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 There is substantial demand for high network traffic due to the emergence of 
new highly demanding services and applications such as the internet of 

things (IoT), big data, blockchains, and next-generation networks like 5G 

and beyond. Therefore, network resource planning and forecasting play a 

vital role in better resource optimization. Accordingly, forecasting accuracy 
has become essential for network operation and planning to maintain the 

minimum quality of service (QoS) for real-time applications. In this paper, a 

hybrid network- bandwidth slice forecasting model that combines long-short 

term memory (LSTM) neural network and various local smoothing 
techniques to enhance the network forecasting model's accuracy was 

proposed and analyzed. The results show that the proposed hybrid 

forecasting model can effectively improve the forecasting accuracy with 

minimal data loss. 
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1. INTRODUCTION 

Internet traffic has grown tremendously in the past decade due to vast network deployments in 

various domains and new emerging technologies with application-centric services. This growth was primarily 

driven by the surge in mobile traffic resulting from the substantial increase in mobile users and the 

emergence of new data- greedy technologies such as 5G, cloud services, the internet of things (IoT), and 

artificial intelligence (AI) based applications. Consequently, this has created a scalability issue for the service 

providers because network elements and resources must scale up spontaneously and dynamically to cope 

with the rising network resource demands. 

Moreover, network management has become a complex task due to strong dependencies between 

the different service layers at which congestion may develop and spread horizontally and vertically. Network 

congestion caused by poor management will eventually affect the quality of service (QoS) and service levels. 

Therefore, proactive approaches to bandwidth and network resource management have become crucial. Such 

approaches would necessarily entail forecasting future network demands and planning accordingly to ensure 

a dynamic and timely reactive response. Hence, the accuracy of the predictive approaches has become a 

significant factor to apply predictive frameworks in production environments. 

Preprocessing has also become crucial in data science, signal processing, and machine learning 

(ML) because of self-similarity, strong long-range dependence, and burstiness of network traffic. Data 

https://creativecommons.org/licenses/by-sa/4.0/
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preprocessing is also important to address the issue of incomplete, inconsistent (containing errors or outlier 

values), and varying noise patterns existing and embedded in collected data, which eventually lead to service 

providers being incapable of satisfying the minimum QoS requirements of dynamic bandwidth allocation. 

Therefore, preprocessing is required before applying network forecasting techniques to enhance data quality 

[1]–[5]. 

The significance of noise processing or removal has been addressed previously in [6]–[8] where the 

authors performed various time series breakdown using techniques such as loess, Hilbert Huang 

transformation (HHT), and wavelet processing to eliminate data fluctuation, seasonality and noise 

components. However, noise removal must be performed carefully after assessing the statistical properties of 

the data under investigation because the process itself can eliminate a significant portion of the data itself. 

Generally, two broad approaches based on different models have been used for developing bandwidth 

forecasting algorithms: i) statistical analysis models and ii) supervised ML models. Statistical analysis 

models are based on the generalized autoregressive integrated moving average (ARIMA) model, while most 

traffic forecasting models are based on supervised ML, in particular, artificial neural networks (ANNs) [1], 

[2]. ARIMA-based models fall short when dealing with nonlinear and non-stationary data as ARIMA 

requires a stationary property to be imposed [6]–[16] unlike ANN. This paper presents the results of the study 

on the effect of hybrid long-term short-term memory (LSTM) neural network and local smoothing 

techniques. 

 

 

2. RELATED WORK 

The literature review reveals that several models have been applied for time series analysis and 

bandwidth forecasting. An analysis of the performance of various machine learning techniques for forecast 

performance assessment of video over the internet, techniques such as neural network, decision trees, and 

support vector machine (SVM) was undertaken in [17]. The study concluded that modeling through time 

series method is more suitable and produces more stable results. Also, the study revealed that ANN 

outperformed other discussed machine learning techniques used as benchmarks. 

Alawe et al. [18] proposed a novel mechanism to scale out the access management functions (AMF) 

in a 5G virtualized environment. The mechanism, which is based on forecasting mobile traffic using LSTM 

neural network to estimate the user attach request rate, makes it possible to predict the exact number of AMF 

instances required to process the upcoming user traffic. By being proactive, the proposed solution allows the 

deployment latency, which may degrade network performance, to be avoided when scaling up resources. 

Simulation results confirmed the efficiency of the LSTM-based solution compared with a threshold-based 

solution. The proposed approach applied the LSTM directly on the request rate data without any 

preprocessing, which may lead to forecast accuracy degradation as discussed and demonstrated in [7], [8]. 

Dyllon et al. [19] developed a nonlinear autoregressive exogenous neural (NARX) network model 

for time series network traffic analysis. The study implemented a neural network model to predict the future 

trends of the London South Bank University (LSBU) bandwidth data traffic. Dataset was collected using the 

paessler router traffic grapher (PRTG) tool. The results showed that NARX neural network is a good method 

for predicting time series data. 

In another study, Dalgkitsis et al. [20] compared LSTM performance for 4G traffic forecast against 

seasonal ARIMA (SARIMA) and support vector regression (SVR). The dataset was collected for 122 days 

and divided into two subsets: training and testing. The study found that LSTM performance was superior to 

SARIMA and SVR. 

A deep traffic predictor (DeepTP) model to forecast long-period cellular network traffic was 

proposed in [21]. The results showed that the DeepTP model outperformed other traffic forecast models by 

more than 12.3%. The proposed approach applied a neural network directly to the dataset without any 

preprocessing. This may lead to forecast performance degradation due to data inconsistency, burstiness of the 

network traffic, and noise fluctuations, affecting QoS, network management, and security. In this study, we 

extend the reported research by studying the effects of the hybrid LSTM neural network and local smoothing 

techniques. 

To resolve noise issues through preprocessing before applying traffic and other time series analysis, 

Yoo and Sim [6] proposed a hybrid Loess-ARIMA-based forecast model. Authors claimed that such a model 

has the potential of enhancing the efficiency of resource utilization, especially in high-speed networks, to 

accommodate the rapid increase in rising demands for scientific data applications. A seasonal decomposition 

of time series by Loess (STL) and ARIMA was applied on simple network management protocol (SNMP). 

The results revealed that the proposed forecast model was resilient against abrupt changes in network usage 

provided that the multistep forecast was used as the primary scenario. 
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In [7], the significance of the interference-less machine learning approach in a time series forecast as 

a crucial component of prediction performance was discussed, especially when forecasting multiple steps 

ahead. Afolabi et al. [7] used HHT as the noise elimination technique. The results were then compared with 

conventional and state-of-the-art approaches. In their study, Joo and Kim [8] discussed a wavelet-based 

prediction method to analyze the time series in the time and frequency domains. The study presented several 

scenarios. The results concluded that the proposed method outperformed the other approaches. However, 

based on our analysis, because the proposed hybrid models are static and do not react to the dynamic nature 

of traffic loads since the underlying defined functions work on local scales, it would be difficult to capture 

the rapidly varying noise fluctuations. Moreover, some techniques such as the wavelet transform method can 

aggressively eliminate parts of the original data if not implemented carefully. 

 

 

3. METHOD 

The proposed research method is depicted in Figure 1. Data used was collected from a premier 

internet service provider (ISP) representing LTE (4G) aggregated bandwidth slice. The dataset is divided into 

two subsets. The first part represents the training dataset that was used to train the forecasting models, while 

the second subset was used for testing purposes. LSTM neural network was used as the forecasting 

technique. LSTM neural network was chosen in this study because of its superiority in finding correlations 

between current and previous states due to its unique cell-based structure, unlike other shallow/deep 

multilayer perceptron networks. Therefore, it is considered one of the most suitable time series candidates 

despite noise smoothing not being part of its feature extraction capability. The bandwidth slice as a time 

series data contains an inherent temporal correlation (non-zero temporal autocorrelation). LSTM is superior 

for learning temporal dependencies in sequential data [22]. The effectiveness of the LSTM neural network 

for resource forecasting in communication networks has already been analyzed in [18], [20]–[23]. In this 

work two forecast time scales were used, one day and one week. A hybrid forecasting model that combines 

LSTM neural network and various local smoothing techniques is used to enhance forecast accuracy. Local 

smoothing techniques allow the removal of noise and fluctuation in short scales. Compared with other 

wavelet-based techniques, local smoothing techniques react more dynamically to noise level and short-term 

variations due to flexible window sizes that can be applied throughout the dataset. A similar approach has 

been utilized in [24] whereby the Li et al. investigated the superior nonlinear approximation capacity of using 

SVM compared with “classical” local smoothing techniques such as moving average, Gaussian smoothing, 

and Savitzky-Golay filter. The results showed that the proposed model outperformed the state-of-the-art 

model, i.e., logistic regression. The effectiveness of the proposed method was verified through available real 

network traffic datasets. 

 

 

 
 

Figure 1. Proposed method 

 

 

3.1.  Moving average 

Generally, moving averages are usually calculated to identify trends. As discussed in the related 

work section above, ARIMA has been used extensively in time series and network traffic forecast. Moving 

average is a type of real-time filter that removes high frequencies from data. In signal processing, moving 

averages are also called “low pass filters” [25]. These filters have calculated coefficients that are equal to the 

reciprocal of the span or bandwidth. 

Moving average is also known as “exponential smoothing”. Let 𝐶𝑖 be defined as throughput at the 

time i. Let 𝑐={𝐶𝑖}, 𝑖=1 …. 𝑝 be the time series where p is the time series length. Therefore, the moving 

average of the period q at the time l can be calculated as depicted in (1) [25]. The computational complexity 

as shown in (1). 

 

𝑚𝑙
𝑞
= 

1

𝑞
∑ 𝑐𝑙−𝑖+1
𝑞
𝑖=1  (1) 

 

3.2.  Local regression technique (Loess) 

The Loess method [26] is based on fitting simple models to localized data subsets to form a curve 

that approximates the original data. Loess can be used as the sole forecasting method for traffic modeling in 

Local smoothing 

(moving average & 

Loess) 

Long-Short Time 
Memory neural 

network 
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very limited scenarios [27] or as a preprocessing technique for seasonal decomposition in time series 

forecasting with ARIMA [13]. However, it is not suitable for long-range forecast due to the window size 

optimal selection dilemma as explained below. The observations (𝑥𝑖, 𝑦𝑖) are assigned neighborhood weights 

using the tricube weight function shown in (6). Let ∆𝑖 (𝑥) = |𝑥𝑖 − 𝑥| be the distance from 𝑥 to 𝑥𝑖 and let ∆𝑖 

(𝑥) be these distances ordered from smallest to largest. Then, the neighborhood weight for the observation 𝑥𝑖, 
𝑦𝑖 is defined by the function 𝑤𝑖(𝑥). 

 

𝑤𝑖(𝑥) = (
∆𝑖 (𝑥)

∆ 𝑞(𝑥)
)   (2) 

 

For 𝑥𝑖 such that ∆ 𝑞(𝑥) < ∆𝑖 (𝑥) where q is called bandwidth and represents the number of observations in the 

subset of data localized around x. In the proposed algorithm, this approach is applied to fit a trend polynomial 

to the last k observations of the resource utilization. Accordingly, for each new observation, a new trend line 

𝑔̂ (𝑥) = 𝑎̂ + 𝑏̂ (𝑥) is found. This trend line is used to estimate the next observation 𝑔̂ (𝑥𝑘 + 1). The new 

observation can be considered as bandwidth slice utilization [27].  

 

3.3.  Smoothing windows selection 

The smoothing window in the smoothing process is represented by q. If q is selected to be small, 

insufficient data will fall within the smoothing window and as a result, a noisy fit will be produced. On the 

other hand, if q is selected to be large, a substantial amount of data will be eliminated. Therefore, q is 

selected to produce the least mean squared error (MSE). For moving average, q is found to be 0.003, and 

MSE is 2.4155e+07. As for Loess, q is found to be 0.002, and MSE is 6.4096e+04. For comparison purposes, 

wavelet decomposition, also performed at level one with MSE, was found to be 2.155e+7. Table 1 illustrates 

the steps for the local smoothing process. The algorithm computation complexity is 𝑂(𝑛2), where the 

computational complexity of Loess and moving average is 𝑂(𝑞). 

 

 

Table 1. Algorithm 1 
Input Bandwidth time series Series length smoothing window size Output 

�̂� Z q MSE 

ŷ as locally fitted (predicted) value using local smoothing technique 
1- For n=q to Z-q do 

2- Initialize K [] 

3- for j= n-q to n+q Do 

4- Smooth (�̂�(𝑗)) 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑀𝑆𝐸 
5- Assign (y ̂(j)) into K [] 

6- return ŷ 

 

 

3.4.  LONG-SHORT TERM MEMORY (LSTM) 

LSTM is a neural network with modified structural components and is composed of chained units 

called cells, which are the most basic units of LSTM [28], [29]. Each cell is made up of three gates, namely 

an input gate, an output gate, and a forget gate. The function of the input gate is to save or memorize the 

current state; the output gate is used for the output; the forget gate is used to dismiss some information from 

the past. The relationships between the gates are sigmoid, dot product, and tanh functions. Figure 2 depicts 

the architecture of an LSTM cell and the functional relationships between the different gates. In Figure 2,  

𝑓𝑡 represents the forget gate, 𝑖𝑡 represents the input gate and 𝑜𝑡 is the output gate. 

 

 

 
 

Figure 2. LSTM structure [21] 
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Figure 2 describe the logical relationships between input and output map it to the resource network 

variables along with the smoothing variables. 𝑥𝑡 and ℎ𝑡 represent the input and the output respectively while 

𝑊 and 𝑏̂ are weights and bias, respectively. Similar to the approach used in [23], hyperparameter selection 

was made by grid search, as depicted in Table 2. The learning computational complexity of LSTM 𝑂(𝑊) per 

time step where 𝑊 is equal to 4 𝑛𝑐 𝑛𝑐 + 4𝑛𝑖  𝑛𝑐 + 𝑛𝑐 𝑛𝑜 + 3𝑛𝑐 where 𝑛𝑐 is the number of memory cells, 

𝑛𝑖 is number of inputs units and 𝑛𝑜 is number of output gates. 

 

 

Table 2. LSTM hyperparameters 
Parameter  Name 

Library TensorFlow [30], Keras, NumPy, Sklearn  

Batch size  1 

Epochs 20 

Optimizer/Learning rate Adam 

Loss function RMSE 

Neurons 2 

Hidden layer 1 

Activation function ReLU 

 

 

To enhance forecast accuracy, the hybrid LSTM and local smoothing forecast model is proposed. 

The mathematical representation of the hybrid LSTM and moving average model can be represented as (3) 

and (4). 

 

𝐶𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1,𝑚𝑙
𝑞] + 𝑏̂𝑓) ∗ 𝐶𝑡−1 + 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑚𝑙

𝑞] + 𝑏̂𝑖) 𝑡𝑎̂𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1,𝑚𝑙
𝑞] + 𝑏̂𝑐)  (3) 

 

ℎ𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑚𝑙
𝑞
] + 𝑏̂𝑜) ∗ tanh(𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑚𝑙

𝑞
] + 𝑏̂𝑓 ∗ 𝐶𝑡−1 + 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑚𝑙

𝑞
] + 𝑏̂𝑖) ∗

 𝑡𝑎̂𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1,𝑚𝑙
𝑞] + 𝑏̂𝑐))   (4) 

 

The mathematical expressions of the hybrid LSTM and Loess model may be represented as (5) and (6). 

 

𝐶𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, �̂�̂(𝑥𝑘 + 1)] + 𝑏̂𝑓) ∗  𝐶𝑡−1 + 𝜎(𝑊𝑖 . [ℎ𝑡−1, �̂�̂(𝑥𝑘 + 1)] + 𝑏̂𝑖) ∗

 𝑡𝑎̂𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, �̂�̂(𝑥𝑘 + 1)] + 𝑏̂𝑐)    (5) 

 

ℎ𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, �̂�̂(𝑥𝑘 + 1)] + 𝑏̂𝑜)tanh (𝜎(𝑊𝑓 . [ℎ𝑡−1, �̂�̂(𝑥𝑘 + 1)] + 𝑏̂𝑓 ∗  𝐶𝑡−1 +

 𝜎 (𝑊𝑖 . [ℎ𝑡−1, �̂�̂(𝑥𝑘 + 1)] + 𝑏̂𝑖) ∗  𝑡𝑎̂𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, �̂�̂(𝑥𝑘 + 1)] + 𝑏̂𝑐))   (6) 

 

 

4. RESULTS AND DISCUSSION 

To enhance the time series forecast models, the augmented dicky-fuller (ADF) [31] test was used to 

confirm the stationarity of the time series while LSTM was used to model a non-stationary time series, as 

mentioned in the method section. Previous studies have recommended examining the stationarity of 

regression models as stationarity could lead to misleading results [32]. Real-time live trace was used as a 

dataset and modeled as a time series problem. Loess and moving average were applied successfully as a 

preprocessing technique with minimum smoothing window q. The higher the q values, the better the 

smoothing and the larger the amount of data loss. Certainly, in today’s data-centric world, losing even small 

amounts of data could lead to QoS degradation. Also, the dataset has been divided equally into two sub-sets: 

50% for the training and 50% for the testing with cross-validation, with Adam as the learning optimizer.  

Figures 3(a) to 3(d) shows the performance comparison of the hybrid LSTM-moving average, 

LSTM-Loess, and LSTM-wavelet for the 50-time step ahead forecast and the 300-time step ahead forecast, 

with the LSTM-wavelet, used as a benchmark. In addition to that, to validate the effectiveness of our hybrid 

model, well-known hybrid techniques such as SARIMA with Loess, moving average, and wavelet were used 

as benchmarks as well. Results show that that the hybrid LSTM techniques outperform other non-hybrid 

techniques. For the 50-time step forecast, LSTM-moving average had the lowest root mean square error 

(RMSE) values compared with the other techniques. The LSTM-moving average RMSE value was the best 

with 57, while LSTM-Loess and LSTM-wavelet came in second and third, respectively. LSTM-moving 

average is evidently the best choice.  

Similar results were found for the 300-time step forecast, as depicted in Figures 3(c) and 3(d). 

LSTM outperformed SARIMA by almost 76% even without smoothing techniques. The performance-

improvement percentages were enhanced even further when comparing LSTM-moving average with 
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SARIMA-moving average, LSTM-Loess with SARIMA-Loess, and LSTM-Wavelet with SARIMA-wavelet. 

The performance-improvement percentages were 79%, 71%, and 70% for the 50-time steps ahead forecast; 

and 76%, 80%, and 77% for the 300-time steps ahead forecast.  

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 3. Performance comparison (a) LSTM-hybrid for 50-time step, (b) SARIMA-hybrid for 50-time step, 

(c) LSTM-hybrid for 300-time step, and (d) SARIMA-hybrid for 300-time step 
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Overall, it is evident that the moving average-based hybrid forecast technique outperforms other 

techniques due to the high smoothing capability that moving average can provide. Taking into consideration 

Algorithm 1 is used to minimize unnecessary data loss, the moving average-based hybrid forecast technique 

produced the highest smoothing MSE of 2.4155e+07, compared with 6.4096e+04 for Loess and 2.155e+7 for 

wavelet smoothing. An explanation for this is that the smoothing window q in moving average has the 

greatest impact on the smoothing process, as depicted in (1) where q is constant for all 𝑥𝑖. This can be 

contrasted with Loess where q is embedded in weighing tricube functions that reduce the direct significant 

impact on the smoothing process, as a result of which less smoothing will be applied, as depicted in (2). In 

contrast, the wavelet-based hybrid smoothing technique is influenced more by the selected mother wavelet 

coefficients than the smoothing windows. 

The Diebold-Mariano test [33] was then applied to check the statistical significance of the obtained 

results. The findings prove the superiority of the LSTM hybrid techniques. Based on the RMSE results, 

LSTM hybrid techniques are better and statistically different from other SARIMA hybrid techniques. These 

findings coincide with the previous findings of [23] except that in that study, SVM was used. Moreover, this 

results is considered as enhancement of the previous work in [6], [8], [18]. Figures 4(a) to 4(b) shows LTE 

bandwidth forecast using LSTM-Loess for 50-time steps ahead and 300-time steps ahead. As can be seen 

from Figure 4, our model is consistent with the actual series. The results confirm the hybrid LSTM’s 

capability to capture seasonality and data fluctuations with minimal data loss (minimum MSE) arising from 

the smoothing process. 

 

 

 
(a) 

 

 
(b) 

 

Figure 4. LTE original and forecasted bandwidth (a) 50-time step and (b) 300-time step 
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5. CONCLUSION  

In this paper, hybrid local smoothing and LSTM modeling approaches were used to forecast LTE 

bandwidth slice utilization. Three local smoothing techniques, namely moving average, Loess and wavelet, 

were investigated in this study. The results reveal that the hybrid LSTM and moving average model showed 

better forecast performance in terms of RMSE. The significant performance advantages are attributed mainly 

to the prepositive smoothing mechanism controlled by the time window, which can eventually alleviate the 

high variability of local noise patterns. The results were verified by statistical significance tests and by 

undertaking a comparison with other similar state-of-the-art approaches. We believe that the method 

proposed can be used for slice traffic forecast in 4G/5G slice resource management. Further, this work can be 

extended to be applied in the automatic resource allocation algorithm as a part of slice allocator or 

orchestrator in 5G and beyond.  
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