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 This article describes the characterization of facial and ocular gestures using 

the electroencephalogram (EEG) method connected with an EMOTIV 

EPOC+ Brainwear® device. This characterization is developed by the 

storage of raw data (unprocessed data) acquired by the device. The 

experiment was applied to nine subjects, considering that EEG explores 

neurophysiologically with high levels of statistical confidence the bioelectric 

activity in the brain in the condition of resting state such as wakeups or 

dreaming states. In contrast to non-resting states, the registered data showed 

a random and distinct activation of hyperpnea and intermittent luminous 

stimulus. Despite the reduced number of samples in the experiment, the 

results showed that the level of confidence was greater than 75%. The data 

was characterized and processed by a support vector machine (SVM). 
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1. INTRODUCTION 

There have had recent medical, academic or entertainment studies [1]–[3] of the brain and have 

permitted significant advances in paralysis or physical disability or in the development of devices in the 

video-game industry [4], [5]. The method of electroencephalography (EEG) is one of the most applied 

techniques for the recognition of brain activities. It is commonly used because of its non-intrusive technology 

that allows them extract efficiently data and implement their very easy-going devices and instrumentation. 

The method of EEG was used to characterize the pattern of facial and ocular gestures by measuring 

different signals from nine subjects with different ages, appearances and socioeconomic status. All of this 

data was processed to obtain the basic signal characteristics such as amplitude, frequency and signal power. 

Then it was necessary applied operation as convolution and correlation to observe the behavior of the 

gestures through a box plot. At the end of the article, the results were classified using a support vector 

machine (SVM) technique and they were presented recognizing the classification percentage related to the 

specific gestures. 

Several technological advances have been made in recent decades, advances in computers, mobile 

technology, hardware, software and even medical measurements applied in different parts of the body [6], [7] 

this can be used for the benefit of people who have more limitations in their daytime activity [8]. 

Electroencephalogram detection methods have had drastic changes throughout their history, since with small 

devices they can be successful compared to previously invented machines, which were more expensive and 

larger [9], [10] Unfortunately, this type of technology has not been applied to its maximum capacity, since it 
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does not have a commercial appeal like other technological trends mentioned, in addition to being an analysis 

of one of the most unknown parts of the human body. In this paper, modern electroencephalogram 

technology will be used to demonstrate that this type of method can be used for various medical and social 

applications [11]–[14]. 

 

 

2. RELATED WORK 

Electroencephalography is a non-invasive technique used to measure the electrical activity of the 

brain. It has become a useful tool in diagnosing neurological diseases. The main advantage of 

electroencephalography is that it allows real-time measurement of the electrical activity of the brain, and its 

information is valuable for diagnosing neurological diseases such as epilepsy, Alzheimer’s disease, and 

Parkinson’s disease. Additionally, another advantage is that it is a painless, non-invasive, and safe procedure 

for the patient user. On the other hand, electroencephalography also has some limitations. One of them is  

that the information it provides can be difficult to interpret. The electrical activity of the brain is very 

complex, and it can be challenging to distinguish between normal and abnormal patterns. Furthermore, 

electroencephalography cannot provide information about the structure of the brain, limiting its usefulness in 

some cases. Next, the three most commonly used types of applications are discussed. 

 

2.1.  Robotic motion control 

In recent years, robotics has made enormous advancements in the field of human-robot interaction. 

The use of EEG as a tool for controlling robot movement has become increasingly common in robotics 

research. The combination of EEG technology and robotics allows for the control of robots through the user’s 

brain activity. 

A literature review on EEG-based robotic motion control has shown effective improvement in user 

experience and human-robot interaction [15]. The ability to control robots through brain activity can improve 

movement efficiency and precision, and allow for a more intuitive and immersive user experience [16]. 

Furthermore, the integration of emotional signal processing techniques can further enhance human-robot 

interaction, allowing robots to respond to user emotions. This can have applications in areas such as 

healthcare, service robotics, and education. However, there are also limitations to the use of EEG for robot 

control. EEG signal processing can be complex and the precision of motion control can be affected by factors 

such as user fatigue or electromagnetic interference [17], [18]. 

 

2.2.  Brain-computer interface 

Brain-computer interface (BCI) technology has become increasingly popular in recent years as a 

means of enabling direct communication between the human brain and computers or other devices. The 

EMOTIV EPOC+ is a BCI device that has gained popularity in research and applications due to its ease of 

use, affordability, and non-invasive nature [19]. The device uses EEG technology to measure brain activity, 

allowing users to interact with computers or other devices using their thoughts. 

Research on the use of the EMOTIV EPOC+ in BCI applications has shown promising results. 

Studies have demonstrated that the device can be used to control a variety of applications, including games, 

virtual environments, and robotic devices. The device has also been used in research to study brain activity 

and to develop new BCI algorithms and techniques [20]. 

Finally, for the classification corresponding to the mission of the document, it was done using power 

density spectrum (PSD) methods together with SVM in electrodes that highlighted greater changes in the 

tasks evaluated, in this particular case they were AF3 and AF4. Using this type of method, a maximum 

precision percentage of 87.84% was obtained, making this type of method desirable for the characterization 

proposed in this research. The author also made the classification using the Hilbert transform and the phase 

locking value (PLV) method and it was observed in the linear kernel of the document that a maximum 

precision percentage of 95.01% was obtained, this is due to the fact that the PLV method in comparison with 

the PSD handles all the data sessions as individual data, contrary to the PSD that handles them as the data of 

the 14 electrodes [19]. 

 

2.3.  Body segmental dynamics control 

Other studies have focused on a limited number of facial expressions using different types of 

headbands [21]. This article presents the use of the NeuroSky headband, which includes an electrode 

positioned on the user’s forehead to detect blink intensity and enable wheelchair movement. The authors 

chose blinking as the target signal because the headband provides three specific signals, including blinking. 

For the hardware section, the headband and a computer with a Bluetooth connection were required, while the 

software section utilized two programs: SolidWorks for 3D designs and LabVIEW for control and 
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instrumentation of design applications [22]. The simulation and verification of headband input data were 

conducted using these two software programs. 

To enable real-time monitoring, the authors developed a human-machine interface that employed a 

graphical interface designed with LabVIEW. The interface involved selecting the port to which the computer 

and headband are connected as slave/master for data reception and pressing the start button. Both software 

and hardware components work together as long as the connection is stable. Using simulation components 

and incoming data from the NeuroSky headband, the study showed a positive change in simulated motor 

angles based on the intensity of the blink and the person’s position. The authors note that these results can be 

useful for individuals with muscle paralysis who require such applications. 

 

 

3. METHOD 

Electroencephalography (EEG) is a non-invasive method of measuring and monitoring brain activity 

using electrodes connected to the scalp. These electrodes filter and amplify the output as a voltage signal, 

making EEG one of the most widely used methods for measuring brain waves. EEG devices are wearable, 

easy to transport, and less intrusive than other techniques. 

The general system depicted in Figure 1 consists of two main components. Firstly, the EMOTIV 

EPOC+ headband is used to place electrodes according to the International 10-20 System, as can be seen on 

the left side of Figure 1. Secondly, as shown on the right side of the same figure, a general methodology is 

implemented for the acquisition and analysis of data. The EMOTIV EPOC+ headband is designed to be 

compatible with the 10-20 International System, which is widely used for electrode placement on the scalp. 

The general methodology includes a set of procedures and techniques that are used to acquire and analyze 

data from the EMOTIV EPOC+ headband. 

The name of each electrode represents the central brain lobes [23] and the location in the cerebral 

hemisphere, the letters are determined as follows: F for frontal lobe, T for temporal lobe, O for Occipital 

Lobe and P for parietal lobe. The others letters and numbers locate some position in the hemisphere, 

specified such as: Z for half line and C for horizontal line. Also, the number identifies the location of the 

electrodes, even numbers for the right hemisphere and odd numbers for the left hemisphere. 

 

 

 
 

Figure 1. The general system includes electrodes positioned based on the 10-20 International System by the 

EMOTIV EPOC+, alongside the overall methodology 

 

 

4. PROPOSED APPROACH 

The methodology presented in this study is depicted in Figure 1. The experimental procedure 

involved using the EPOC+ device, which was connected to a local PC via Bluetooth using a USB transceiver 

provided by the manufacturer. The signals were acquired using the EmotivPRO program, which allowed 

recording, playing, and storing data in European data format (EDF) format and comma-separated value 

(CSV) file. A database was created by capturing the storage of facial and ocular gestures in different 

individuals. Fifty-four CSV files were acquired, with six recordings for each of the nine subjects. 

The recordings were then processed in MATLAB. It was found that the signals had an offset value, 

given by the same software used in the recording. The power spectral density of the signal was determined 

using the fast Fourier transformation (FFT) to facilitate frequency domain analysis and power estimation in 

each electrode. The box diagram was obtained statically to visualize the results and recognize gestures. Once 

the statistical processing of the results was completed, correlation and convolution operations were applied to 
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insignificantly change the captures of the electrodes. The classification process was simplified by using a 

window function to limit the data, which is a condition for the FFT. The findings of this analysis are briefly 

presented in the document [24], [25]. Finally, to evaluate the performance of the existing characteristics for 

specific applications, a classifier based on support vector machines with the method of cross-validation was 

used. This method allowed checking the real classification percentage of the existing characteristics, which 

remained constant even when taking external data from the created database. 

 

 

5. RESULTS AND DISCUSSION 

As was described in the last section, database processing where all the files captured in .csv 

extension are passing through an offset suppressor described in the previous section, it begins with the 

processing of the database. All the CSV format files are taken and entered into a cycle where the process of 

eliminating the DC offset and the window function is carried out. The window function used is the flat 

surface window function. This type of window has a shape similar to that of a Gaussian sine and 

considerably reduces the data compared to other existing window types (Blackman and Hanning), as 

represented in Algorithm 1. 

 

Algorithm 1. Signal processing algorithm 
1: Read CSV database 

2: Extract data electrodes 

3: Data = 55 

4: Chanel = 0 

5: while Data ¡55 do 

6: while Chanel ¡15 do 

7: DC offset elimination 

8: Flat window 

9: Chanel++ 

10: end while 

11. Data++ 

12: end while 

13: Return databases processed 

 

Figure 2 shows the pre-transformation of data that is carried out on the signal, in order to obtain the 

normalization of the input signal and to correlate the waves that have the same behavior but vary in scale, 

either due to scalp parameters, and skin moisture. In this way, algorithm 2, as shown in Figure 2(a), creates 

new data in the same .csv format and stores it in a new file folder, preserving the original data for reuse in 

case of any modifications to the database. This is illustrated in Figure 2(b). 

 

 

 
(a) (b) 

 

Figure 2. Input and output of data to the general system: (a) original signal and (b) resulting signal after 

removing the offset through the normalization process 
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Algorithm 2. Correlation and convolution process 
1: Read CSV database 

2: Electrode Selection 1 

3: Data = 0 

4: while Data ¡10 do 

5: Calculation of the absolute maximum 

6: Location of absolute maximum 

7: Data normalization 

8: Data reduction 

9: Data++ 

10: end while 

11. Gx = 0 

12: while Gx ¡10 do 

13: Convolution 

14: Correlation 

15: Gx++ 

16: end while 

17: Return correlation average 

 

The resulting signals were then processed using the FFT and the PSD techniques to determine if any 

of these characteristics could serve as determinant factors. To identify which electrodes were most significant 

in every facial gesture, a box plot with the PSD data was used in conjunction with descriptive statistical 

methods. This allowed for optimum frequency data, particularly with regard to cognitive values of the results, 

such as beta gamma, alpha waves, and so on. 

The results are presented in Figure 3, which includes three distinct graphs: the spectrum magnitude 

of all electrodes, the power spectral density (PSD), and the Box diagram, which represents the power-to-

frequency ratio expressed in [dB/Hz]. Specifically, the box diagram in Figure 3 illustrates the unique gesture 

of brow lifting, highlighting how the power levels of the electrodes differ when compared to other gestures. 

This visualization allows for a clear comparison and facilitates a better understanding of the electrical activity 

associated with specific facial movements. 

 

 

 
 

Figure 3. The sequential order of the process involves obtaining the FFT response of all electrodes and their 

respective power spectral density for a particular case 

 

 

The term “most prominent electrodes” refers to those that exhibited the most significant and 

consistent activity during the experiments. The “detection rate” indicates how frequently the electrodes were 

detected during the tests. This process is repeated for each value in the database, and the resulting data is 

compiled in Table 1. For example, for the gesture of raising both eyebrows, the electrodes F7 and F8 were 

detected 66.6% and 88.8% of the time, respectively, during the tests. 
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In Table 1, the electrodes with the highest detection percentages were selected, even if they did not 

exhibit a significant change in their power or PSD. This is because such changes don’t necessarily imply the 

same resulting signal. To better analyze these results, the correlation and convolution methods were applied 

to the processed signals as seen in Figure 2. The aim was to determine the level of similarity between the 

signals of all the detected electrodes. 

 

 

Table 1. Electrodes that are most manifested in the tests carried out with their percentage of detection 
Facial gesture Manifested electrodes Detection rate 

Raise both eyebrows F7, F8 F7: 66.6% F8: 88.8% 

Chew on F7, T7, F8, FC5, FC6 F7: 77.7% T7: 77.7% F8: 88.8%, FC5:77.7%, FC6: 88.8% 

Look to the right F7, T8, FC6, F8 F7: 77.7% T8: 55.5% F8: 100% FC6: 88.8% 
Look left F7, F8, FC6 F7: 88.8% F8: 77.7% FC6: 55.5% 

Close the eyes AF3, F7, F8, AF4 AF3: 66.6% F7: 100% F8: 88.8%, AF4: 66.6% 

Flicker AF3, F7, F8, AF4 AF3: 77.7% F7: 88.8% F8: 77.7% AF4: 77.7% 

 

 

The process begins with the sum of convolution, which creates a new signal by combining two 

signals. Although the same procedure is used for each input signal from each selected gesture of the person, 

they must differ in order to avoid issues. To resolve this, an algorithm is designed to take the input signals 

and match them in the same time interval. It is important to note that the basic signal characteristics such as 

maximum and minimum amplitudes (which depend on the electrode response form) are different for each 

person. To correctly perform the convolution, it is necessary to normalize the input signals to ensure standard 

values from -1 to 1 are used. This normalization is also necessary to compare signals from different 

individuals. 

The Algorithms 1 and 2 show the flow corresponding to the processing: it begins with the processed 

database and the electrode selection, then proceeds with data normalization, locating and calculating the 

absolute maximum, and aligning the response time across all nine data cycles. For some facial and ocular 

gestures, an amplitude more negative than the positive amplitude was observed, which needed correction by 

recalculating the maximum to ensure accurate correlation. Ultimately, the goal was to determine the location 

of this maximum to consider this time as the origin (or reference point) for all evaluated data. 

To perform convolution, three signals from a specific electrode labeled as G1, G2, and Gx are 

selected from three different subjects. G1 and G2 are the best signals from the electrode according to the 

corresponding gesture and the database, while Gx is any other signal from the database. The convolution 

process involves creating a resulting signal C1 by convolving G1 and G2, and another resulting signal Cx by 

convolving G1 and Gx. G1 and G2 are considered constant signals because they are the best signals, and C1 

is also constant and serves as the reference signal, or pilot signal. C1 is then correlated with Cx, which 

changes since it is the signal that is desired to find the corresponding correlation (Gx). After obtaining both 

resulting convolved signals, they are correlated. This correlation shows how well the two signals match or are 

related, and it ranges from -1 to 1, where -1 represents no correlation and 1 represents perfect correlation. 

Then, this process will be repeated for each electrode or input signal from the database to obtain an 

average of all correlations with a unitary reference result and compare which electrodes have the worst or 

best correlation and how often this result is manifested. These results are recorded in Table 2. It is evident 

from the table that the electrode T7 has the lowest correlation with respect to the others and will be discarded 

for the following analyses. Additionally, it can be observed in the table that although T8 and FC5 have good 

correlation calculations, they are only manifested in one gesture, either facial or ocular, and their convolution 

or correlation could not be calculated with other gestures. These comparisons might be random or harmful 

for other analyses, and therefore, they will be eliminated from the data. Removing the comparison with these 

three electrodes will make the system faster and more accurate in characterizing the other electrodes or 

gestures (AF3, F7, FC6, F8, AF4) through SVM. 

In order to verify that the characteristics of all gestures were correctly identified, it was necessary to 

classify the selected electrodes using the SVM method. This method is considered one of the most reliable 

for research related to electroencephalogram analysis or big data processing/transactions [26]. Only five 

electrodes were selected, normalized, and reduced to fewer input data (from 1,250 to 701) before being 

combined into a single row representing one input of either a facial or ocular gesture. Each row was labeled 

to indicate the corresponding gesture, resulting in nine input files for the classification process. These 

generated files had to be in a specific sparse format as defined by the creators of the SVM library used [27]. 

After obtaining the file for each individual, the data classification was performed using a cross 

validation function. This method involves dividing the data into two main sections: one for training and the 

other for testing. It is essential that the data in both sections remain independent throughout the process. The 

method splits the data into partitions, also known as “folds”, depending on the K iteration (known as K-fold), 
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and repeats the process until the last iteration. In this study, we used nine iterations, one for each individual 

evaluated, and applied the basic RBF core (short for radial basis function) with different constant values of C 

and gamma. The results are presented in Figure 4 and show the performance of a predictive model. 

The S4 and S5 electrodes are located on the posterior region of the scalp, near the midline, in the 

occipital and parietal regions, respectively. They are commonly used in polysomnography to detect sleep 

patterns in the brain by measuring slow wave activity of sleep, which is activated in the deepest stages of 

sleep. Figure 4(a) shows the results of this activity. As the tests were carried out with participants in a 

conscious state, these waves did not represent relevant information compared to the evaluated gestures. 

Therefore, they were eliminated from the analysis, resulting in an increase in the percentage of clarity, as 

shown in Figure 4(b). 

 

 

Table 2. Total correlation of each electrode and the number of times manifested  

with respect to each easy and ocular gesture 
Electrode Number of times manifested Correlation result 

AF3 2 0.78685 
F7 6 0.69228 

FC5 1 0.6214 

T7 1 0.2591 
T8 1 0.7821 

FC6 3 0.6690 
F8 6 0.68456 

AF4 2 0.8425 

 

 

  
(a) (b) 

 

Figure 4. Performance of a predictive model: (a) resulting cross validation and (b) cross validation resulting 

from deletion of S4 and S5 

 

 

Figure 4(a) indicates that when a different input is given other than those from the database, this 

method matches the characteristics with an accuracy of 64.81%. To investigate why the cross-validation gave 

this number, an algorithm with the same function was created to visualize individual percentages instead of 

the overall average percentage. The individual percentages are important because it is necessary to identify 

which facial or ocular gesture in the database has no coherence with the number of electrodes applied. The 

individual results may differ significantly from the rest of the data in the database, and there is a possibility, 

albeit low, that lower percentages in the database may corrupt all classification systems. Table 3 displays the 

individual results for each subject used in the cross-validation classification. 

With the data expressed in Table 3, it was demonstrated that subjects S4 and S5 had a smaller 

number of classified gestures, leading to a significant decrease in the overall classification percentage of 

facial or ocular gestures characteristics. In order to improve this classification, these subjects were 

eliminated, and the cross validation was executed again, with the results shown in Figure 4(b). With the 

elimination of subjects S4 and S5, the cross-validation accuracy increased from 64.81% to 76.19%, which is 

a significant improvement as cross validation ensures the classification of characteristics with other data 
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outside of the database. The following bar plot shows the classification results in detail, with a distinction 

between the results of cross validation with the database of nine subjects (VC1), the results of cross 

validation with the decreased database (VC2), and the results of the classification method using SVM with 

constants C and gamma of VC1. 

 

 

Table 3. Classification percentage of each subject 
Subject Classification percentage Amount of classified gestures 

S1 50% 3 
S2 50% 3 

S3 100% 6 

S4 16.6667% 1 
S5 16.6667% 1 

S6 100% 6 

S7 83.3334% 5 
S8 100% 6 

S9 50% 3 

Average 62.96% 3.77 

 

 

Figure 5 shows that when using SVM for training, the classification percentage is 100% in all cases 

(green color) because the test data was already included in the training of the system. However, if the test 

data were not used in the training phase, its classification would be unknown without using the cross-

validation method. This graph also demonstrates how the data of individuals S4 and S5 in VC1 (orange tone) 

affected the overall results, as their percentage was significantly lower compared to the other subjects in the 

database. Thus, excluding these subjects from the classification training led to a final classification accuracy 

of over 75% (yellow tone) using a database of seven people. 

 

 

 
 

Figure 5.  Impact of cross-validation on the performance of a predictive model using SVM classification 

 

 

6. CONCLUSION 

In this article, it has been confirmed that EEG provides a viable option for measuring facial and 

ocular gestures. The instruments used for data collection were non-invasive, portable, and easy to use, 

compared to other methods described in the literature. Signal analysis was performed on the database using 

different types of processing to observe the characteristics of each gesture, such as amplitude, shape, power, 

and frequency, in order to obtain the best possible classification depending on the characteristics considered. 

It was noted that raw signals showed similarities in the correlation and convolution process, as observed in 

Tables 2 and 3. In contrast, the results obtained through FFT and PSD were only useful in differentiating 

which electrodes had more change than others and reducing the amount used for sorting. 

For future work, it is recommended to conduct measurements on individuals with short hair. As 

confirmed in the analysis of results, the entire female database had low voltage values, making it difficult to 

distinguish any difference in frequency and power, resulting in a significant drop in the database throughout 

the signal analysis. Additionally, other reductions were made in the database during the use of SVM to 

observe how the results of cross-validation changed. This method was able to correctly classify the 

characteristics found in this project with a maximum percentage of 76%. Using these methods, it was 
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possible to identify the main problems encountered in this research, such as the scarcity of input data and 

lack of recording sessions. For future classifications, it is necessary to have a broader database and, if 

possible, different measurement sessions. As seen throughout this document, values may look decent visually 

during recording but may be unusable for their intended purpose. 
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