
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 5, October 2023, pp. 5599~5606

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i5.pp5599-5606  5599

Journal homepage: http://ijece.iaescore.com

Analysis of the learning object-oriented programming factors

Qais Ali Batiha, Nazatul Aini Abd Majid, Noraidah Sahari, Noorazean Mohd Ali
Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia

Article Info ABSTRACT

Article history:

Received Jan 24, 2023

Revised Mar 11, 2023

Accepted Mar 28, 2023

 Students often feel overwhelmed by object-oriented programming courses.

They find it difficult and complex to learn, requiring a high cognitive load to

use the concepts in coding. These issues lead to demotivation in learning

programming. This research aims to identify and verify factors that

contribute to learning object-oriented programming from two perspectives:

interviews and surveys. A literature review was conducted to identify these

factors, followed by interviews with five experts who have been teaching

object-oriented programming for over ten years to confirm them. Based on

the interview results, a questionnaire was developed and administered to

31 bachelor students and 19 lecturers with master’s or doctorate degrees in

computer science. The responses indicated that the identified factors were

acceptable, with scores ranging from 3.74 to 4.65. The outcomes of this

study are a set of factors that should be considered in a programming

environment to improve the teaching and learning of object-oriented

programming and make it more accessible and engaging for students.

Keywords:

Effectiveness learning

Learning environment

Learning object-oriented

factors

Motivation

Object-oriented programming

difficulties
This is an open access article under the CC BY-SA license.

Corresponding Author:

Nazatul Aini Abd Majid

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia

Bangi, 43600, Malaysia

Email: nazatulaini@ukm.edu.my

1. INTRODUCTION

Research shows that it is difficult for students to learn object-oriented programming languages like

Java, Python, or C++ because they are based on abstract concepts like class, inheritance, and polymorphism

[1]–[4]. Factors such as problem complexity, programming environment, and students’ skills can also make

learning difficult. To improve learning, integrated approaches such as hands-on learning or visualized

programming environments have been developed. Examples of these visualized programming environments

include BlueJ [5], Greenfoot [6], and object-oriented puzzle programming (OOPP) [7].

According to Su and Hsu [8], reducing students’ difficulties in grasping the concepts, principles, and

rules of an object-oriented programming language may improve their performance, competency, and

motivation to learn the language. As a result, various studies have been conducted on making programming

more motivating and interesting, enhancing performance, and boosting programmers’ confidence [9], [10].

Therefore, in order for students to learn an object-oriented programming language, it is necessary to

determine the fundamental factors that affect their learning. The goal of this work is to develop a list of

programming learning factors that can help students learn an object-oriented programming language. This list

of factors will then be validated using qualitative and quantitative methods from different perspectives.

In the first section of this study, we provide a concise explanation of the study’s main topic, as well

as the goals and how they are accomplished. The challenges and issues are summarized in section 2, which

builds on prior work. In section 3, relevant works are summarized and critically evaluated. The methodologies

used in this investigation are discussed in section 4. Section 5 presents the analysis of the results and discusses

the findings based on various perspectives. Finally, section 6 presents the conclusion of this research.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5599-5606

5600

2. PROGRAMMING LANGUAGE ISSUES AND CHALLENGES

According to Robins [11], students often encounter challenges in the form of success/failure rates as

well as the complexity of programming (such as the code, the object, the model, and the display) when

enrolling in programming courses. However, there are effective and innovative approaches to teaching

programming skills that motivate novice students to learn programming while also adding value to the

teaching process. There are many learning tools for graphical programming, which is more appealing than

textual programming. As college students are at an age where they can start learning how to program and

solve problems, these tools have been proposed as part of university learning methods [12].

In general, logic is the most crucial aspect of the programming process, and it is also the first step in

the creation of a complete program. Many high-level languages, such as Java, C++, and Arduino, have

similar syntactic and semantic rules. However, writing programs in a specific programming language

requires that the programmer be familiar with the language’s structure and be able to recall certain concepts.

While the complex syntax of programming languages may be easy for experts to understand, it offers no

instructional benefit to beginners. As a result, many students struggle to grasp basic concepts, such as

object-oriented management or the development of an algorithm to solve a problem.

The challenges that students face when learning object-oriented programming have led to the

development of various educational programming environments in recent years. The design of these

environments is a crucial topic as it can impact the success of students’ learning. Hence, this research aims to

explore the factors that educational programming environments possess to enhance students’ learning

outcomes and identify the main factors that should be considered in any learning environment for

object-oriented programming.

Mackin [13] claims that the turtle graphics library is included in the logo programming language.

Papert’s theory on mathematics teaching inspired this logo-based effort, so Turtle graphics are often used in

introductory computer science courses. The process of sketching on paper with a pen served as a point of

comparison for the physical and graphical models that were the basis for the design of the turtle graphics,

making the concept easy for students to understand.

Alice is a block-based narrative environment designed to help at-risk female students increase their

chances of success in computer science 1 and lower-level courses [14], [15]. An add-on for Alice, called

AliCe-ViLlagE, was released in 2014 with the aim of improving students’ confidence and collaboration by

integrating the Alice environment with a pair of programming methods [16]. With Alice and AliCe-ViLlagE,

students can easily observe the behavior of their animated programs. The visual feedback provided allows

students to make connections between the program “pieces” and the actions they observe in the animations.

However, while Al-Jarrah and Pontelli [16] have found that this tool has a positive effect compared to Alice,

there is still a lack of evaluation of its effectiveness for teaching object-oriented programming to university

students. Additionally, some learners have expressed a preference for seeing the real Java code as this would

help them become more familiar with industry-standard coding practices [17]. It is worth noting that Alice

only provides an object representation of the program, which excludes learning the programming language.

The Greenfoot system is an educational development tool designed to teach programming to

pre-university students [6]. Greenfoot combines Java programming with interactive and graphical outputs as

a standard. It encourages learners to experiment with the appearance and behavior of objects using the

Greenfoot interface, which allows them to create new functions or modify Java code using the built-in editor.

However, the strict syntax rules of the Java language can be challenging for inexperienced learners, who may

have difficulty detecting and correcting syntax errors in their code. By providing a more interactive and

user-friendly learning environment, Greenfoot enables students to develop their programming skills and gain

a deeper understanding of object-oriented concepts.

To investigate the use of block programming on touchscreen devices, a co-located collaborative

block-based programming environment called multi-device grace was developed [18]. This environment

allows multiple users to work on the same program on different devices, enabling them to collaborate and

share their code in real-time. While the environment was designed specifically for touch-enabled devices,

there is a lack of research on the effectiveness of using it to teach object-oriented concepts in education.

Snap! is a visual programming language designed for children, high school, and university students.

It is based on a system of blocks, which makes it easy to use and understand [19]. The language allows users

to define new blocks, which helps to extend its capabilities and makes it more versatile. The Snap! extension,

NetsBlox [20], adds networking elements to the visual programming paradigm, enabling students to create

distributed applications and collaborate on projects in a Google Docs-like environment. However, there is a

lack of research on its effectiveness with object-oriented concepts, making it unclear if Snap! can be successfully

used for object-oriented programming. Further research is needed to address this gap in understanding.

The OOPP environment was developed as a way to support object-oriented programming, a popular

programming paradigm that was first presented by Ferrari et al. [7]. The environment is specifically designed

Int J Elec & Comp Eng ISSN: 2088-8708 

Analysis of the learning object-oriented programming factors (Qais Ali Batiha)

5601

to help school students and students taking computer science 1 courses learn how to program. However, no

research has been done on the usefulness and effectiveness of object-oriented blocks for computer science 2

students. This lack of research makes it difficult to determine the extent to which these blocks can help

students in programming courses.

Learning an object-oriented programming language can be difficult for inexperienced students. In

order to make programming more accessible to these students, some educators have turned to visual

programming languages like visual logic or to more beginner-friendly languages like Python to simplify

programming and make it easier for students to understand [21]. However, while Python may be suitable for

introducing students to the basics of computer science, it may not be the best choice for learning higher-level

concepts like object-oriented programming [22]–[24]. In order to effectively teach these more advanced

concepts, educators may need to use different approaches. It is important to carefully consider the needs and

abilities of students when choosing a programming language or other learning tools.

3. FACTORS TO ENHANCE THE LEARNING OF OBJECT-ORIENTED PROGRAMMING

This section provides a detailed explanation of the various learning needs for an object-oriented

programming language and explores effective strategies for fulfilling these needs. The research that has been

conducted in the past forms the foundation for this section, and the learning factors for an object-oriented

programming language are addressed implicitly in the research investigations. The following section

elucidates the learning factors that are implicit in the research inquiries.

McNerney [25], [26] proposed that easy debugging capabilities should be included in learning

programming to assist novices. Papert [27] also suggested that the use of mathematical or geometric

operations can help students become proficient in a particular programming language. On the other hand,

[28], [29] argued that simplicity and difficulty level are important for learning a programming language.

Simplicity refers to the ease of understanding and usage and should involve limiting the number of command

instructions. A simple language can be acquired quickly, giving students more time to apply the language

they are learning to the content of their courses. Csikszentmihalyi [30] after students are familiar with event

handling and function call blocks, they should be introduced to additional complexity and abstraction, as it

requires a significant degree of abstract thinking, logic, and conventional programming skills.

On the other hand, DeRose and Laurel [31] suggested that individuals who want to learn programming

should engage in group interaction and utilize modularity in specific environments to enhance their

understanding of the complex programming process. Horn and Jacob emphasized the importance of reality-

based interaction in programming languages, arguing that it should take place in real life in order to engage

learners in a more realistic manner [32]. McNerney [25] also argued that collaborative programming should be

used to help novices learn more, achieve statistically significant progress, and increase students’ interest in

learning. Latih et al. [33] emphasized the importance of practical experience in acquiring programming

development abilities, stating that students must engage in regular practice in order to effectively develop and

improve their programming skills. They suggested that a strong practical ability is essential for success in

programming and should be a key focus for students learning the subject. To conclude, Table 1 summarizes

the object-oriented programming learning factors based on previous research.

Table 1. Learning factors based on previous research
No Programming learning factors References

1 Easy debugging (e.g., Connecting between blocks, messages, or executing the code to see the result) [27], [29]

2 Specific operations [27]
3 Collaborative programming [25]

4 Simplicity [28], [29]

5 Difficulty level [30]
6 Practices [30], [33]

7 Collaborative learning. [31]

8 Object representation (Microworld) [32]

4. METHOD

This research was conducted using two types of research methods: quantitative and qualitative.

Firstly, the literature on learning programming/object-oriented programming was reviewed with the aim of

identifying the main learning constituents. Then, the research employed interviews designed to identify the

experts’ perspectives in the context described at the beginning of the research. Next, a questionnaire

instrument was used as part of a survey method to determine the opinions of the actual users who had taken

the object-oriented programming course, as shown in Figure 1. The research methods used are explained in

detail in the next section.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5599-5606

5602

Figure 1. Research method

The goal of the interview was to confirm the factors involved in the process of acquiring skills in

object-oriented programming, which had already been explored in previous research. The investigation was

carried out by means of a qualitative technique, through an interview-based approach, at the Faculty of

Information Science and Technology (SoftAM) located at the Universiti Kebangsaan Malaysia (UKM). An

explanation of the research’s goal and the rationale behind using the interview method was provided at the

beginning of the interview. Based on [34], a total of five respondents were interviewed, each of whom had

been teaching object-oriented programming for more than ten years. All questions related to each element

were asked during the 1-2 hour-long interviews.

The research used a quantitative approach based on a survey method to gather data. The

questionnaire was distributed to a sample of 50 individuals who had prior experience with object-oriented

programming, including 31 students and 19 lecturers from Jordan University of Science and Technology and

Irbid National University, with ages ranging from 19 to 45 years. The questionnaire was designed to gather

feedback on the identified factors from actual users and included an explanation of the purpose of the

research and the rationale for choosing a questionnaire approach.

The questions in the survey were carefully formulated based on previous research and validated

through interviews with five experts in the field of object-oriented programming [34]. The aim was to gather

valuable insights and recommendations on how to improve the learning of object-oriented programming for

students. Respondents were asked to consider the various factors that influence the learning process, which

were identified through previous research and further validated through interviews with experts, as

referenced in [29], [35], [36]. Each respondent was asked to provide their own recommendations on how

these factors could be leveraged to enhance student learning and success in object-oriented programming.

4.1. Data collection

The interviews were carried out face-to-face at UKM, and the interview questions were adopted

from previous research and are listed in Table 2. For the survey, a Likert scale questionnaire was distributed

to students for self-administration. The survey questions were based on the results of the interviews, and the

purpose was to compare the opinions of experts and students from different generations on the same factors.

Table 2. Questions for interview
No. Questions
1 What should be the learning factors for object-oriented programming and why?
2 Do you think these factors can support students in learning object-oriented programming?

 Easy debugging (Response time to events, Real-time reaction);

 Simplicity;
 Power (How easy it is to use a tool for complex problems);

 Practices;

 Difficulty level;

 Pair programming;

 Object representation;
 Specific operation;

3 What do you think about how these factors affect learning object-oriented programming?

4 In your opinion, how might these factors increase students’ motivation and effectiveness while
studying an object-oriented programming language?

5 In your opinion, do you agree that these materials would help to learn object-oriented

programming?
 Interactive visualizations tool.

 Interactive environment.

 Lecture notes/copies of transparencies.
 Programming course book.

6 In your opinion, do you agree that any of these situations would help to learn object-oriented

programming more effectively?
 In practical.

 Consultation or discussion with lecturers, tutors, seniors or friends

 In group exercise sessions

 While working alone on programming coursework

Int J Elec & Comp Eng ISSN: 2088-8708 

Analysis of the learning object-oriented programming factors (Qais Ali Batiha)

5603

4.2. Survey instrument

The instrument used in this research employed Likert scales with five points to measure the level of

agreement, with options ranging from strongly disagree to strongly agree. Students were asked to select

one scale that best reflected their beliefs for each question. The survey questions were developed based on

prior research and the interview schedule. The survey aimed to measure the level of agreement among actual

users.

5. RESULTS AND DISCUSSION

The data collection techniques yielded some significant results. A list of factors for the

programming learning environment was generated as a result of these findings. These factors are very

important as they determine what should be developed and designed, as well as how the environment should

be developed and designed. Therefore, both the results and discussions of the approaches (interview and

survey) are provided in detail in this section.

5.1. Interview approach

The interview results showed that all participants agreed that the identified factors were important

for keeping students motivated in learning object-oriented programming. These factors included the use of

visualization or interactive environment to enhance student learning, as well as the importance of practice,

consultation with lecturers, tutors, seniors, or friends, and group sessions for helping students learn

object-oriented programming. The participants also concluded that these factors were important for creating a

positive learning environment and promoting student success in learning object-oriented programming.

Overall, the participants emphasized the importance of creating a supportive and interactive learning

environment, as well as providing opportunities for practice, consultation, and collaboration, in order to help

students learn object-oriented programming effectively and build their programming skills. The following are

a few examples from the interviews that highlight the importance of the identified factors in keeping students

motivated to learn object-oriented programming:

“The essential factor is to improve their motivation using any technique such as working in

groups, a discussion between students, robots, games, practices, or challenging them.”

(Interviewee1).

“Most of the factors are enough to enhance students’ learning and pair programming, and it will

enhance student effectiveness and motivation.” (Interviewee2).

“Using the Games/Visualization tools to motivate students in programming for a certain period

and then moving to textual programming is a good idea. The reason is that students have problems

with syntax errors, and it makes them more confident.” (Interviewee3).

Based on the above, all the interviewees emphasized the importance of different methods or tools

that would facilitate the learning process of object-oriented programming, increase motivation, and make

programming more understandable for the students. To confirm the evaluation indicated above, the students’

and lecturers’ views on these factors were evaluated. The questionnaire was used as a research instrument, as

shown in the next section.

5.2. Survey approach

Based on the categories shown in Table 3, the mean level is considered “high”. Based on Table 4,

the minimum value of the mean from the instructor’s perspective is 4.10 for the specific operations factor,

and from the perspective of the undergraduate students, it is 3.74 for the pair programming factor. This

demonstrates that respondents agree with all the programming factors. The first prerequisite, “easy

debugging”, gets a rating of 4.60 from the perspective of instructors and a rating of 3.77 from the perspective

of undergraduates. However, for “motivating students via the use of block-based collaborative technology,”

the score is 4.45 from the instructors’ perspective and 4.16 from the perspective of undergraduate students.

To summarize, the results were satisfactory to both instructors and undergraduates. However, the instructors’

results outperformed the undergraduates for a variety of reasons, the most important of which is that the

instructors are highly experienced in object-oriented programming materials and are aware of the most

critical factors for student learning, mainly because most instructors have taught this course for more than five

years.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5599-5606

5604

Table 3. Likert classification based on [37]
Mean scores Categorized

1.0-2.33 Low
2.34-3.67 Moderate

3.68-5 High

Table 4. The descriptive result and correlation between factors and motivation of the survey instrument
Programming Learning Factors Kendall tau Students (N=31) Experts (N=19)

tau-b p µ Level µ Level

Easy debugging 0.419** 0.000 3.77 High 4.60 High
Object representation 0.396* 0.013 3.94 High 4.16 High

Simplicity 0.450** 0.006 4.16 High 4.60 High

Difficulty level 0.221 0.170 4.03 High 4.60 High
Practices 0.324* 0.033 4.29 High 4.65 High

Specific operations 0.326* 0.047 3.77 High 4.10 High

pair programming 0.555** 0.001 3.74 High 4.25 High

Cooperation using discussion forums 0.455** 0.006 4.06 High 4.35 High

Motivation students through the block-based collaborative technology 1.000 - 4.16 High 4.45 High

Valid N (listwise) 31 19
 **.p<0.01 level.

*.p<0.05 level.

In order to evaluate the correlation between two different variables, which take value in the set

(1, 2, 3, 4, 5), are nominal and ordinal. We use Kendall’s coefficient tau (τ). This statistic measures the

correlation between two values, and it gives a value range between -1 and 1, where 0 indicates no correlation,

-1 indicates a perfect negative correlation, and 1 indicates a perfect positive correlation. Kendall’s tau is

similar to other commonly used correlation coefficients such as Pearson’s and Spearman’s. The benefits of

using Kendall’s tau include more accurate statistical properties and a clearer interpretation of the probabilities

of observing consistent (concordant) and inconsistent (discordant) pairs. Additionally, Kendall’s tau and

Spearman’s rank correlation coefficient often lead to the same conclusions in most scenarios [38].

The statistical analysis demonstrates that there is a significant and positive relationship between easy

debugging, simplicity, pair programming, and cooperation with discussion forums, and the motivation of

students to improve their learning for sig (0.000) which 𝑝 < 0.01. Additionally, there is a positive correlation

between practices and object representation, and student motivation to enhance their learning for sig (0.000)

which 𝑝 < 0.05. The correlation coefficient is the highest for easy debugging (0.594), and it is the least for

variable specific operations (0.326). However, there is a weak correlation relationship between difficulty level

and student motivation to enhance their learning of the object-oriented course (𝑡𝑎𝑢 = 0.221, 𝑝 = 0.170). We

believe that the difficulty level factor is highly beneficial for students, as evidenced by the high average

obtained (4.03). However, the lack of a relationship with motivation may be attributed to negative experiences

with previous tasks for some students, causing them to be hesitant to engage with this factor. We suggest that

teachers or educational environments provide tasks that are well-suited to the abilities of their students [39].

In conclusion, most of the programming learning factors, which were based on the findings of the

prior study and interviews, were found to be favorably accepted from both perspectives. However, there are

still some things that can be done to enhance students’ learning of object-oriented programming. Firstly,

students should be encouraged to work together and practice as much as they can. Secondly, they should be

encouraged to increase the level of competition between themselves. Lastly, the educational environments

must be made enjoyable and fun for students.

6. CONCLUSION

This study provides a comprehensive overview of the key factors that facilitate the learning of

object-oriented programming. The study employed two evaluation methods: interviews and surveys. The

resulting factors that can aid students in learning object-oriented programming are: i) easy debugging,

ii) object representation, iii) simplicity, iv) practice, v) specific operations, vi) collaborative programming,

vii) difficulty level, and viii) possibility for cooperation. A questionnaire was then administered to assess the

effectiveness of these factors in facilitating object-oriented programming learning.

ACKNOWLEDGEMENTS

This study is supported by the Universiti Kebangsaan Malaysia under research grant scheme of

GUP-2020-090.

Int J Elec & Comp Eng ISSN: 2088-8708 

Analysis of the learning object-oriented programming factors (Qais Ali Batiha)

5605

REFERENCES
[1] J. Szydlowska, F. Miernik, M. S. Ignasiak, and J. Swacha, “Python programming topics that pose a challenge for students,” in

Third International Computer Programming Education Conference (ICPEC 2022), 2022.

[2] L. Bashiru and A. A. Joseph, “Learning difficulties of object oriented programming (OOP) in University of Ilorin-Nigeria:

students perspectives,” in Proceedings of the Eighth TheIIER-Science Plus International Conference, Dubai, United Arab
Emirates, 2015, pp. 1–45.

[3] N. F. M. Sani, A. M. Zin, and S. Idris, “Analysis and design of object-oriented program understanding system,” International

Journal of Computer Science and Network Security, vol. 9, no. 1, pp. 125–134, 2009.
[4] Q. Batiha, N. Sahari, N. Aini, and N. Mohd, “Adoption of visual programming environments in programming learning,”

International Journal on Advanced Science, Engineering and Information Technology, vol. 12, no. 5, Sep. 2022, doi:

10.18517/ijaseit.12.5.15500.
[5] M. Kölling, N. C. C. Brown, H. Hamza, and D. McCall, “Stride in BlueJ-computing for all in an educational IDE,” in

Proceedings of the 50th ACM Technical Symposium on Computer Science Education, Feb. 2019, pp. 63–69, doi:

10.1145/3287324.3287462.
[6] M. Kölling, “Blue, BlueJ, Greenfoot,” in Innovative Methods, User-Friendly Tools, Coding, and Design Approaches in People-

Oriented Programming, IGI Global, pp. 42–87, doi: 10.4018/978-1-5225-5969-6.ch002.

[7] A. Ferrari, G. Lombardo, M. Mordonini, A. Poggi, and M. Tomaiuolo, “OOPP: Tame the design of simple object-oriented
applications with graphical blocks,” in Smart Objects and Technologies for Social Good, Springer International Publishing, 2018,

pp. 279–288, doi: 10.1007/978-3-319-76111-4_28.

[8] J.-M. Su and F.-Y. Hsu, “Building a visualized learning tool to facilitate the concept learning of object-oriented programming,” in
2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Jul. 2017, pp. 516–520, doi: 10.1109/IIAI-

AAI.2017.180.
[9] A. C. Bart, J. Tibau, E. Tilevich, C. A. Shaffer, and D. Kafura, “BlockPy: An open access data-science environment for

introductory programmers,” Computer, vol. 50, no. 5, pp. 18–26, 2017, doi: 10.1109/MC.2017.132.

[10] M. A. Bakar, M. Mukhtar, and F. Khalid, “The effect of turtle graphics approach on students’ motivation to learn programming: a
case study in a Malaysian University,” International Journal of Information and Education Technology, vol. 10, no. 4,

pp. 290–297, 2020, doi: 10.18178/ijiet.2020.10.4.1378.

[11] A. V Robins, “12 novice programmers and introductory programming,” The Cambridge handbook of computing education
research, 2019.

[12] Y. Soepriyanto and D. Kuswandi, “Gamification activities for learning visual object-oriented programming,” in 2021 7th

International Conference on Education and Technology (ICET), Sep. 2021, pp. 209–213, doi:
10.1109/ICET53279.2021.9575076.

[13] K. J. Mackin, “Turtle graphics for early Java programming education,” Artificial Life and Robotics, vol. 24, no. 3, pp. 345–351,

Sep. 2019, doi: 10.1007/s10015-019-00528-y.
[14] M. S. Naveed and M. Sarim, “Two-phase CS0 for introductory programming: CS0 for CS1,” Proceedings of the Pakistan

Academy of Sciences: A. Physical and Computational Sciences, vol. 59, no. 1, pp. 59–70, 2022.

[15] B. T. Fasy, S. A. Hancock, B. Z. Komlos, B. Kristiansen, S. Micka, and A. S. Theobold, “Bring the page to life: engaging rural
students in computer science using alice,” in Proceedings of the 2020 ACM Conference on Innovation and Technology in

Computer Science Education, Jun. 2020, pp. 110–116, doi: 10.1145/3341525.3387367.

[16] A. Al-Jarrah and E. Pontelli, “‘AliCe-ViLlagE’ Alice as a collaborative virtual learning environment,” in 2014 IEEE Frontiers in
Education Conference (FIE) Proceedings, 2014, pp. 1–9, doi: 10.1109/FIE.2014.7044089.

[17] A. A. Allinjawi, H. A. Al-Nuaim, and P. Krause, “Evaluating the effectiveness of a 3d visualization environment while learning

object oriented programming,” Journal of Information Technology and Application in Education, vol. 3, no. 2, 2014, doi:
10.14355/jitae.2014.0302.01.

[18] B. Selwyn-Smith, C. Anslow, M. Homer, and J. R. Wallace, “Co-located collaborative block-based programming,” in 2019

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2019, pp. 107–116, doi:
10.1109/VLHCC.2019.8818895.

[19] A. Feng, M. Gardner, and W. Feng, “Parallel programming with pictures is a Snap!,” Journal of Parallel and Distributed

Computing, vol. 105, pp. 150–162, Jul. 2017, doi: 10.1016/j.jpdc.2017.01.018.
[20] B. Broll and A. Ledeczi, “Distributed programming with NetsBlox is a Snap! (abstract only),” in Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education, Mar. 2017, doi: 10.1145/3017680.3022379.

[21] K. K. Agarwal, A. Agarwal, and L. Fife, “Python and visual logic-a good combination© for CS0,” Journal of Computing Sciences
in Colleges, vol. 27, no. 4, pp. 22–27, 2012.

[22] N. Alzahrani, F. Vahid, A. Edgcomb, K. Nguyen, and R. Lysecky, “Python versus C++ an analysis of student struggle on small

coding exercises in introductory programming courses,” in Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, 2018, pp. 86–91.

[23] C. S. Miller, A. Settle, and J. Lalor, “Learning object-oriented programming in python,” in Proceedings of the 16th Annual

Conference on Information Technology Education, Sep. 2015, pp. 59–64, doi: 10.1145/2808006.2808017.
[24] C. S. Miller and A. Settle, “Some trouble with transparency,” in Proceedings of the 2016 ACM Conference on International

Computing Education Research, 2016, pp. 133–141, doi: 10.1145/2960310.2960327.

[25] T. S. McNerney, “Tangible programming bricks: An approach to making programming accessible to everyone,” Massachusetts
Institute of Technology, 1999.

[26] T. McNerney, “From turtles to tangible programming bricks: explorations in physical language design,” Personal and Ubiquitous

Computing, vol. 8, no. 5, Sep. 2004, doi: 10.1007/s00779-004-0295-6.
[27] S. A. Papert, Mindstorms: Children, computers, and powerful ideas. Basic books, 2020.

[28] F. Masterson, “Evaluating logo:,” Computers in the Schools, vol. 2, no. 2–3, pp. 179–195, Jul. 1985, doi:

10.1300/J025v02n02_20.
[29] F. L. Khaleel, N. S. Ashaari, T. S. M. Tengku Wook, and A. Ismail, “Programming learning requirements based on multi

perspectives,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 3, pp. 1299–1307, Jun. 2017,

doi: 10.11591/ijece.v7i3.pp1299-1307.
[30] M. Csikszentmihalyi, Flow: The psychology of optimal experience. Harper and Row New York, 1990.

[31] D. J. DeRose and B. Laurel, “Computers as theatre,” TDR (1988-), vol. 37, no. 4, p. 175, 1993, doi: 10.2307/1146303.

[32] M. S. Horn and R. J. K. Jacob, “Designing tangible programming languages for classroom use,” in Proceedings of the 1st
international conference on Tangible and embedded interaction, Feb. 2007, pp. 159–162, doi: 10.1145/1226969.1227003.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5599-5606

5606

[33] R. Latih, M. A. Bakar, N. Jailani, N. M. Ali, S. M. Salleh, and A. M. Zin, “PC 2 to support instant feedback and good

programming practice,” in 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI), Nov. 2017,
pp. 1–5, doi: 10.1109/ICEEI.2017.8312410.

[34] C. Jost and B. Le Pévédic, “Designing evaluations: researchers’ insights interview of five experts,” in Springer Series on Bio- and

Neurosystems, Springer International Publishing, 2020, pp. 287–330, doi: 10.1007/978-3-030-42307-0_12.
[35] P.-H. Tan, C.-Y. Ting, and S.-W. Ling, “Learning difficulties in programming courses: Undergraduates’ perspective and

perception,” in 2009 International Conference on Computer Technology and Development, 2009, pp. 42–46, doi:

10.1109/ICCTD.2009.188.
[36] D.-Y. Kwon, H.-S. Kim, J.-K. Shim, and W.-G. Lee, “Algorithmic bricks: A tangible robot programming tool for elementary

school students,” IEEE Transactions on Education, vol. 55, no. 4, pp. 474–479, Nov. 2012, doi: 10.1109/TE.2012.2190071.

[37] J. Jacoby and M. S. Matell, “Three-point likert scales are good enough,” Journal of Marketing Research, vol. 8, no. 4,
pp. 495–500, Nov. 1971, doi: 10.1177/002224377100800414.

[38] J. Haigh and W. J. Conover, “Practical nonparametric statistics,” Journal of the Royal Statistical Society. Series A (General),

vol. 144, no. 3, 1981, doi: 10.2307/2981807.
[39] R. H. Shroff and D. R. Vogel, “Assessing the factors deemed to support individual student intrinsic motivation in technology

supported online and face-to-face discussions,” Journal of Information Technology Education: Research, vol. 8, pp. 59–85, 2009,

doi: 10.28945/160.

BIOGRAPHIES OF AUTHORS

Qais Ali Batiha received the B.Sc. degree in Computer Science from Jordan

University of Science and Technology in 2010 and the M.S. in Information Technology

from UUM in 2014. Currently, he is a Ph.D. student at the Faculty of Information Science and

Technology at Universiti Kebangsaan Malaysia. He can be contacted at email

qais_bateeha@yahoo.com, or P93243@siswa.ukm.edu.my.

Nazatul Aini Abd Majid she did her Bachelor of Computer Science with

Honours and MSc (Computer Science) at Universiti Kebangsaan Malaysia and received her

PhD from The University of Auckland, New Zealand in 2011. Currently she is a senior

lecturer and researcher at the Universiti Kebangsaan Malaysia. Her research center is center

for artificial intelligence technology. Her research interest includes augmented reality,

educational robotic, multivariable statistical process monitoring, industrial computing, high

performance computing, cloud computing. She can be contacted at email

nazatulaini@ukm.edu.my.

Noraidah Sahari currently she is a senior lecturer and researcher at the Universiti

Kebangsaan Malaysia. Her research interest includes Multimedia application e-learning

technology interaction design and usability. She can be contacted at email nsa@ukm.edu.my.

Noorazean Mohd Ali currently she is a senior lecturer and researcher at the

Universiti Kebangsaan Malaysia. Her research interest includes aspect-oriented programming

and design, programming education, object-oriented design and development, computational

thinking. She can be contacted at email aliazean@ukm.edu.my.

http://orcid.org/0000-0003-3377-1939
https://scholar.google.com/citations?hl=en&user=XmbS040AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57203974713
https://www.webofscience.com/wos/author/record/ADM-4633-2022
http://orcid.org/0000-0002-9294-0256
https://scholar.google.com/citations?hl=en&user=EPuzLn0AAAAJ
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55489594600
https://www.webofscience.com/wos/author/record/HSG-6403-2023
http://orcid.org/0000-0001-8053-4093
https://scholar.google.com/citations?hl=en&user=CHmgS88AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=26423275000
https://www.webofscience.com/wos/author/record/766767
http://orcid.org/0000-0003-0921-9044
https://scholar.google.com/citations?hl=en&user=Of70y2wAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55514920500
https://www.webofscience.com/wos/author/record/1905532

