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ABSTRACT

Breast ultrasound images are highly valuable for the early detection of breast
cancer. However, the drawback of these images is low-quality resolution and the
presence of speckle noise, which affects their interpretability and makes them ra-
diologists’ expertise-dependent. As medical images, breast ultrasound datasets
are scarce and imbalanced, and annotating them is tedious and time-consuming.
Transfer learning, as a deep learning technique, can be used to overcome the
dataset deficiency in available images. This paper presents the implementation
of transfer learning U-Net backbones for the automatic segmentation of breast
ultrasound lesions and implements a threshold selection mechanism to deliver
optimal generalized segmentation results of breast tumors. The work uses the
public breast ultrasound images (BUSI) dataset and implements ten state-of-the-
art candidate models as U-Net backbones. We have trained these models with
a five-fold cross-validation technique on 630 images with benign and malignant
cases. Five out of ten models showed good results, and the best U-Net backbone
was found to be DenseNet121. It achieved an average Dice coefficient of 0.7370
and a sensitivity of 0.7255. The model’s robustness was also evaluated against
normal cases, and the model accurately detected 72 out of 113 images, which is
higher than the four best models.
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1. INTRODUCTION
Breast ultrasound images play a very important role in the detection and diagnosis of breast cancer.

It is a more productive alternative to mammography because it is safer, more accurate, and less expensive
[1], [2]. However, these images are known for their difficulty in interpretation due to their low resolution and
the presence of speckle noise. For this reason, computer-aided diagnosis (CAD) systems based on deep learning
(DL) can be used to ease ultrasound image analysis and provide accurate decision support to radiologists.
These intelligent systems have proved their importance in computer vision tasks such as object detection,
classification, and segmentation.

Nowadays, DL is regarded as the main approach used in medical image analysis and has proven
to outperform conventional techniques [3]. It is known that the effectiveness of a DL model is strongly
related to the dataset being used, with larger datasets being better. Transfer learning (TL), on the other
hand, is a DL technique that leverages the use of pre-trained models to address the deficiency of the dataset.
Behboodi et al. [4] demonstrated that TL using U-Net pre-trained on natural salient object detection images,
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such as the XPIE dataset [5], along with simulated ultrasound images for breast lesions yielded good segmen-
tation results on the limited dataset they used. On the other hand, in [6], TL demonstrated good classification
results in comparison to a custom-implemented convolutional neural network (CNN) classifier applied to breast
ultrasound lesions.

In the medical field, data annotation is an expensive and time-consuming task, as it requires the exper-
tise and efforts of radiologists. However, with TL, pre-trained models can be used to tackle this difficulty and
provide a foundation for the feature map. In TL, there are two approaches, depending on how the pre-trained
models are used: i) feature extraction and ii) fine-tuning.

Image segmentation is a technique to partition an image into well-defined and recognizable parts. Its
aim is to ease the image analysis and provide meaningful representations of the objects in the image. In medical
applications, image segmentation can be helpful for detecting and isolating tumors for better diagnosis.

In the literature, breast ultrasound image segmentation techniques are categorized commonly into five
classes [7], [8]: i) deformable models, ii) graph-based models, iii) machine learning-based models, and iv)
classical approaches. It is also demonstrated that DL-based approaches outperformed conventional techniques.
Some of the popular segmentation DL architectures used for medical images are U-Net [9] and its variants
[10] such as 3D U-Net [11], attention U-Net [12] and U-Net++ [13], LeNet [14], fully convolutional network
(FCN) [15], SegNet [16], and more specific architectures such as small tumor-aware network (STAN) [17] and
residual-dilated-attention-gate-UNet (RDAU-Net) [18].

In deep learning, image segmentation is narrowed down to a pixel classification problem where DL-
based models predict and attribute each pixel to its corresponding class [19]. This work focuses mainly on
binary segmentation types of classes of ultrasound breast lesions using DL-based methods. Lesions regions of
interest (RoI) are considered the positive class, and the background as negative. We have also implemented
a threshold selection mechanism to determine the optimal prediction threshold and generalize good segmen-
tation results on unseen data. U-Net backbone models such as VGG16, VGG19, ResNet50, ResNeXt50, Se-
ResNet50, Se-ResNeXt50, MobileNetV2, and DenseNet121 were implemented and evaluated using a cross-
validation technique.

2. METHOD
2.1. Dataset preparation

We used a publicly available dataset known as the breast ultrasound images (BUSI) [20] dataset, which
includes three image categories: normal, benign, and malignant. For this study, we chose the Benign and Ma-
lignant classes. Normal cases were excluded from the dataset because of the assumption that the model would
be less sensitive to breast lesions, given the quality of ultrasound images, speckle noise, and the difficulty of
extracting features and detecting lesions boundaries. In order to ensure the model’s sensitivity to breast lesions,
all training samples contained lesions. Introducing ground-truth masks with 0-pixel values of normal cases in
the training dataset could bias the model’s sensitivity to tumors. However, the normal class was considered
in evaluating the models’ robustness. We trained U-Net backbones on 630 images with their corresponding
ground-truth masks, and we used the partitioning shown in Table 1 for training, validation, and testing sets.

Table 1. BUSI dataset preparation
Train + Val set (90%)a Test set (10%)b Test(100%)c

Total
80% Train 20% Validation 80% Malignant 20% Benign Normal

453 114 50 13 113
aTraining and Validation set, the split was done in cross-validation,
with 20% of data for validation and 80% for training
bTest set, a combination of Malignant and Benign images, acts as unseen data
cTest set, a total of 113 Normal breast ultrasound images

The images in the BUSI dataset have different sizes and were averaged to a size of 500×500. As a
pre-processing step, the images were resized to 256×256 dimensions and then normalized to values between 0
and 1. To ensure that the study was more objective, reproducible, and meaningful for TL, no data augmentation
was performed.
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2.2. U-Net: the base architecture
U-Net [9] was used as the main architecture. It is a well-known architecture for segmentation tasks

and was originally implemented for biomedical images. There are many variants of U-Net. In the context of
TL, Amiri et al. in [21] demonstrated that fine-tuning the contracting path of U-Net yields better results than
fine-tuning the expanding path.

From this context, pre-trained models were leveraged as feature extractor backbones based on the
U-Net architecture to segment breast ultrasound lesions. The backbones were loaded with ImageNet weights,
and all encoder layers were frozen. The models were trained for 100 epochs with a reduced batch size of 8,
using the Adam optimizer initiated with a learning rate of 0.0001. An adaptive learning rate process was also
implemented during the training with a reduction factor of 0.1, and patience of 10 epochs while monitoring
validation loss during all 5 cross-validation folds, and only saving the best models. Figure 1 provides an
overview of the study workflow.
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TL Backbones

U-Net Architecture

Model1.h5

Model2.h5

Model3.h5

Model4.h5

Model5.h5

Down-sampling

Up-sampling

Cross-validation

0.4, 0.45, 0.5...0.9

Threshold

Figure 1. Study workflow overview

2.3. Cross-validation
Due to dataset limitations, the following partitioning was chosen: 90% of the data was used as seed

for cross-validation (CV) with 5-folds, and 10% was reserved as the test set to evaluate the final prediction
stage as shown in Table 1. CV is an excellent approach to assessing model performance on a limited dataset.
By allowing models to learn and validate features from all samples, CV helps mitigate the risk of overfitting.
A five-fold CV was used in this study, and it is commonly preferred in many papers, such as in [4] and [7].

2.4. Evaluation metrics
Although segmentation is regarded as a classification problem, evaluation metrics are different [19].

In fact, some of the metrics such as accuracy (TP+TN)/(TP+TN+FN+FP) are considered misleading and don’t
reflect the actual model performance. Accuracy includes the True Negative, representing in this case, the back-
ground, which has the majority of the pixels. Thus, Accuracy would be always much higher compared to other
metrics [22]. Müller et al. [22] highlighted important guidelines for metrics used in medical image segmenta-
tion. Their research includes the usage of the dice similarity coefficient (DSC) (1) and Intersection-over-Union
(IoU) (2) as popular metrics in the category of F-measure-based metrics. Sensitivity (3) and specificity (4) are
also considered established standards for performance evaluation in medicine [23], [24]. In addition to com-
puted metrics, visual interpretation is always recommended in evaluating segmentation tasks. However, lower
computational metric values might not always imply bad predictions. Cheng et al. [25] obtained accurate visual
performance despite having a lower DSC when segmenting ultrasound lung.

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
(1)

U-Net transfer learning backbones for lesions segmentation in ... (Mohamed Bal-Ghaoui)



5750 ❒ ISSN: 2088-8708

IoU =
TP

TP + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

2.5. Segmentation loss function
This is an important parameter in image segmentation. During the training process, the model tries to

minimize the objective function to cover edge cases. Choosing a well-suited loss function can enhance model
performance and aid in fast convergence, and it must be selected according to the nature of the task. The loss
semantic segmentation survey paper in [26] summarizes well-known loss functions and categorizes them into
four types: i) distributed-based, ii) region-based, iii) boundary-based, and iv) compounded losses. Furthermore,
it highlights different scenarios for choosing the appropriate loss function for segmentation. In this article, the
Focal Tversky loss was implemented, as it demonstrated good results in recognizing difficult examples [27],
particularly in ultrasound images.

2.6. The optimal prediction threshold
Performing binary segmentation involves two classes: the foreground region of interest (RoI) and the

background, which represents the majority of the pixels. In this work, the ground truth highlights lesions with
white color and the background as black. Based on a particular threshold, each pixel’s prediction would be
either 1 or 0. For instance, pixels with a probability of 0.5 or higher would be set to 1, defining a lesion, while
pixels with lower probabilities would be given the value 0 and considered part of the background.

It is noteworthy that no optimal prediction segmentation threshold is known, and many papers choose
to use 0.5 as a default threshold. In order to determine the optimal threshold for a given model during the
prediction phase, we have implemented a selection mechanism. The process steps are described below and can
also be visualized in Figure 2.
− Define a custom threshold range, starting from 0.4 and ending at 0.9 with a step of 0.05.
− For each threshold, compute both the Dice coefficient and the mean Intersection-over-Union.
− At the end of each prediction, map the maximum Dice value and the maximum mean IoU value to their

corresponding threshold index.
− Choose the corresponding index for future predictions.

Test Set (unseen)

Threshold Array

Prediction Process
----------- 

(256, 256) 

Dice

Mean IoU

    Max(Dices) 
Max(IoU)

Threshold_Max(Dice)

Threshold_Max(IoU)

Figure 2. Prediction threshold selection process

3. RESULT AND DISCUSSION
All the training and testing were accomplished using Google Colab Computing Units with access to

GPU Tesla V100-SXM2 of type NVIDIA-SMI 460.32.03. Each backbone was trained separately using five-
fold cross-validation and evaluated using metrics (described in section 2.4.) such as dice coefficient, mean IoU,
sensitivity, and specificity. The overall training time and the model output size were both considered for the
evaluation. Table 2 shows the obtained results averaged across the five folds.
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Models selection and evaluation results in Table 2, show that five models demonstrated promising
results, namely VGG16, VGG19, ResNet50, ResNeXt50 and DenseNet121. This latter had the highest Dice
and the lowest Loss with 0.7370 and 0.3713 values respectively. In addition, it had the smallest size of 87.8MB
among the five models. Figure 3 shows training and validation Dice across 100 epochs for the two best-
performing backbones.

During cross-validation folds, and for each backbone, best-performing models were saved. The ma-
jority of the backbones have been seen to perform better on folds 2 and 4. This clearly demonstrated the benefit
of cross-validation and showed that most relevant training data were found in the two folds. Table 3 shows CV
scores per fold. Note that only the best folds were reported.

Table 2. Metrics averaged across folds for different backbones
Models Loss Dice Sens.a Spec.b Mean IoU Training Timec Size (MB)d

Unet 0.4619 0.6587 0.6199 0.9744 0.5994 20 272.1
Unet-vgg16 0.3997 0.6989 0.7118 0.9680 0.7211 12 159.8
Unet-vgg19 0.3982 0.6966 0.7207 0.9657 0.6998 11 180.1

Unet-resnet50 0.3988 0.7161 0.6926 0.9764 0.6917 20 194.2
Unet-resnext50 0.3858 0.7132 0.7316 0.9685 0.6531 54 195.0

Unet-seresnext50 0.4252 0.6821 0.6771 0.9698 0.6667 58 204.9
Unet-densenet121 0.3713 0.7370 0.7255 0.9758 0.6246 30 87.8
Unet-inceptionv3 0.4867 0.6146 0.6201 0.9603 0.6565 22 177.6
Unet-seresnet50 0.4266 0.6675 0.7016 0.9608 0.6742 25 204.2

Unet-mobilenetv2 0.4515 0.6599 0.6414 0.9704 0.6966 15 76.0
aSensitivity
bSpecificity
cModels training time expressed in minutes.
dModels saved weights size in megabyte (MB)

Models saved on folds 1, 2, and 4 of the five backbones were used to predict unseen test data with 63
images, see Table 1. Fold-specific threshold (described in section 2.6. and reported in Table 2) was used for the
prediction. To interpret the results accurately, visual representations are essential. Dataset images are grouped
into two categories: i) lesions with well-defined boundaries, and ii) samples with undefined boundaries. For
both categories, four samples were plotted. Figure 4(a) and 4(b) represent the segmentation results for the
best-performing backbone DenseNet121. The four samples in Figure 4 are structured as follows: an original
grayscale image, a ground-truth mask, and a predicted mask displayed from left to right for each category.
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Figure 3. Training and validation dice losses for the two best-performing backbones
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The model’s robustness was also evaluated by predicting untrained classes, such as normal breast
cases [7]. Table 3 shows that DenseNet121 had the highest true rate of 63.7%, correctly predicting 72 images
out of 113. ResNet50 followed with 46 images, VGG19 with 28, ResNeXt50 with 24 images, and finally,
VGG16 with 22 images.

Table 3. Best performing metrics per fold and prediction results for normal classes
Fold 1 Fold 2 Fold 4

Scores/Fold Vgg19 Vgg16 Resnext50 DenseNet121 Resnet50
Loss 0.4022 0.377 0.3289 0.3375 0.371
Dice 0.6998 0.7097 0.723 0.7659 0.7328

Sensitivity 0.7074 0.7591 0.8619 0.7637 0.7158
M.IoU 0.7129 0.7433 0.7689 0.6134 0.7485

Pred. Threshold 0.9 0.4 0.9 0.9 0.7
Pred. Normal casesa 28 22 24 72 46
aNumber of correctly predicted images in the normal class with a total of 113 images

(a) (b)

Figure 4. Visual interpretation of DenseNet121 prediction results (a) visually easy-samples and (b) visually
hard-samples

4. CONCLUSION
Deep learning is a great tool for medical image analysis, particularly in the case of ultrasound images

which often have poor image quality, making them challenging to analyze and interpret. DL techniques are
proven to accurately provide good results. However, in medicine, data annotation is still a barrier for most
datasets. To tackle this, multiple strategies could be used. Data augmentation, for example, could help in-
crease the number of samples by applying multiple image transformations. Transfer learning, on the other
hand, can empower the feature engineering task by loading pre-trained models on natural images such as Im-
ageNet. Recent research in TL for ultrasound images demonstrated that pre-trained models on natural salient
object detection datasets such as XPIE can outperform ImageNet-based pre-trained models. In the literature,
different DL segmentation architectures exist, the most known for biomedical images is U-Net. This article
implements ten well-known architectures of TL U-Net backbones for automatic breast ultrasound lesions seg-
mentation along with a threshold selection mechanism for optimal segmentation results. Five backbones out of
ten demonstrated good results. One particular model showed promising results, with an average dice coefficient
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per fold of 0.737, and sensitivity of 0.7255. This model also proved robust against normal cases, as it yielded
good segmentation results, with a detection rate of 64% which is 72 correctly detected out of 113 normal breast
cases.
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