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 In this paper, static var compensators (SVCs) and many load compensation 

techniques are reviewed. A continuously and linearly controlled 

compensating susceptance is devised from a switched capacitor bank and a 
switched reactor bank. The switched capacitor bank is built of four binary 

weighted thyristor switched capacitors, while the switched reactor bank is 

built of three binary weighted thyristor switched reactors. Although few 

switched capacitors and reactor are used, their binary weighted values beside 
their control scheme make them respond as a continuously and linearly 

controlled reactive device in capacitive and inductive modes of operation. A 

load balancing system is constructed of three identical devised compensating 

susceptances connected in delta-form. It is designed for balancing an 11 kV 
50 Hz distribution station. The proposed system is designed and tested on 

PSpice which is a computer program equivalent in performance to real 

hardware design. The simulation results of the proposed system have 

showed significant treatment of severe imbalance conditions. 
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1. INTRODUCTION  

Traditional static var compensators (SVCs) and synchronous static compensators (STATCOMs) are 

the basic means used for power quality purposes [1]–[25]. Traditional static var compensators are represented 

by thyristor-controlled reactor (TCR), thyristor switched reactor (TSR), and thyristor switched capacitor 

(TSC). Static compensators are represented by power converter based static var compensators and 

STATCOMs. Load compensation and power factor correction systems have great impact in transmission 

losses reduction and energy saving in power generation stations [1]–[25] . The minimization of current 

harmonics released from the operation of TSC-TCR based SVC into the distribution systems at low voltage 

distribution level was discussed by [1]. In the proposed study, intelligent control was used to determine the 

TCR triggering signals required for minimal harmonic injection. A three-phase STATCOM based 

compensation system was introduced by [2] for compensating unbalanced voltage and current. By choosing 

appropriate control schemes, the proposed compensation system can achieve voltage regulation in addition to 

certain limit of current balancing and power factor correction. 

In [3], a new type of STATCOM designed for high-power applications was proposed for fully 

compensating the imbalanced and disfigured nonlinear loads operating in large-current medium-voltage 

grids. Hagiwara et al. [4] introduced an application using a modular multilevel cascade converter on basis of 

the single-delta bridge-cells to synchronized STATCOM, especially for the control of negative-sequence var. 

A DSTATCOM in [5] was capable of real-time compensation for unbalanced loads in 4-wire distribution 

systems. The method of symmetrical components was exploited for devising the controlling scheme for this 

https://creativecommons.org/licenses/by-sa/4.0/
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DSTATCOM. In [6] a new configuration of harmonic suppression circuitries was proposed to a TCR, which 

promoted it to respond linearly to reactive current demand without harmonic association.  

A simulation package depending on LABVIEW was developed by [7] for reduction of energy loss 

purposes. The work in [8] discussed safe operation of grid-connected power converters with related to peak 

current limitation as well as maximum permissible fluctuations of the direct current (DC) voltage. Balancing 

of load currents can be accomplished via correction process of power factor and compensation of load active 

current components [9]. Many researches exploited converter-based static compensators for harmonic 

reduction, voltage regulation, and current compensation [9]–[13], [22]. Compensators built of separate 

susceptances in star and delta configurations showed more compensation flexibility than traditional lumped 

systems represented by DSTATCOMs [9], [15]–[20]. A 3-phase load current balancing scheme in a 

transmission system having distributed static compensators connected in series and using the method of 

variable quadrature voltage injection was proposed by [14]. This topology either exhibits capacitive or 

inductive impedance into the alternating current (AC) grid lines for current balancing purposes. The works in 

[21], introduced reactances for 3-phase load compensation. The reactances connected in star form were used 

for compensating reactive currents, whereas those connected in delta for were exploited for balancing the 

active components of line currents. Active filters were introduced in [23] for the purposes of treating 

harmonic current components associating nonlinear loads, whereas in [24], a shunt active filter was provided 

to a single-phase converter to achieve significant reduction in harmonic current components. A DSTATCOM 

was introduced in [25] for power quality purposes. It was suggested to enhance the improvement of power 

factor, voltage regulation, current balancing, and harmonic minimization.  

In this paper, a continuously and linearly controlled SVC is devised from a new configuration of 

TSCs and TSRs. The new configuration is built of a binary weighted switched capacitor bank (BWSCB) and 

a binary weighted switched reactor bank (BWSRB). Even though the devised SVC is built of limited number 

of stepping response TSCs and TSRs, it shows a performance of a continuously and linearly controlled 

compensating susceptance. A static compensator is built of three identical compensating susceptances 

connected in delta-form. It is designed for load currents balancing for an 11 kV 50 Hz distribution station. 

The station involves five feeders. The average line current drawn from this station varies in the range of  

1,200 to 1,300 A (rms values) depending on the daily loading conditions. A 30% unbalance in line currents is 

permissible there.  

 

 

2. THE ADOPTED LOAD BALANCING STRATEGY 

Figure 1 shows the layout of the balancing mechanism of an ungrounded load fed by a balanced 

three phase voltage. BSAB, BSBC, and BSCA are the compensating susceptances of the static compensator power 

circuit. ISA, ISB, and ISC are the static compensator line currents. The AC power system phase voltages VA, VB, 

and VC can be given by (1), (2), and (3). 

 

𝑉𝐴 = 𝑉 (1) 

 

𝑉𝐵 = 𝑉𝑒𝑗
−2𝜋

3  (2) 

 

𝑉𝐵 = 𝑉𝑒𝑗
−4𝜋

3  (3) 

 

where, V is the rms magnitude of each phase voltage. The line currents of the unbalanced three-phase load 

can be given by (4), (5), dan (6). 

 

𝐼𝐿𝐴 = |𝐼𝐿𝐴|∠𝜙𝐿𝐴 = |𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴 + |𝐼𝐿𝐴| 𝑠𝑖𝑛 𝜙𝐿𝐴 𝑒
𝑗
𝜋

2  (4) 

 

𝐼𝐿𝐵 = |𝐼𝐿𝐵|∠𝜙𝐿𝐵 = |𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵 𝑒
𝑗
−2𝜋

3 + |𝐼𝐿𝐵| 𝑠𝑖𝑛 𝜙𝐿𝐵 𝑒
𝑗
−𝜋

6  (5) 

 

𝐼𝐿𝐶 = |𝐼𝐿𝐶|∠𝜙𝐿𝐶 = |𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶 𝑒
𝑗
−4𝜋

3 + |𝐼𝐿𝐶| 𝑠𝑖𝑛 𝜙𝐿𝐶 𝑒
𝑗
−5𝜋

6  (6) 

 

where, φLA, φLB, and φLC are the power factor angles of phases A, B, and C respectively. |ILA|, |ILB|, and |ILC|, 

are the absolute rms values of ILA, ILB, and ILC respectively. The active current components of line currents are 

in phase with their corresponding phase voltages, while reactive current components lead them by π/2. 

Similarly, the static compensator rms currents ISA, ISB, and ISC can be expressed in terms of their active and 

reactive current components as (7), (8), and (9).  
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𝐼𝑆𝐴 = √3𝑉 𝑐𝑜𝑠 (
𝜋

3
) (𝐵𝑆𝐶𝐴 − 𝐵𝑆𝐴𝐵) + √3𝑉 𝑠𝑖𝑛 (

𝜋

3
) (𝐵𝑆𝐴𝐵 + 𝐵𝑆𝐶𝐴)𝑒

𝑗
𝜋

2  (7) 

 

𝐼𝑆𝐵 = √3𝑉 𝑐𝑜𝑠 (
𝜋

3
) (𝐵𝑆𝐴𝐵 − 𝐵𝑆𝐵𝐶)𝑒

𝑗
−2𝜋

3 + √3𝑉 𝑠𝑖𝑛 (
𝜋

3
) (𝐵𝑆𝐵𝐶 + 𝐵𝑆𝐴𝐵)𝑒

𝑗
−𝜋

6  (8) 

 

𝐼𝑆𝐶 = √3𝑉 𝑐𝑜𝑠 (
𝜋

3
) (𝐵𝑆𝐵𝐶 − 𝐵𝑆𝐶𝐴)𝑒

𝑗
−4𝜋

3 + √3𝑉 𝑠𝑖𝑛 (
𝜋

3
) (𝐵𝑆𝐶𝐴 + 𝐵𝑆𝐵𝐶)𝑒

𝑗
−5𝜋

6  (9) 

 

IA, IB, and IC are the rms line currents of the AC source. According to the main objective of this 

research, these currents should be balanced and active. Consequently, they can be given by (10), (11), (12). 

 

𝐼𝐴 = 𝐼 (10) 

 

𝐼𝐵 = 𝐼𝑒𝑗
−2𝜋

3  (11) 

 

𝐼𝐶 = 𝐼𝑒𝑗
−4𝜋

3  (12) 

 

where, I is the rms magnitude of each line current. The active power PL supplied to the unbalanced load can 

be given by (13) and (14). 

 

𝑃𝐿 = 𝑉(|𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴 + |𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵 + |𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶) (13) 

 

The active power P supplied by the AC source can be given by (14). 

 

𝑃 = 3𝑉𝐼 (14) 

 

 

 
 

Figure 1. The mechanism of balancing an ungrounded load 

 

 

The active power supplied by the AC source should be equal to the power consumed by the 

unbalanced load or in other words: 

 

𝑃 = 3𝑉𝐼 = 𝑃𝐿  (15) 

 

equating the (15) for I, gives (16). 
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𝐼 =
1

3
(|𝐼𝐿𝐴| 𝑐𝑜𝑠 𝜙𝐿𝐴 + |𝐼𝐿𝐵| 𝑐𝑜𝑠 𝜙𝐿𝐵 + |𝐼𝐿𝐶| 𝑐𝑜𝑠 𝜙𝐿𝐶) (16) 

 

Applying Kirchhoff’s current law at nodes A, B, and C on reactive current components of load and 

compensator currents for obtaining BSAB, BSBC, and BSCA gives  

 

𝐵𝑆𝐴𝐵 = −
1

3𝑉
(|𝐼𝐿𝐴| 𝑠𝑖𝑛 𝜙𝐿𝐴 + |𝐼𝐿𝐵| 𝑠𝑖𝑛 𝜙𝐿𝐵 − |𝐼𝐿𝐶| 𝑠𝑖𝑛 𝜙𝐿𝐶) (17) 

 

𝐵𝑆𝐵𝐶 = −
1

3𝑉
(|𝐼𝐿𝐵| 𝑠𝑖𝑛𝜙𝐿𝐵 + |𝐼𝐿𝐶| 𝑠𝑖𝑛 𝜙𝐿𝐶 − |𝐼𝐿𝐴| 𝑠𝑖𝑛 𝜙𝐿𝐴) (18) 

 

𝐵𝑆𝐶𝐴 = −
1

3𝑉
(|𝐼𝐿𝐶| 𝑠𝑖𝑛 𝜙𝐿𝐶 + |𝐼𝐿𝐴| 𝑠𝑖𝑛 𝜙𝐿𝐴 − |𝐼𝐿𝐵| 𝑠𝑖𝑛 𝜙𝐿𝐵) (19) 

 

2.1.  Layout of the 11 kV 50 Hz BWSCB-BWSRB based SVC 

The power circuit of this SVC is shown in Figure 2. It is constructed of the BWSCB represented by 

the switched capacitors C1 to C4 and the BWSRB represented by the switched reactors L1 to L3. The inductors 

LC1 to LC4 are used as current limiters for the solid-state switching devices of the switched capacitors. The 

switched capacitor and reactor banks are designed such that, 

 

𝜔𝐶 = 1 𝜔𝐿⁄  (20) 

 

where, ω is the angular frequency of the AC power system voltage Vac. C and L are the basic capacitance and 

inductance of the BWSCB and BWSRB, respectively.  

 

 

 
 

Figure 2. Layout of BWSCB and BWSRB based SVC 

 

 

This SVC is designed such that its reactive current response to reactive current demand follows the 

response indicated in Figure 3. The minus sign refers to inductive reactive current. The maximum deviation 

of BWSCB-BWSRB based SVC current from the required linear reactive current response is within ±0.5IBB. 

Where, IBB is current magnitude between two adjacent current levels of BWSCB capacitive reactive current 

response. This current can be expressed as (21). 

 

𝐼𝐵𝐵 = 𝑉𝑎𝑐
𝜔𝐶

2
 (21) 
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Since the absolute deviation of the SVC total current from the required linear response is negligible 

compared to its absolute reactive current rating, the proposed SVC can be considered to some extent as 

continuously and linearly controlled compensating susceptance. The maximum capacitive and inductive 

current ratings of this SVC are 15IBB and -14IBB respectively. 

 

 

 
 

Figure 3. The current of BWSCB-BWSRB based SVC against reactive current demand 

 

 

The switching status of the binary switched capacitor and reactor banks are shown in Table 1. The 

table states the variations of the reactive current demand (ID) from maximum inductive to maximum 

capacitive. The DATA of this table were exploited to draw Figure 3.  

 

2.2.  Circuit design of 11 kV 50 Hz BWSCB-BWSRB based SVC 

There are no separate thyristors that can handle a line-to-line voltage of the 11 kV. Therefore, the 

switching devices X1+ to X7- of Figure 2 are built by using arrays of thyristors. Figure 4 shows these arrays. 

The circuit diagram of the 11 kV 50 Hz BWSCB-BWSRB based SVC is shown in Figure 5. The circuit is 

designed and built on PSpice. In this circuit, the line-to-line AC voltage is detected by using a potential 

transformer which is generated as electronic part and saved as a separate library on PSpice. The output of the 

potential transformer is the voltage signal k3vac, which has amplitude of 5 V. Where, vac represents the 

instantaneous line to line voltage exerted on the compensator. The controller of this SVC is represented by 

the electronic part “BINARY SVC CONTROLLING CCT” which is responsible for generating the 

controlling signals required for the SVC triggering circuit. The triggering circuit of the BWSCB-BWSRB 

based SVC is represented by the electronic part “TRIGGERING CCT” which is responsible for generating 

the triggering signals of the thyristor switching arrays X1+ to X7-. The thyristor and its driving circuit are 

merged together in its corresponding switching array. The anti-parallel switching arrays with their driving 

circuits are represented by the electronic parts “SCR ARR-1IB”, “SCR ARR-2IB”, “SCR ARR-4IB”, and 

“SCR ARR-8IB”.  
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Table 1. The switching status of switched capacitors and reactors 

Reactive current demand (ID) 
Capacitors switching status Reactors switching status 
C1 C2 C3 C4 L1 L2 L3 

-j14IBB≤ID<-j13.5IBB OFF OFF OFF OFF ON ON ON 
-j13.5IBB≤ID<-j12.5IBB ON OFF OFF OFF ON ON ON 
-j12.5IBB≤ID<-j11.5IBB OFF OFF OFF OFF OFF ON ON 
-j11.5IBB≤ID<-j10.5IBB ON OFF OFF OFF OFF ON ON 
-j10.5IBB≤ID<-j9.5IBB OFF OFF OFF OFF ON OFF ON 
-j9.5IBB≤ID<-j8.5IBB ON OFF OFF OFF ON OFF ON 
-j8.5IBB≤ID<-j7.5IBB OFF OFF OFF OFF OFF OFF ON 
-j7.5IBB≤ID<-j6.5IBB ON OFF OFF OFF OFF OFF ON 
-j6.5IBB≤ID<-j5.5IBB OFF OFF OFF OFF ON ON OFF 
-j5.5IBB≤ID<-j4.5IBB ON OFF OFF OFF ON ON OFF 
-j4.5IBB≤ID<-j3.5IBB OFF OFF OFF OFF OFF ON OFF 
-j3.5IBB≤ID<-j2.5IBB ON OFF OFF OFF OFF ON OFF 
-j2.5IBB≤ID<-j1.5IBB OFF OFF OFF OFF ON OFF OFF 
-j1.5IBB≤ID<-j0.5IBB ON OFF OFF OFF ON OFF OFF 

-j0.5IBB≤ID<0 OFF OFF OFF OFF OFF OFF OFF 
0≤ID<j0.5IBB OFF OFF OFF OFF OFF OFF OFF 

j0.5IBB≤ID<j1.5IBB ON OFF OFF OFF OFF OFF OFF 
j1.5IBB ≤ID<j2.5IBB OFF ON OFF OFF OFF OFF OFF 
j2.5IBB≤ID<j3.5IBB ON ON OFF OFF OFF OFF OFF 
j3.5IBB≤ID<j4.5IBB OFF OFF ON OFF OFF OFF OFF 
j4.5IBB≤ID<j5.5IBB ON OFF ON OFF OFF OFF OFF 
j5.5IBB≤ID<j6.5IBB OFF ON ON OFF OFF OFF OFF 
j6.5IBB≤ID<j7.5IBB ON ON ON OFF OFF OFF OFF 
j7.5IBB≤ID<j8.5IBB OFF OFF OFF ON OFF OFF OFF 
j8.5IBB≤ID<j9.5IBB ON OFF OFF ON OFF OFF OFF 
j9.5IBB≤ID<j10.5IBB OFF ON OFF ON OFF OFF OFF 
j10.5IBB≤ID<j11.5IBB ON ON OFF ON OFF OFF OFF 
j11.5IBB≤ID<j12.5IBB OFF OFF ON ON OFF OFF OFF 
j12.5IBB≤ID<j13.5IBB ON OFF ON ON OFF OFF OFF 
j13.5IBB≤ID<j14.5IBB OFF ON ON ON OFF OFF OFF 
j14.5IBB≤ID<j15IBB ON ON ON ON OFF OFF OFF 

 

 

 
 

Figure 4. Thyristors arrays of 11 kV 50 Hz BWSCB-BWSRB based SVC 
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Figure 5. Circuit diagram of 11 kV 50 Hz BWSCB and BWSRB based SVC 

 

 

2.2.1. Current controller of BWSCB-BWSRB based SVC 

The electronic circuit of this current controller is designed such that the reactive current response of 

the SVC follows the response indicated in Figure 3. The electronic circuit of this controller is shown in 

Figure 6. In this figure, the DC voltage source k2BS represents an analogue signal proportional to the reactive 

current demand. This signal varies in the range of -9.333 to +10 V. Its negative sign denotes inductive 

reactive current demand, while its positive sign is related to capacitive reactive current demand. In this 

controlling circuit, two 8-bit analogue-to-digital converters (8-bit ADCs) are employed to control the 

capacitor and the reactor banks. The 8-bit ADC digital outputs are all logic one, when its analogue input VADC 

is 10 V and are all logic zero when its input is zero. Logics zero and one correspond to voltage levels of zero 

and +5 V respectively. The two ADCs input voltages VADC1 and VADC2 are related to k2BS by (22) and (23). 

 

𝑉𝐴𝐷𝐶1 = 0.9375𝑘2𝐵𝑆 + 0.3125 (22) 

 

𝑉𝐴𝐷𝐶2 = −0.9375𝑘2𝐵𝑆 + 0.3125 (23) 

 

Only the four most significant digits of each ADC are employed in the SVC current controller. This 

makes each 8-bit ADC equivalent to 4-bit ADC. The first 4-bit ADC output digits are D1C, D2C, D3C, and D4C, 

while the second 4-bit output digits are D1L, D2L, D3L, and D4L. Note that D4C and D4L are representing the 

most significant digits of the first and the second equivalent 4-bit ADCs respectively. The controlling signals 

VX1 to VX7 are the triggering signals of X1 to X7 respectively. These signals are defined by (24)–(30). 
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𝑉𝑋1 = 𝐷1𝐶 +𝐷1𝐿  (24) 

 

𝑉𝑋2 = 𝐷2𝐶  (25) 

 

𝑉𝑋3 = 𝐷3𝐶  (26) 

 

𝑉𝑋4 = 𝐷4𝐶  (27) 

 

𝑉𝑋5 = 𝐷1𝐿 ⊕𝐷2𝐿 (28) 

 

𝑉𝑋6 = (𝐷1𝐿 ⊕𝐷3𝐿)𝐷2𝐿 +𝐷2𝐿𝐷3𝐿  (29) 

 

𝑉𝑋7 = 𝐷1𝐿𝐷2𝐿𝐷3𝐿𝐷4𝐿 + 𝐷4𝐿 (30) 

 

 

 
 

Figure 6. The current controller of BWSCB and BWSRB based SVC 

 

 

2.2.2. Triggering circuit of BWSCB-BWSRB based SVC  

Figure 7 shows the BWSCB and BWSRB based SVC triggering circuit. The controlling signals of 

this circuit are the output signals of the current controller which are represented by VS1 and VX1-VX7. VS1 is a 

rectangular waveform denoting the zero crossing points and polarity of k3vA.C. It is delayed by a time of 5 ms 

which corresponds to lagging phase shift angle of π/2. The resulting signal is designated by VS2. The latter 
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signal is processed digitally with VX1-VX7 as shown in Figure 7 for generating the triggering signals of the 

positive and negative half-cycles of thyristors arrays depicted in Figure 4.  

 

 

 
 

Figure 7. The triggering circuit of the BWSCB and BWSRB based SVC 

 

 

2.2.3. Combined driving and power circuit of BWSCB-BWSRB based SVC  

There are four types of thyristor arrays in Figure 4. Each one of them has a different current rating. 

Merging the positive and negative half-cycles switching devices in each branch into a single device and 

combining them with their corresponding driving circuits, result in seven bipolar switching devices X1 to X7 

as shown in Figure 5.  

Since X1 has a current rating of IBB, its device type is referred to as SCR ARR-1IB. X2 and X5 have 

the same current rating of 2IBB, thus their device type is referred to as SCR ARR-2IB. Subsequently, the 

device types of X3, X6 and X4, X7 are referred to as SCR ARR-4IB and SCR ARR-8IB respectively. Figure 8 

shows the exact circuit diagram of the bipolar switching device X1 which is of the type SCR ARR-1IB. In this 

figure, each thyristor is shunted by its own snubber circuit. The rms current IS of 11 kV 50 Hz BWSCB and 

BWSRB based SVC can be expressed in terms of the switched capacitor bank rms current ICB and the 

switched reactor bank rms current IRB as (31). 

 

𝐼𝑆 = 𝐼𝐶𝐵 + 𝐼𝑅𝐵 (31) 

 

ICB and IRB can be expressed in terms of controlling signals VX1 to VX7 as (32), (33). 

 

𝐼𝐶𝐵 =
𝑗𝐼𝐵𝐵

5
(𝑉𝑋1 + 2𝑉𝑋2 + 4𝑉𝑋3 + 8𝑉𝑋4) (32) 

 

𝐼𝑅𝐵 = −
𝑗𝐼𝐵𝐵

5
(2𝑉𝑋5 + 4𝑉𝑋6 + 8𝑉𝑋7) (33) 

 

where, IBB is defined in (21). Substituting (32) and (33) into (31) yields. 

 

𝐼𝑆 =
𝑗𝐼𝐵𝐵

5
(𝑉𝑋1 + 2𝑉𝑋2 + 4𝑉𝑋3 + 8𝑉𝑋4 − 2𝑉𝑋5 − 4𝑉𝑋6 − 8𝑉𝑋7) (34) 
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Figure 8. Combined driving and power circuit of X1 anti-parallel thyristor array 

 

 

2.3.  Circuit design of the proposed 11 kV 50 Hz load currents balancing system for ungrounded loads  

This system is designed such that it can correct to unity the 0.707 lagging power of a balanced  

three-phase load of 1,270 A (rms value). Such a strategy makes it possible for the load currents balancing 

system to involve the unbalance cases of about 30% of the line current in the 11 kV 50 Hz power distribution 

station. Figure 9 shows the load currents balancing system for ungrounded loads in 11 kV 50 Hz distribution 

network. The distribution station is represented here by an unbalanced ungrounded three-phase load. The 

power circuit of this compensating system is constructed of three combined driving and power circuits 

connected in delta-form. Each combined driving and power circuit is the same as that of the 11 kV 50 Hz 

BWSCB and BWSRB based SVC depicted in Figure 5. This load currents balancing system can be imagined 

as three 11 kV 50 Hz continuously and linearly controlled harmonic-free compensating susceptances 

connected in delta-form. The instantaneous load currents iLA, iLB, and iLC are detected using three identical 

current transformers. The outputs of these current transforms are converted to the analogue voltages k1iLA, 

k1iLB, and k1iLC. These voltages are processed by the computation circuit in the three-phase controlling circuit 

to produce three analogue signals proportional to the required compensating susceptances BSAB, BSBC, and 

BSCA. These signals are k2BSAB, k2BSBC, and k2BSCA. The computation circuit is represented by the electronic 

part “COMPUTATION CCT”. The three-phase controlling circuit comprises in addition to the computation 

circuit, three current controlling circuits represented by the electronic parts “BINARY SVC 

CONTROLLING CCT”, three triggering circuits represented by the electronic parts “TRIGGERING CCT”, 

and the AC voltages detection circuit represented by the electronic part “AC VOLTAGES DETECTION 

CCT” which produces low level analogue signals proportional to the phase and line voltages. 

The controlling and triggering circuits are as the same as those depicted in Figures 6 and 7, 

respectively. The currents iSA, iSB, and iSC represent the instantaneous compensating currents of the static 

compensator built of the delta-connected BWSCB and BWSRB based SVCs. The currents iA, iB, and iC 

represent the instantaneous line currents of the AC power system network. These currents are intended to be 

balanced and pure active. The AC voltage’s detection circuit is shown in Figure 10. The potential 
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transformers are represented by three potential dividers. The potential dividers output signals k3vA, k3vB, and 

k3vC are proportional to power system instantaneous phase voltages vA, vB, and vC respectively. According to 

this circuit, k3 is computed as 3.2×10-4. These voltages signals are processed through the difference amplifiers 

to obtain the voltage signals k3vAB, k3vBC, and k3vCA which are proportional to the AC power system 

instantaneous line voltages vAB, vBC, and vCA respectively. These groups of voltage signals are necessary for 

both triggering and computation circuits. 

The computation circuit is shown in Figure 11. In this circuit, the voltage signals k1iLA, k1iLB, and 

k1iLC`are sampled at the negative slope zero-crossing points of k3vA, k3vB, and k3vC respectively. The sampled 

voltage signals are -k1√2|ILA|sinφLA, -k1√2|ILB|sinφLB, and -k1√2|ILC|sinφLC. The above compensating 

susceptances can be expressed in terms of the instantaneous line currents iLA, iLB, and iLC and the latter signals 

are processed in summing amplifiers to compute k2BSAB, k2BSBC, and k2BSCA which are analogue voltages 

proportional to the required compensating susceptances. The maximum positive value of each analogue 

voltage of k2BSAB, k2BSBC, and k2BSCA is 10 V. The maximum magnitude of the capacitive susceptance is  

733 A/15,556 V=0.0471 S which corresponds to a capacitive reactive current demand of 733 A (peak value). 

Consequently, the constant k2 is computed by dividing the analogue voltage k2BS which corresponds to 10 V 

by the value of the compensating susceptance BS as: k2=k2BS/BS=10 V/0.0471 S=212.22 VΩ. 

 

 

 
 

Figure 9. Circuit design of the proposed 11 kV 50 Hz load currents balancing system for ungrounded loads 
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Figure 10. AC voltages detection circuit of 11 kV 50 Hz load currents balancing system 

 

 

 
 

Figure 11. Computation circuit of 11 kV 50 Hz load currents balancing system 
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3. RESULTS AND DISCUSSION  

Many tests were carried out to demonstrate the linearity and the control continuity of the 

compensator. Figure 12 shows the variations of the compensator reactive current as the reactive current 

demand varies from maximum inductive to maximum capacitive. The minus sign indicates the reactive 

current is inductive. The deviations of the actual response from the linear continuous response are negligible 

compared to the compensator reactive current rating, thus it can be said that the compensator current to some 

extent is linearly and continuously controlled. 

The 11 kV 50 Hz BWSCB and BWSRB based SVC is characterized by fast response to the abrupt 

changes in reactive demand. This property is demonstrated in Figure 13. The figure shows the SVC treatment 

to a sudden change in reactive current demand from maximum capacitive to maximum inductive. 

 

 

 
 

Figure 12. The reactive current of the 11 kV 50 Hz BWSCB and BWSRB based SVC against reactive current 

demand 

 

 

 
 

Figure 13. Treatment of the 11 kV 50 Hz BWSCB and BWSRB based SVC to sudden change in reactive 

current demand from maximum capacitive to maximum inductive. The change was at t=60 msec and the 

transition time was 5 msec 
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The load currents balancing systems shown in Figure 9 was tested on PSpice at different loading 

conditions to investigate its effectiveness and reliability during its treatment to unbalance cases and 

somewhat poor power factor loads. The system is designed for load currents balancing for an 11 kV 50 Hz 

distribution station in Iraq. The station involves five feeders. The average line current drawn from this station 

varies in the range of 1,200 to 1,300 A (rms values) depending on the daily loading conditions. Figure 14 

shows the unity power factor correction of a balanced ungrounded load of 1,796 A (peak value) at 0.707 

lagging power factor handled by the 11 kV 50 Hz load balancing system using BWSCB and BWSRB based 

SVCs.  

 

 

 
 

Figure 14. Unity power factor correction of a balanced ungrounded load of 1796 A (peak value) at 0.707 

lagging power factor handled by the proposed balancing system 

 

 

Figure 15 shows the treatment of a certain moderate unbalance. This unbalance case is within the 

distribution station rated current. The compensation process had resulted in balanced pure active currents iA, 

iB, and iC drawn from the balanced three-phase AC source.  
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Figure 15. Balancing mechanism of a moderate load unbalance within the rated current of the distribution 

station handled by the 11 kV 50 Hz load currents balancing system using BWSCB and BWSRB based SVCs 

 

 

The treatment of a somewhat severe unbalance case is shown in Figure 16. The above unbalance 

case can be considered severe, since there are significant phase and magnitude unbalance associating the load 

currents. The balancing process of this unbalance case had yielded balanced active currents iA, iB, and iC 

drawn from the balanced three-phase AC power system.  

The treatment of a severe load unbalance is shown in Figure 17. In this load unbalance, two of the 

load line currents were exceeding the current capability of the distribution station. It is obvious that the 

compensation requirements of the above load unbalance were greater than the compensator capability, thus 

the unbalance was not settled completely. But the compensation process had resulted in large mitigation of 

phase and magnitude unbalances associating the currents drawn from the AC source What is more, the AC 

source currents are all brought into the rating capability of the distribution station. This treatment has a 
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significant impact in the distribution system in Iraq, since the power consumption is somewhat uncontrollable 

due to the great lack in the available electrical energy there.  

The compensating susceptance constructed of 11 kV 50 Hz BWSCB and BWSRB showed during 

PSpice investigations fast response to slow and abrupt variations in reactive current demand without any sort 

of harmonic association. In addition, its transient response time was short. This compensating susceptance 

has zero no load operating losses. The transformerless load currents balancing system constructed by 

connecting three identical 11 kV 50 Hz compensating susceptances in delta form has a reactive power rating 

of about 17.1 MVARs (capacitive or inductive). The system is capable to correct to unity the power factor of 

an Iraqi 11 kV 50 Hz distribution station delivering a balanced three-phase rms current of 1270 A at a 0.707 

lagging power factor.  

 

 

 
 

Figure 16. The balancing mechanism of a somewhat severe unbalance case within the distribution station 

rating handled by the 11 kV 50 Hz load currents balancing system using BWSCB and BWSRB based SVCs 
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Figure 17. Balancing mechanism of a severe load unbalance beyond the distribution station rating handled by 

the 11 kV 50 Hz load currents balancing system using BWSCB and BWSRB based SVCs 

 

 

4. CONCLUSION  

The compensating susceptance constructed of 11 kV 50 Hz BWSCB and BWSRB showed during 

PSpice investigations fast response to slow and abrupt variations in reactive current demand without any sort 

of harmonic association. In addition, its transient response time was short. This compensating susceptance 

has zero no load operating losses. The transformerless load currents balancing system constructed by 

connecting three identical 11 kV 50 Hz compensating susceptances in delta form has a reactive power rating 

of about 17.1 MVARs (capacitive or inductive). The system is capable to correct to unity the power factor of 
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an Iraqi 11 kV 50 Hz distribution station delivering a balanced three-phase rms current of 1,270 A at a  

0.707 lagging power factor. The system had showed excellent results in performing the task, which was 

designed for. In addition, the system had treated efficiently different load unbalances; some of them were 

exceeding the distribution station current rating and the permissible tolerance of load unbalance determined 

by the protection system installed in the station. The load unbalances which were within the load currents 

balancing capability had been recovered with balanced active line currents associated with significant 

reduction in their magnitudes. The system had greatly mitigated the severe load unbalances which were 

beyond its compensation capability.  
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