium (OGC).

3.1.1. Transformation phase evaluation

In this phase, the language engineer will auto-generate the abstract representation of the OntIoT

DSL from the SSN ontology. The language engineer is not required to model each IoT concept manually.

Additionally, it reduces the error probability that OntIoT has missing or wrong domain relations or

concepts. Finally, OntIoT extends the IoT knowledge that is encapsulated in the SSN ontology. Table 4

shows the mapping between OntIoT structure and SSN ontology. All SSN ontology classes are

successfully mapped into OntIoT concepts plus three utility concepts: first, the MainScript which is an

empty concept that should be updated by the language engineer to determine which concepts should be

included in the editor main script. Second, the OntConcept which is the parent concept for all the

generated ontology concepts. OntConcept contains the internationalized resource identifier (IRI) of the

concept in the ontology. Third, the DateTime concept which represents the DateTime RDF datatype as it

not a default datatype in MPS. All restrictions are covered in OntIoT (i.e., ObjectAllValuesFrom,

DataExactCardinality, ObjectExactCardinality, and ObjectMinCardinality).

Table 4. OntIoT structure evaluation
 SSN ontology OntIoT structure

Classes 22 25

Restriction: object all values from 48 48

Restriction: data exact cardinality 3 3

Restriction: object exact cardinality 9 9

Restriction: object min cardinality 13 13

Object properties 35 35

Data properties 3 3

Annotation properties 75 75

Super class relation 7 6

All object properties and data properties that are defined by a domain and a range are mapped

successfully in the OntIoT structure. All annotation properties are mapped to concept attributes in the OntIoT

structure. The default values for these attributes are mapped successfully to the values defined in SSN

ontology. OntIoT is missing one superclass relation since it is a multiple inheritance relation which is not

supported in our approach up to now.

a) Creating OntIoT editor: an editor was created manually to design the projection process of the above

structure. OntIoT editor is a textual editor created by MPS workbench using the MPS editor meta-

language.

b) Writing IoT script: SSN ontology provides a set of scenarios for using the ontology terms [20]. For each

scenario, it provides an OWL file that represents the given scenario. We utilized scenario (B.3 Apartment

134 [20]) for evaluating OntIoT instance ontology. In the following sections, we will refer to the OWL

provided by SSN as “SSN instance ontology”. The scenario includes two sensors and one actuator that are

deployed in apartment no.134. The first sensor (s 926) observes the electric consumption of the

apartment. It observed the electric consumption on 15 April 2017 00:00:00 with a value of 22.4. The

other sensor (s 23) measures the temperature of the apartment. There is a window closer actuator (a 987)

that is responsible for closing the window of the apartment. The actuator changed the status of the

window to close on 18 April 2017 17:24:00 and return true. To simulate the manual action that should be

done by the developer to write a script that encodes the above scenario, an IoT script has been written to

represent the above scenario using the OntIoT editor. Figure 5 shows the IoT script and the created

OntIoT textual editor.

3.1.2. Instance phase evaluation

 The instance ontology, that maps to the above IoT script, has been generated using our MPS plugin.

Table 5 shows a comparison among the individuals and the properties included in the OntIoT instance

ontology and the SSN instance ontology. The OntIoT instance ontology does not miss any individuals or

properties from the given SSN instance ontology.

Int J Elec & Comp Eng ISSN: 2088-8708

 A semantic-based approach for domain specific language development (Eman Negm)

5373

Figure 5. IoT script using OntIoT editor

Table 5. OntIoT instance ontology evaluation
 SSN instance ontology OntIoT instance ontology

Individuals 9 12

Property assertions 17 29

Table 6 shows the analysis for the results provided in Table 5 by listing the extra entities that are

generated in the OntIoT instance ontology and do not exist in the SSN instance ontology. apartment 134 is

added as an individual in the OntIoT instance ontology which is not included in the SSN instance ontology

(I1). Two extra individuals are generated in the OntIoT instance ontology that map to the Result class with

values (22.4, true) (I2, I3).

Inverse property (P1) is missing in the SSN instance ontology. In addition, the SSN instance

ontology is missing the relation between window W 104 and the actuation Act 188. Accordingly, two extra

properties are generated in the OntIoT instance ontology (P2, P3). The remaining extra properties are

generated in the OntIoT instance ontology due to adding the new individuals (P4-P12). The SSN instance

ontology contains property hasSimpleResult(Act 188, true) which maps to hasResult(Act 188, true) in the

OntIoT instance ontology. Consequently, the property hasResult(Act 188, true) is not included in Table 6.

This evaluation proves that OntIoT instance ontology models the given script successfully and includes some

entities that are missing in the manual modeling of the scenario.

Table 6. OntIoT instance ontology extra entities
Entity type Code Entity name Entity values

Individuals I1 FeatureOfInterest apartment 134

I2 Result 22.4

I3 Result true

Properties P1 isObservedBy (temperature, S 23)

P2 hasFeatureOfIneterset (Act 188, W 104)

P3 isFeatureOfIneterset (W 104, Act 188)

P4 hasFeatureOfIneterset (Obv 235714, appartment 134)

P5 isFeatureOfIneterset (appartment 134, Obv 235714)

P6 isResultOf (22.4, Obv 235714)

P7 isResultOf (true, Act 188)

P8 hasResult (Obv 235714, 22.4)

P8 isPropertyOf (electricConsumption, appartment 134)

P10 isPropertyOf (temperature, appartment 134)

P11 hasProperty (appartment 134, electricConsumption)

P12 hasProperty (appartment 134, temperature)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5366-5380

5374

3.1.3. Reasoning phase evaluation

In the reasoning phase, the language engineer and the developer would utilize the reasoning services

of the OntIoT DSL. In this section, we will assume an evolution scenario for the previous OntIoT structure to

describe the value of the provided reasoning services. The evolution scenario is shown in Table 7. Figure 6

depicts the final structure for OntIoT V1.3. In the following paragraphs, we will show how reasoning services

will help the language engineer and the developer to detect problems in the OntIoT version 1.3.

Table 7. OntIoT evolution scenario
Version Type Modification

V1.0 - Same as SSN ontology

V1.1 Add SimpleTemperatureSensor

 Extends Sensor

 Observes TemperatureObservation

V1.2 Add SimpleCiscoTemperatureSensor

 Extends SimpleTemperatureSensor

 Hosted by CiscoPlatform

V1.3 Add AdvancedTemperatureSensor

 Extends Sensor

 Hosted by AdvancedCiscoPlatform

 Observes AdvanceedTemperatureObservation

 Update TemperatureObservation can be observed only by AdvancedTemperatureSensor

 Add SimpleTemperatureSensor and AdvancedTemperatureSensor are disjoint concepts

Figure 6. OntIoT structure V 1.3

a. DSL level

The language developer will run the reasoning services on OntIoT V1.3. The consistency checking

detects that it is a consistent DSL that has no contradictions. Figure 7 shows that OntIoT V1.3 contains

unsatisfiable classes. SimpleTemperatureSensor, SimpleCiscoTemperatureSensor, and CiscoPlatform are

unsatisfiable classes. SimpleTemperatureSensor requires at least one TemperatureObservation while the

TemperatureObservation can be observed only by AdvancedTemperatureSensor as per V1.3 updates.

Accordingly, no instances can be created from SimpleTemperatureSensor. SimpleCiscoTemperatureSensor

extends SimpleTemperatureSensor. Consequently, any instantiation for SimpleCiscoTemperatureSensor

requires instantiation for SimpleTemperatureSensor. As a result, SimpleCiscoTemperatureSensor is also an

unsatisfiable class. The same case for CiscoPlatform that requires at least one SimpleCiscoTemperatureSensor.

For the class equality checking, Figure 7 shows that TemperatureObservation and

AdvancedTemperatureObservation are equivalent classes. The changes done in V1.3 make all temperature

observations are done using AdvancedTemperatureSensor, so no need to differentiate between

TemperatureObservation and AdvancedTemperatureObservation. The language engineer will get a list of the

previous unsatisfiable and equivalent classes that should be updated in the OntIoT V1.3 which may not be

Int J Elec & Comp Eng ISSN: 2088-8708

 A semantic-based approach for domain specific language development (Eman Negm)

5375

detected by the language engineer in the normal approaches.

Figure 7. OntIoT V1.3 unsatisfiable classes and OntIoT V1.3 equal classes

b. Program level

Assuming that the developer used the new release from OntIoT editor to write the IoT script that is

depicted in Figure 8. The consistency checking service detects that the script is inconsistent since it contains

an instance (cisco_S_124) of unsatisfiable class (SimpleCiscoTemperatureSensor). The developer should not

initialize any SimpleCiscoTemperatureSensor starting from OntIoT V 1.3.

Figure 8. OntIoT V1.3 consistency on program level

For simulating the equivalence among objects, the OWL constructs shown in Figure 9 is added to

the SSN ontology. Two observations are equivalent if the two observations are made by the same sensor at

the same time for the same feature of interest. A similar construct has been added to actuations. After the

developer removed the reason for inconsistency by removing the cisco_S_124 object, the developer can run

the object equality service. Observations Obv_235714 and Obv_235715 are displayed as equivalent

observations as shown in Figure 10. The developer should validate if these observations are redundant or

there is a mistake in their data. In addition, the service shows that actuations Act_188 and Act_132 are

equivalent actuations.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5366-5380

5376

Figure 9. Modified SSN equality constructs

Figure 10. OntIoT V1.3 equal individuals

3.2. Case study 2: OnteCom

The proposed approach is a generic approach that does not depend on a specific domain or ontology.

In this case study, the proposed approach is evaluated on the e-commerce domain. The approach is utilized to

build OnteCom DSL. The OnteCom DSL is a DSL that models the e-commerce domain based on the

GoodRelations ontology [21]. The case study proves the generalization of the mapping rules utilized in the

transformation and instance phase. The generalization of the reasoning phase is extended from the

standardization and generalization of the pellet reasoner.

GoodRelations ontology is an ontology to model the e-commerce aspects like companies, products,

services, opening hours, and offers. The ontology is successfully used to semantically annotate the services,

products and offers provided by business entities like Best Buy to enhance its visibility in search engines.

GoodRelations ontology is supported by Google and Bing search engines. In 2012, GoodRelations ontology

is considered as the official e-commerce core for schema.org. Schema.org [22] is a vocabulary to model

structured data of web pages and emails. It is sponsored by Google, Microsoft, Yahoo.

The semantic model of the GoodRelations ontology consists mainly of three classes: i) BusinessEntity:

models business organizations or persons. BusinessEntity has a set of attributes like name, address, and

branches; ii) Offering: models the offers that are provided by the business entities. An offer includes attributes

like validFrom and validThrough; and iii) ProductOrService: models the products and services that are included

in offers.

3.2.1. Transformation phase evaluation

As shown in Table 8, OnteCom covers all the classes, object properties, data properties, and

annotation properties of the GoodRelations ontology. There are three extra classes that are described in

subsection 3.1.1. OnteCom is missing three super-class relations due to multiple inheritance which is not

supported by the proposed approach up to now.

Table 8. OnteCom structure evaluation
 GoodRelations ontology OnteCom stucture

Classes 37 40

Object properties 93 93

Data properties 150 150

Annotation properties 100 100

Super class relation 19 16

a) Creating OnteCom editor: as done for OntIoT, an editor was created manually to design the projection

process of the above structure. OnteCom editor is a textual editor that supports tabular and textual editing

for the opening hours of the branches.

b) Writing e-commerce script: for evaluating the instance phase, we mix the examples provided by Semantic

Web and (E-Business+Web Science) Research Group at Bundeswehr University Munich. We refer to the

ontology provided by the above two sites as “GoodRelations Instance Ontology”. The script includes

defining a business entity called Electron.com. Electron.com has an offer for one TV set with price 200

USD. Electron.com has one branch called myshop with a set of predefined opening hours.

Figure 11 shows the e-commerce script for the above example with a textual representation for the

opening hours of the myShop branch. Figure 12 shows a tabular editor of the opening hours concept for the

same abstract representation. The OnteCom editor shows the benefits of the projectional editor since the

editor could mix textual and tabular notations. In addition, it supports multiple projections for the same

abstract representation.

Int J Elec & Comp Eng ISSN: 2088-8708

 A semantic-based approach for domain specific language development (Eman Negm)

5377

Figure 11. OnteCom editor with textual notations

Figure 12. OnteCom editor with tabular notations

3.2.2. Instance phase evaluation

Table 9 shows a comparison between the individuals and properties generated in the instance

ontology for the script depicted in Figure 11 and the GoodRelations instance ontology provided by Semantic

Web and (E-Business+Web Science) research group. The OnteCom instance ontology does not miss any

individuals from the GoodRelations instance ontology. All properties of GoodRelations instance ontology are

covered in OnteCom instance ontology plus an extra 15 properties. These extra properties are data properties

that represent a name data property for each individual which are not assigned in the GoodRelations instance

ontology.

Table 9. OnteCom instance ontology evaluation
 OnteCom instance ontology GoodRelations instance ontology

Individuals 15 15

Properties 39 24

4. DISCUSSION

 In this section, we consider a few remaining issues. We discuss whether ontology has previously

been used during the DSL development process, or not. Such discussion holds for both grammar-based

languages, and model-based software development. We also discuss how our proposed approach compares to

previous work within the same topic.

4.1. Has ontology been used during the DSL development process?

4.1.1. Ontology and grammar-based languages

One of the research directions to merge ontology and DSL development process is to utilize the

ontology generated from the domain analysis phase to construct the target DSL grammar. Tairas et al. [23]

investigate the use of ontology in the domain analysis to define the concepts and the relations of the domain.

The developed ontology is translated into a class diagram then into a grammar. Ceh et al. [24], [25] proposed

using ontology in the domain analysis phase and introduced Ontology2DSL tool that utilizes such ontology

in the DSL domain analysis phase to model the domain. Then, Ontology2DSL uses the given ontology to

automatically generate the grammar of the DSL in the implementation phase. Alternatively, Pereira et al. [26]

translates an ontology that is used in the DSL domain analysis phase, into an attribute grammar. The

generated grammar is written in the syntax ANTLR. As a result, the parser could be generated directly from

this grammar. Semantic rules could be added manually to the generated grammar to get the desired behavior

that is not defined in the source ontology. The generated attribute grammar contains attributes and semantic

evaluation rules. Unlike our approach, the role of the ontology is terminated after generating the DSL

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5366-5380

5378

grammar in all aforementioned research [23]–[26]. As a result, the language engineers and developers cannot

benefit from ontology reasoning services.

4.1.2. Ontology and model-based software development

To use a standard model in the model based soft-ware development (MBSD) process, an ontology

can be merged with MBSD to utilize ontology as a domain model [27], [28]. Walter et al. [29] integrate

Ecore metamodel [30] and OWL2 at the M3 layer. The integrated MetaMetaModel is used by the language

engineer to create the DSL metamodel at the M2 layer. Such work was further extended provide a unified

ontology-based metamodeling language to support both language engineers and domain engineers [31]. In

[32], the authors propose an ontology-based framework for domain specific modeling. The framework

provides a set of reasoning services like consistency, satisfiability, and classification checking. The

limitations of this framework are the scalability and the usability, the time needed to perform semantic

reasoning services is increased with the model’s size. Moreover, the meta-language, used by the DSL

engineer and the developer, integrates the OWL syntax and KM3 syntax [33]. Accordingly, the DSL engineer

and the developer still should deal with the OWL syntax which is not user friendly. Jafer et al. [34] studied

the ability of automatic transformation from OWL 2 to Ecore meta-model. Jafer et al. [34] provide mapping

rules from OWL to Ecore. However, no concrete implementation is provided up to now for the above

transformation rules.

4.2. How does our approach compare to alternative approaches for DSL development?

To our knowledge, no current research is done to integrate ontology and projectional editing.

Table 10 displays a comparison between our approach and the work done in the grammar-based approach

and model-based approach. The comparison includes four criteria: i) integration with an existing workbench,

ii) providing reasoning services, iii) hiding OWL syntax, and iv) supporting projectional editing. While

discussed research translates the ontology developed in the domain analysis phase into grammar in the

implementation phase, our approach translates the ontology into an abstract model for the target DSL. This

allows our approach to support textual and graphical DSLs, unlike grammar-based approaches. Furthermore,

our approach provides reasoning services for a language engineer and a developer which is not supported in

the grammar-based approaches.

The model-based approaches vary from our approach as follows: i) They lack support for the

projectional editing; ii) Only one approach supports reasoning services for the language engineer and the

developer [29], [31], [32], but it depends on an integrated metamodeling language that integrates OWL and

Ecore/KM3. Hence, the language engineer should be aware of the OWL syntax. Our approach uses

transformation rules to translate OWL into the DSL abstract representation. As a result, there is no need for

the language engineer to be aware of the OWL syntax; and iii) None of the previous research is integrated

with one of the current DSL workbenches. Our approach is integrated with meta programming system (MPS)

workbench.

Table 10. Comparison with related work
Approach Research Integration with

work-bench

Reasoning

services

Hide OWL

Syntax

Projectional

editing

Grammar based Tairas et al. [23] (2009) √

Ceh et al. [24] (2010) and [25] (2011) √

Pereira et al. [26] (2016) √

Model based Walter et al. [29] (2009) √

Walter et al. [31] (2010) √

Walter et al. [32] (2014) √

Jafer [34] (2017) √

Ojamaa et al. [35] (2017) and

Haav and Ojamaa [36] (2015)

 √

Our Approach (2020) √ √ √ √

5. CONCLUSION AND FUTURE WORK

 A semi-automatic generation for a DSL from a domain ontology is proposed based on a set of

mapping rules. As a result, the DSL development time and the manual work required from a language

engineer are reduced. The proposed approach utilizes ontology to provide a set of reasoning services for the

language engineer and the developer. There is a big similarity between the ontology structure and the

semantic abstract representation for DSLs due to the similarity between the nature of an ontology and the

nature of a DSL. Both concepts are used to model a domain but for different purposes. Consequently, the

Int J Elec & Comp Eng ISSN: 2088-8708

 A semantic-based approach for domain specific language development (Eman Negm)

5379

projection editing approach which depends on the abstract representation to represent the DSL is more

suitable for ontology integration than grammar-based approaches. Additionally, utilizing ontology in the DSL

development can reduce the DSL development time since it allows automatic transformation from the

domain analysis phase into the design and implementation phase. In addition, it allows formal validation for

the DSL and the domain program which is missing in the current language workbenches.

 Future research should also consider extending the reasoning phase by adding more reasoning and

querying services. In addition, we plan to extend the mapping between OWL and DSL abstract representation

to cover more OWL constructs. Further work is needed to provide an ontology and a DSL co-evolution. The

changes made on the DSL should be reflected on the corresponding ontology and vice versa. Moreover,

future studies could investigate utilizing ontology to allow semantic composition among DSLs. In addition,

the applicability of extending OWL as a standard representation for the DSLs to allow DSLs interoperability

might prove an important area for future research.

REFERENCES
[1] R. Lämmel, “A story of a domain-specific language,” in Software Languages, Cham: Springer International Publishing, 2018,

pp. 51–86.

[2] R. B. Kieburtz et al., “A software engineering experiment in software component generation,” in Proceedings of IEEE 18th

International Conference on Software Engineering, 1996, pp. 542–552, doi: 10.1109/ICSE.1996.493448.

[3] J.-P. Tolvanen, J. Sprinkle, and J. Gray, “The 6th OOPSLA workshop on domain-specific modeling,” in Companion to the 21st

ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications - OOPSLA ’06, 2006,

pp. 707–708, doi: 10.1145/1176617.1176647.

[4] A. N. Johanson and W. Hasselbring, “Effectiveness and efficiency of a domain-specific language for high-performance marine

ecosystem simulation: a controlled experiment,” Empirical Software Engineering, vol. 22, no. 4, pp. 2206–2236, Aug. 2017, doi:

10.1007/s10664-016-9483-z.

[5] M. Fowler, “Language workbenches: the killer-app for domain specific languages,” martinfowler.com, 2005.

https://martinfowler.com/articles/languageWorkbench.html (accessed Feb. 03, 2023).

[6] J. Gray, K. Fisher, C. Consel, G. Karsai, M. Mernik, and J.-P. Tolvanen, “DSLs: the good, the bad, and the ugly,” in Companion

to the 23rd ACM SIGPLAN conference on Object-oriented programming systems languages and applications, Oct. 2008,

pp. 791–794, doi: 10.1145/1449814.1449863.

[7] T. Kosar, M. Mernik, and J. C. Carver, “Program comprehension of domain-specific and general-purpose languages: comparison

using a family of experiments,” Empirical Software Engineering, vol. 17, no. 3, pp. 276–304, Jun. 2012, doi: 10.1007/s10664-

011-9172-x.

[8] T. Kosar, S. Gaberc, J. C. Carver, and M. Mernik, “Program comprehension of domain-specific and general-purpose languages:

replication of a family of experiments using integrated development environments,” Empirical Software Engineering, vol. 23,

no. 5, pp. 2734–2763, Oct. 2018, doi: 10.1007/s10664-017-9593-2.

[9] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-specific languages,” ACM Computing Surveys,

vol. 37, no. 4, pp. 316–344, Dec. 2005, doi: 10.1145/1118890.1118892.

[10] E. Negm, S. Makady, and A. Salah, “Survey on domain specific languages implementation aspects,” International Journal of

Advanced Computer Science and Applications, vol. 10, no. 11, 2019, doi: 10.14569/IJACSA.2019.0101183.

[11] A. Barišic, M. Goulão, and V. Amaral, “Domain-specific language domain analysis and evaluation: a systematic literature

review,” Universidade Nova da Lisboa, 2015.

[12] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing?,” International Journal of Human-

Computer Studies, vol. 43, no. 5–6, pp. 907–928, Nov. 1995, doi: 10.1006/ijhc.1995.1081.

[13] N. MaduraiMeenachi and M. Sai Baba, “A survey on usage of ontology in different domain,” International Journal of Applied

Information Systems, vol. 4, no. 2, pp. 46–55, Sep. 2012, doi: 10.5120/ijais12-450666.

[14] V. Dimitrieski, G. Petrović, A. Kovačević, I. Luković, and H. Fujita, “A survey on ontologies and ontology alignment approaches

in healthcare,” in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems,

2016, vol. 9799, pp. 373–385, doi: 10.1007/978-3-319-42007-3_32.

[15] I. Szilagyi and P. Wira, “Ontologies and semantic web for the internet of things-a survey,” in IECON 2016 - 42nd Annual

Conference of the IEEE Industrial Electronics Society, Oct. 2016, pp. 6949–6954, doi: 10.1109/IECON.2016.7793744.

[16] E. Negm, S. Makady, and A. Salah, “Towards ontology-based domain specific language for internet of things,” in Proceedings of

the 2020 9th International Conference on Software and Information Engineering (ICSIE), Nov. 2020, pp. 146–151, doi:

10.1145/3436829.3436833.

[17] A. Haller et al., “The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations,

sampling, and actuation,” Semantic Web, vol. 10, no. 1, pp. 9–32, Dec. 2018, doi: 10.3233/SW-180320.

[18] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: a practical OWL-DL reasoner,” Journal of Web Semantics,

vol. 5, no. 2, pp. 51–53, Jun. 2007, doi: 10.1016/j.websem.2007.03.004.

[19] F. Campagne, The MPS language workbench: volume I. Fabien Campagne. CreateSpace Independent Publishing Platform, 2014.

[20] OGC, “Semantic sensor network ontology,” W3C, 2017. https://www.w3.org/TR/vocab-ssn/ (accessed Feb. 03, 2023).

[21] M. Hepp, “Goodrelations: an ontology for describing products and services offers on the web,” in Knowledge Engineering:

Practice and Patterns: 16th International Conference, EKAW 2008, Acitrezza, Italy, September 29-October 2, 2008. Proceedings

16, vol. 5268, A. Gangemi and J. Euzenat, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 329–346.

[22] R. V. Guha, D. Brickley, and S. Macbeth, “Schema.org: evolution of structured data on the web,” Communications of the ACM,

vol. 59, no. 2, pp. 44–51, Jan. 2016, doi: 10.1145/2844544.

[23] R. Tairas, M. Mernik, and J. Gray, “Using ontologies in the domain analysis of domain-specific languages,” in Models in Software

Engineering: Workshops and Symposia at MODELS 2008, Toulouse, France, September 28-October 3, 2008. Reports and Revised

Selected Papers 11, vol. 5421, M. R. V. Chaudron, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 332–342.

[24] I. Čeh, M. Črepinšek, T. Kosar, and M. Mernik, “Using ontology in the development of domain-specific languages,” INForum,

pp. 185–196, 2010.

[25] I. Ceh, M. Crepinsek, T. Kosar, and M. Mernik, “Ontology driven development of domain-specific languages,” Computer Science

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 5366-5380

5380

and Information Systems, vol. 8, no. 2, pp. 317–342, 2011, doi: 10.2298/CSIS101231019C.

[26] M. J. V. Pereira, J. Fonseca, and P. R. Henriques, “Ontological approach for DSL development,” Computer Languages, Systems

& Structures, vol. 45, pp. 35–52, Apr. 2016, doi: 10.1016/j.cl.2015.12.004.

[27] S. Staab, T. Walter, G. Gröner, and F. S. Parreiras, “Model driven engineering with ontology technologies,” in Reasoning Web.

Semantic Technologies for Software Engineering, 2010, pp. 62–98.

[28] H. M. Haav, “A comparative study of approaches of ontology driven software development,” Informatica, vol. 29, no. 3,

pp. 439–466, 2018, doi: 10.5555/ios.INF1185.

[29] T. Walter, F. Silva Parreiras, and S. Staab, “OntoDSL: an ontology-based framework for domain-specific languages,” in Model

Driven Engineering Languages and Systems, 2009, pp. 408–422.

[30] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse modeling framework. Pearson Education, 2008.

[31] T. Walter, F. S. Parreiras, S. Staab, and J. Ebert, “Joint language and domain engineering,” in Modelling Foundations and

Applications, 2010, pp. 321–336.

[32] T. Walter, F. S. Parreiras, and S. Staab, “An ontology-based framework for domain-specific modeling,” Software & Systems

Modeling, vol. 13, no. 1, pp. 83–108, Feb. 2014, doi: 10.1007/s10270-012-0249-9.

[33] F. Jouault and J. Bézivin, “KM3: a DSL for metamodel specification,” in Formal Methods for Open Object-Based Distributed

Systems, 2006, pp. 171–185.

[34] S. Jafer, B. Chhaya, and U. Durak, “OWL ontology to Ecore metamodel transformation for designing a domain specific language

to develop aviation scenarios,” in Proceedings of the symposium on model-driven approaches for simulation engineering, 2017,

pp. 1–11.

[35] A. Ojamaa, H.-M. Haav, and J. Penjam, “Semi-automated generation of DSL meta models from formal domain ontologies,” in

Model and Data Engineering, 2015, pp. 3–15.

[36] H. M. Haav and A. Ojamaa, “Semi-automated integration of domain ontologies to DSL meta-models,” International Journal of

Intelligent Information and Database Systems, vol. 10, no. 1/2, 2017, doi: 10.1504/IJIIDS.2017.086198.

BIOGRAPHIES OF AUTHORS

Eman Negm received the B.Sc. and M.Sc. degrees in computer science from the

Faculty of Computers and Information, Cairo University in 2008, and 2014 respectively. She
received her Ph.D. degree in computer science from the Faculty of Computers and Artificial

Intelligence, Cairo University in 2021. Currently, she is an assistant lecturer at the Department

of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University. Her

research interests include software engineering, software modeling, ontologies, and domain
specific languages. She can be contacted at email: e.negm@fci-cu.edu.eg.

Akram Salah graduated from mechanical engineering and worked in computer

programming for 7 years before he got his M.Sc. (85) and Ph.D. degrees from University of

Alabama at Birmingham, USA in 1986 in computer and information sciences. He taught in the

American University in Cairo, Michigan State University, Cairo University, before he joined
North Dakota State University where he designed and started a graduate program that offers

Ph.D. and M.Sc. in software engineering. Dr. Salah’s research interest was in data knowledge,

and software engineering. He had over than 100 published papers. He was an associate

professor in the Faculty of Computers and Artificial Intelligence, Cairo University. He can be
contacted at email: akram.salah@fci-cu.edu.eg.

Soha Makady received her B.Sc. and M.Sc. in computer science with an

honorary degree from the Faculty of Computers and Information, Cairo University in 2002
and 2005 respectively. She received her Ph.D. in software engineering from the University of

Calgary, Canada in 2015. Her main research interests include software evolution, software

architecture, and software testing. She is currently an associate professor in the Faculty of

Computers and Artificial Intelligence, Cairo University, Egypt. She has supervised 2 M.Sc.
students and one Ph.D. student. She is currently supervising 3 Ph.D. students and 3 M.Sc.

students. She has 10 referred research papers in international journals and conference

proceedings. She can be contacted at email: s.makady@fci-cu.edu.eg.

https://orcid.org/0000-0003-4875-180X
https://scholar.google.com/citations?user=EqyOJ7EAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57191882456
https://orcid.org/0000-0002-3330-6204
https://www.scopus.com/authid/detail.uri?authorId=55252783600

