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 The primary cooling system is an integral part of a nuclear reactor that 

maintains reactor operational safety. It is essential to investigate the effects of 

the cooling system parameter before implementing predictive maintenance 

techniques in the reactor monitoring system. This paper presents a linear 

regression and R-squared correlation analysis of the nuclear plant cooling 

system parameter in the TRIGA PUSPATI Reactor in Malaysia. This research 

examines the primary cooling system's temperature, conductivity, and flow 

rate in maintaining the nuclear reactor. Data collection on the primary coolant 

system has been analyzed, and correlation analysis has been derived using 

linear regression and R-squared analysis. The result displays the correlation 

matrix for all sensors in the primary cooling system. The R-squared value for 

TT5 versus TT2 is 89%, TT5 versus TT3 is 94%, and TT5 against TT4 is 66% 

which shows an excellent correlation to the linear regression. However, the 

conductivity sensor CT1 does not correlate with other sensors in the system. 

The flow rate sensor FT1 positively correlates with the temperature sensor but 

does not correlate with the conductivity sensor. This finding can help to better 

develop the predictive maintenance strategy for the reactor monitoring 

program. 
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1. INTRODUCTION 

Nuclear energy is of continuing interest as a means of generating power because it can fulfil the 

world's expanding energy demands in an ecologically safe manner [1]. The most critical components are the 

fuel element, moderator, and control rods in a nuclear reactor. The reactor core creates high heat by mixing 

thermal neutrons with uranium, starting a fission reaction, and directing heat away from the heat exchanger 

to a cooling agent. The steam generated rotates the turbine, linked to the generator, generating energy. A 

reactant coolant pump (RCP) is an essential component. It is a single piece of equipment in a reactor's 

primary coolant system [2]. It is the coolant's primary source of kinetic energy. To ensure the safety of the 

nuclear reactor, the RCP must effectively prevent and minimize the possibility of incidents [3]. The 

pressurized water reactor, reactor coolant system, energy conversion system, circulation water system, 

turbines, transmission and distribution systems, and auxiliary system components are the primary 

components of nuclear power plants that use pressurized water reactors [4]. The process propagates from 

the primary coolant system to the nuclear research reactor digital instrumentation monitoring system. On 

June 28, 1982, the PUSPATI TRIGA Reactor (RTP) of the Malaysian Nuclear Agency reached criticality. 

https://creativecommons.org/licenses/by-sa/4.0/
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Its cooling system comprises a single shell-and-tube heat exchanger, three centrifugal pumps, and a pipe 

system. Then, a proposal is made to replace the heat exchanger with two 1.5 MW plate-type heat exchangers 

and three new centrifugal pumps and upgrade the control systems to a new single-unit integrated control 

system [5], [6]. 

Nuclear operation is a complex system and involves various numbers of systems to monitor the whole 

operation to ensure the safety of its operation [7]. The failure of one component is likely to trigger a chain 

reaction of other failures, which may have a severe effect on the nuclear reactor's ability to function [8]. The 

numerous sensors installed within the system can help identify the reactor's condition and allow for 

maintenance on any fault detected within the system [9]. It is essential to routinely check the safety of a nuclear 

power plant's components to discover any irregularities that might cause accidents [10]. Before evaluating raw 

sensor data, it must be treated to remove noise and distortion. By analyzing operation data, insight into the 

plant's status can be derived, helping to identify any irregularities [11]. It is essential to precisely evaluate any 

abnormalities in the monitoring equipment to ensure the nuclear plant's normal operation, the operators' safety, 

and the integrity of the reactor's components [12].  

Correlation analysis is a statistical technique used to determine the linear relationships between 

variables. It determines the variables that are significantly and positively linked to determine how closely they 

are associated in magnitude and direction [13]. Correlation analysis can be utilized to investigate the connection 

between two or more variables. Bivariate, partial, and multiple correlation analyses are the most prevalent types 

of correlation analysis. It uses statistical software to compute various correlation statistics and has been used 

in literatures studying the relationship between various elements or variables and finds information that can be 

used for further studies. 

This paper aims to investigate the relationship between the water temperature parameter, water 

conductivity parameter, and water flow rate parameter of the primary cooling system of the TRIGA PUSPATI 

Reactor using correlation analysis. Data collection for this paper is conducted using data collected on operation 

day for the year 2020. Each parameter has a daily dataset for the year 2020. The data is then transformed into 

an appropriate format and organized into a single dataset. The dataset is next subjected to correlation analysis, 

and the resulting findings will be discussed. A conclusion will be presented based on the result obtained to 

determine that the cooling system parameter is valuable for predictive maintenance techniques for monitoring 

a nuclear reactor based on its cooling system condition. 

 

 

2. STATISTICAL METHOD OF ANALYSIS  

An example of the application of correlation analysis is the study of the relationship between the 

reactor's internal and external vibration, which can be used to diagnose the condition of equipment [14].  

The correlation degree between the internal and exterior vibration signals is affected by the transmission path 

between the two places. The frequency component is more suited for pre-processing, as determined  

by the correlation analysis evaluation. Correlation analysis is performed on the aspect of the Safety-II model 

that describes how each factor has a statistically significant relation [15]. The research results demonstrate that 

the model can address the limitation of the prior model and provide a more integrated perspective of  

the nuclear power plant's safety analysis. In solving large-scale unlabeled and multisource coupled nuclear 

power plant operational data, correlation analysis is typically utilized to objectively evaluate the correlation 

between variables [16]. A study on the recent predictive maintenance technique for nuclear reactor cooling 

systems using machine learning has determined the best parameters and statistical analysis method in  

providing the best technique in this work [17]. Regression analysis is a predictive statistical technique that 

describes the relationship between dependent and independent variables that can identify the connection 

between parameters and the decision under consideration [18]. A mathematical model with numerous 

independent variables to a dependent variable is known as multiple linear regression (MLR) [19]. The MLR 

model's advantages are its simplicity of formulation, speed of execution, and capacity to recognize the impacts 

of varied loads [20]. Few predictions have been done recently using machine learning techniques like used an 

artificial intelligence approach method known as deep neural network [21] and prediction through a web-based 

system [22].  

Statistical analysis has been done on the surveillance test data of Korean nuclear power plants to study 

the fluency factor of the different model to accurately predicts the transition temperature shift (TTS) on the 

surveillance test data. The analysis result found that the fluence factor in the regulatory guide should be 

modified to accurately predict the TTS [23]. Statistical analysis is also one of the primary purposes of 

developing the building information modelling (BIM) operation and maintenance management system. 

Improving the information transmission efficiency and solving large-scale operation and maintenance data 

analysis will support safe operation and maintenance decision-making [24]. Correlation analysis is also used 

to study the effect of earthquake impacts on the nuclear power plant cluster in Fujian province [25]. The study 

found that nuclear power plants located in the same structural potential source area have a slight probability of 
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exceeding their corresponding design criteria during an earthquake. Another study uses statistical analysis to 

develop a quantitative resilience model for power plants to identify the relations in the model using event 

reports from Korean nuclear power plants [26]. 

The best estimate plus uncertainty (BEPU) approach is used to conduct an uncertainty analysis in a 

pressurized water reactor on the large-break loss of coolant accidents (LBLOCA) scenario [27]. It focuses 

primarily on the uncertainty associated with the maximum figure of merit. Based on relevant performance 

indicators, the results compared alternative and traditional procedures. Another study examines LBLOCA 

accidents at nuclear power plants but uses classification and regression approaches [28]. 

Statistical analysis is also incorporated in a study comparing three severity metrics to assess risk in 

the nuclear energy system [29]. It uses a data set double the size of prior nuclear mishaps and accident studies. 

The results reveal that the rate of incidents and accidents has reduced and been relatively steady since the 

1970s. Another study uses a statistical technique to develop a baseline for decommissioning nuclear projects 

to improve future nuclear commissioning project selection, planning, and delivery [30]. In addition, an 

assessment of the use of solar power plants demonstrates that, despite an increase in the relative cost of the 

project, it can significantly reduce air pollutants and fossil fuel use while simultaneously enhancing the 

efficiency of the equipment [31]. Statistical and correlation analysis has been applied in various literature 

studies. Table 1 shows some of the literature which presented statistical analysis in their studies and the study's 

objective. Although there are studies involving the analysis of a nuclear reactor, there needs to be more 

conducted on the cooling system of a nuclear power plant.  

 

 

Table 1. Statistical analysis reviews towards objective 
Research Field of study Objective 

Kumar et al. [13] Oil and Gas Predicting the average oil rate through identifying the important element of 

production process 
Zhang et al. [16] Nuclear Engineering Anomaly detection method for nuclear power plant using variational graph 

auto-encoder 

Park et al. [15] Nuclear Engineering Develop a model based on safety-II for unexpected situation in nuclear power 
plant 

Sanchez-Saez et al. [27] Nuclear Engineering Investigate the performance of alternative methods to perform uncertainty 

analysis of a large-break loss of coolant accident 

 

 

3. METHOD  

The primary cooling system of the TRIGA PUSPATI Reactor in Bangi, Selangor, was examined in 

2020. Three parameters from the primary cooling system have been selected for this study. The data collected 

contains the parameter value from the sensor reading within the cooling system of the research reactor. This 

study will focus on temperature, conductivity, and water flow rate parameter reading. Figure 1 shows the 

overview of the research reactor cooling system. The sensors are installed and located at various stages of the 

cooling system. Temperature parameter data will be collected through five temperature sensors installed. Three 

temperature sensors are located within the cooling system's primary loop, and the other two are within the 

cooling system's secondary loop. TT1 and TT2 are at the reactor tank outlet, while TT5 is at the tank inlet. In 

the secondary loop, TT3 is located at the inlet of the cooling tower, and TT4 is at the outlet. The conductivity 

of water within the primary cooling system is measured using conductivity sensors that measure the water's 

ability to conduct electrical current. The outlet pipe of the tank is where the conductivity sensors are attached. 

The flow rate sensor determines the cooling system's water flow rate. It is situated at the reactor tank's input 

pipe. 

The primary cooling system data are collected in a comma-separated values (CSV) file for each 

parameter. A single file stored data for a single day in 2020, and each parameter has 356 CSV files. RapidMiner 

Studio is used to merge all files into a single parameter file. RapidMiner Studio is a software for data science 

that provides the environment for data preparation, machine learning, text mining, and predictive analytics. It 

is a powerful statistical solution that incorporates framework architectures to improve delivery and eliminate 

errors by eradicating the requirement to develop code.  

Multiple processes are created to process all individual dataset parameters of the primary cooling 

system into one single dataset. Figure 2 shows a process created in RapidMiner Studio that will read multiple 

files from a folder. This process will loop through the files and append all datasets into a single dataset. The 

new dataset created will then be saved in the repository in the RapidMiner, and a new CSV file will be written 

into the computer as a backup. Figure 3 shows a process created to process the raw data from the previous 

process and filter out any unwanted data before moving on to the next step. Next, an operation day process will 

filter out to only the operational day date and append it into a new dataset. The dataset is then sorted and 
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grouped in time intervals of 30 seconds. Lastly, each parameter dataset is joined together to form a new dataset 

through the joined parameters process. 

 

 

 
 

Figure 1. An overview of the cooling system in TRIGA PUSPATI Reactor 

 

 

 
 

Figure 2. A read multiple files process created in the RapidMiner Studio that read all the csv files from a 

folder 
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Figure 3. A data filter process created in RapidMiner Studio to pre-process data by filtering out unwanted 

data from the dataset 

 

 

4. RESULT AND DISCUSSION 

Correlation analysis is performed on the dataset of the operation day in 2020. Each parameter dataset 

has been filtered to only the operation day of 2020, and a correlation matrix is produced. Table 2 shows the 

correlation table of the primary cooling system parameter created using data collected from all sensors involved 

in the cooling system. In this section, the result of the correlation analysis will be discussed. 

 

 

Table 2. Correlation matrix of the cooling system parameter on temperature, conductivity, and flow rate of water 
 TT1 TT2 TT3 TT4 TT5 CT1 FT1 

TT1 1.000       
TT2 0.998 1.000      

TT3 0.975 0.974 1.000     

TT4 0.669 0.665 0.809 1.000    
TT5 0.943 0.946 0.972 0.814 1.000   

CT1 -0.083 -0.080 -0.048 0.041 -0.036 1.000  

FT1 0.460 0.462 0.374 -0.043 0.278 -0.083 1.000 

 

 

4.1.  Correlation between temperature sensors 

As mentioned in the previous section, there are multiple temperature sensors installed within the 

cooling system of the TRIGA PUSPATI Reactor. Three sensors are located before the heat exchanger, and two 

are after the heat exchanger. This section will discuss the correlation between the temperature sensor TT5 and 

other temperature sensors, as it is the final sensor before the water returns to the reactor tank.  

Firstly, the correlation coefficient between water temperature at TT5, TT1 and TT2 are 0.943 and 

0.946, respectively. From these correlation coefficient values, the parameter reading at TT5 strongly correlates 

to TT1 and TT2. Both TT1 and TT2 sensors are located closely in the primary cooling system, thus explaining 

that the correlation coefficient is almost similar. Figures 4 and 5 show the scatter plot analysis of TT5 against 

TT1 and TT2, respectively. The linear regression line is also presented in the scatter plot graph. The positive 

linear regression indicates there is a correlation between the parameters, and it also indicates that there is a 

positive relationship between the parameter variables. 

The R-squared (R2) value shown on the graph is the coefficient of determination, indicating the 

closeness of the data point from the fitted regression line. The R-squared value for TT5 against TT1 and TT2 

are 0.8884 and 0.8942, respectively. This value shows that around 88% of the data are used to explain the linear 

model for TT5 compared to TT1. Approximately 89% of the data points in the study are a perfect fit to the 

linear regression line for TT5 compared to TT2. 
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Next, the correlation coefficient between temperature sensor TT5 versus TT3 and TT4 are 0.972 and 

0.814, respectively. This value shows that both TT3 and TT4 are strongly correlated to the water temperature 

at TT5. The temperature sensors TT3 and TT4 are located at the secondary loop in the cooling system. Figure 6 

shows the scatter plot analysis of TT5 against TT3, and Figure 7 shows TT5 against TT4. A positive linear 

regression line can be seen in both analyses, indicating a positive relationship between the two variables in 

each regression model. The R-squared value for TT5 versus TT3 is 0.9453, indicating that approximately 94% 

of the obtained data can be utilized to explain the variation in the dependent variable surrounding its linear 

regression model. The R-squared value in the analysis of TT5 against TT4 is 66%. 

 

 

 
 

Figure 4. A scatter plot analysis of sensor TT5 against sensor TT1 

 

 

 
 

Figure 5. A scatter plot analysis of sensor TT5 against sensor TT2 

 

 

 
 

Figure 6. A scatter plot analysis of sensor TT5 against sensor TT3 
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Figure 7. A scatter plot analysis of sensor TT5 against sensor TT4 
 

 

4.2.  Correlation between conductivity and temperature sensor 

One conductivity sensor, CT1, is installed within the cooling system's primary loop. It takes the 

reading of the conductivity of water in the outlet pipe from the reactor tank. The correlation matrix in Table 2 

shows that the correlation coefficient between CT1 with TT1 and TT2 is -0.083 and -0.080, respectively. As 

both values are close to 0, it is identified that water temperature at TT1 and TT2 is not correlated with water 

conductivity. Figure 8 presents a scatter plot analysis of CT1 against TT1, and Figure 9 shows the scatter plot 

analysis of CT1 against TT2. A linear regression line is presented in the graph. The horizontal regression line 

shows no relationship between the two parameters. This result reveals that any changes in water temperature 

at TT1 and TT2 do not affect water conductivity in the cooling system. The correlation coefficient value for 

conductivity sensors CT1 with both temperature sensors TT3 and TT4 is presented in Table 2. However, it is 

not considered in the analysis as both temperature sensors are in the secondary loop of the cooling system. The 

water inside the secondary loop does not interact directly with the conductivity sensor CT1 in the primary loop. 

There is also no correlation between CT1 and TT5, as the correlation coefficient value is -0.036, close to 0. 
 

 

 
 

Figure 8. A scatter plot analysis of sensor CT1 against sensor TT1 
 

 

 
 

Figure 9. A scatter plot analysis of sensor CT1 against sensor TT2 
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4.3.  Correlation between flow rate sensor and temperature sensor 

A flow rate sensor, FT1, is installed at the inlet pipe into the reactor tank after the heat exchanger. The 

correlation coefficient of FT1 with the temperature sensors is shown in Table 2. Firstly, the correlation 

coefficient FT1 with temperature sensors TT1 and TT2 are 0.460 and 0.462, respectively. The correlation 

coefficient values show that the water flow rate at FT1 positively correlates with the water temperature at TT1 

and TT2. Figure 10 shows the scatter plot graph of FT1 against TT1, and Figure 11 shows the scatter plot graph 

of FT1 against TT2. A positive linear regression line is plotted on the graph in both figures. It displays that any 

changes in the water temperature will linearly affect the water flow rate. The R-squared value for both 

regression model is 0.21, which indicate that only about 21% of the data point is fitted within the regression 

model. It is also worth noting that the temperature sensors are installed far from the water flow sensor in the 

cooling system. 
 

 

 
 

Figure 10. A scatter plot analysis of sensor FT1 against sensor TT1 
 
 

 
 

Figure 11. A scatter plot analysis of sensor FT1 against sensor TT2 
 

 

The correlation matrix in Table 2 shows a correlation coefficient value for FT1 with the temperature 

sensor TT3 and TT4 are 0.374 and -0.043, respectively. However, these values are not considered in the 

analysis because the water from the secondary loop where TT3 and TT4 are installed does not directly interact 

with the water flow rate sensor in the primary loop. Next, the correlation coefficient of FT1 with TT5 is 0.278, 

showing a positive correlation between FT1 and TT5. Figure 12 shows the scatter plot analysis of the 

correlation, and a linear positive regression line is plotted onto the graph. It displays that any temperature 

changes will affect the water flow rate in the cooling system. The R-squared value for FT1 with TT5 is 0.07, 

which explains that the variation of TT5 can explain only about 7% of the data point variation of FT1. 

 

4.4.  Correlation between conductivity sensor and flow rate sensor 

The correlation matrix in Table 2 shows that the correlation coefficient between conductivity at CT1 

and water flow FT1 is -0.083. It can be determined that there is no correlation between the two parameters 

within the cooling system, as the correlation coefficient value is close to 0. This result denotes that any changes 

in the water conductivity value at sensor CT1 do not affect the water flow rate within the cooling system. 
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Figure 12. A scatter plot analysis of sensor FT1 against sensor TT5 

 

 

5. CONCLUSION 

The cooling system in a nuclear reactor is essential as it helps control the heat produced by the nuclear 

fission at the reactor core and transfers the heat through the coolant in the cooling system to be released into 

the atmosphere. Multiple sensors are installed within the reactor cooling system to monitor the cooling system's 

efficiency and maintain a safe nuclear operation environment. The cooling system parameters involved in this 

study are temperature, conductivity, and water flow. Correlation analysis is performed on the dataset of the 

RTP cooling system taken during the operation day in 2020. The analysis is being conducted using seven 

sensors. According to the correlation matrix, the water temperature at sensor TT5 correlates positively with 

other temperature sensors. The conductivity sensor does not correlate with the temperature of the water in the 

cooling system. The water flow rate at sensor FT1 in the cooling system does correlate with water temperature 

sensors and does not correlate with water conductivity in the cooling system. Based on the result achieved, the 

water temperature parameter can be valuable in developing a predictive model for a predictive maintenance 

program to improve the nuclear reactor monitoring and maintenance system. 
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