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 A part of the nerves that govern the human body are found in the spinal 

cord, and a fracture of the upper cervical spine (segment C1) can cause 

major injury, paralysis, and even death. The early detection of a cervical 

spine fracture in segment C1 is critical to the patient’s life. Imaging the 

spine using contemporary medical equipment, on the other hand, is time-

consuming, costly, private, and often not available in mainstream medicine. 

To improve diagnosis speed, efficiency, and accuracy, a computer-assisted 

diagnostics system is necessary. A deep neural network (DNN) model was 

employed in this study to recognize and categorize pictures of cervical spine 

fractures in segment C1. We used EfficientNet from version B0 to B7 to 

detect the location of the fracture and assess whether a fracture in the C1 

region of the cervical spine exists. The patient data group with over 350 

picture slices developed the most accurate model utilizing the EfficientNet 

architecture version B6, according to the findings of this experiment. 

Validation accuracy is 99.4%, whereas training accuracy is 98.25%. In the 

testing method using test data, the accuracy value is 99.25%, the precision 

value is 94.3%, the recall value is 98%, and the F1-score value is 96%. 
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1. INTRODUCTION 

The human spine is a critical body component that permits the body to stand upright. The spine is 

made up of segments that allow the spine to move freely and the body to conduct a range of movements. The 

spine is divided into segments, which include 7 segments (C1-C7) of the upper spine (cervical spine),  

12 segments (T1-T12) of the chest, 5 waist segments (L1-L5), 5 sacral segments (S1-L5), and a caudal 

section [1] as shown in Figure 1. Muscles and tendons also exist in the spine and serve as connections 

between bone segments, nerves, and other essential tissues that link various organs in the brain and body. 

Bone is composed of two distinct tissues: thicker and more compact on the outside and a network of thin 

fibers on the interior [2]. 

A cervical spine fracture (CS-fx) can cause significant damage and a high likelihood of paralysis, 

and a delay in diagnosis can result in a long illness and a high risk of mortality. After one year of surgery, the 

risk of death remains considerable for people over the age of sixty [3], [4]. Several studies on the causes and 

hazards of spinal fractures have been conducted: Fredø et al. [5] determined that over 3,000 people met the 

https://creativecommons.org/licenses/by-sa/4.0/
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criterion for major cervical spine injury during a three-year period (2009-2012). Approximately 3,000 

individuals had one or more CS-fx, with roughly 300 suffering significant non-fractured upper cervical spine 

damage. These patients are frequently above the age of fifty, and men suffer around 70% more than women. 

The most prevalent cause of accidents, according to Leucht et al. [6], is falling (39%), followed by driving 

accidents (26.5%). This incident caused a cervical spine fracture (65%) and extensive damage to several 

segments (80%). Watanabe and colleagues [7] suffering is most frequent in the elderly because to 

deterioration of strength and bone mass, and it spreads to the upper spine and neck. High-energy impacts 

generated by high levels of exercise result in more injuries among young people. 

 

 

 
 

Figure 1. Human vertebral-column 

 

 

Medical imaging technologies, such as computed tomography [8]–[12], have become widely used 

for image processing, allowing doctors to make a more detailed diagnosis. Magnetic resonance imaging  

[13]–[19] has been used to look at areas that are difficult to see because they are obscured by other organs. 

However, imaging the spine using modern medical technology is time-consuming, expensive, classified, and 

not frequently available in primary care. Computer-aided diagnostics systems are required to improve 

diagnostic speed, accuracy, efficiency, and accuracy.  

Artificial neural networks (ANNs) with progressively thick layers have grown rapidly in recent 

years toward specialized computing technologies, particularly deep learning (DL). Because of their ability to 

examine a growing amount of data, DL techniques are gaining favor as computers develop. With the 

availability of additional devices capable of speeding up the computer process [20]. DL enhances medical 

image classification by using layers such as pooling, convolution, fully connected, activation, and a variety of 

other hyperparameter settings. This study used deep learning to classify upper cervical spine fractures (C1 

segment). ImageNet is also used for transfer learning to improve training effectiveness and efficiency. In this 

investigation, we employed eight varieties from the EfficientNet family (variants B0 to B7). 

 

 

2. RELATED WORK 

Several research on the categorization of vertebral fractures using CNN have been reviewed briefly: 

Small and colleagues [21] CNN was evaluated for its ability to aid radiologists in the detection of cervical 

spine fractures. To identify cervical spine fractures, Salehinejad et al. [22] employed a long-short-term 

memory (LSTM) layer. Voter et al. [23] did research on the performance of artificial intelligence decision 

assistance systems, as well as an examination of failures and bad performance. Boonrod et al. [24] employed 

codeless DL as the foundation for their training and testing. Calculate the network model’s level of 

diagnostic accuracy, sensitivity, and specificity. Merali et al. [25] employed the ResNet-50 convolutional 

neural network (CNN) architecture to assess the density of the cervical spinal cord in their study. 

 

 

3. METHOD 

This study’s technique consists of multiple steps, beginning with integrating several data files into 

one file and then filtering and sorting to extract the required data. Divide the data into training and validation 

sets before running the training process to determine the best model. Using the model to classify the 

validation data. Then, using the segmentation box, locate the fault. Figure 2 depicts the experimental flow. 

 

3.1.  Classification 

The supervised classification method includes making one or more characteristics a target and 

categorizing the target, as well as other features serving as input data in the learning process. If the target 

class is not accessible, the procedure is known as unsupervised classification, and it is followed by the 
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clustering process. This study employs supervised classification for feature segment C1, which is separated 

into two classes, namely whether or not there is a break in segment C1, and the input for the data train is an 

image that has been translated into a specific value based on the pixel. 

 

 

 
 

Figure 2. Chart of experimental flow 

 

 

3.2.  Convolutional neural network  

Convolutional neural network (CNN) is a technique for assessing informative components of a 

picture that has been broken into smaller image sections (windows). The window will change based on the 

stride value to hunt for local characteristics that might give useful information. Then, convert the window 

into a numerical matrix (filter). In the filter matrix, many weight combinations can be used. Softmax and 

ReLU are two popular types of filters. To distinguish the picture bounds, a padding technique is typically 

utilized, which involves adding pixels to the image boundaries’ edges as shown in Figure 3. A pooling 

strategy is used to summarize key information as shown in Figure 4. The window matrix is combined 

(pooled) into a vector using the pooling technique. Max pooling and average pooling are two forms of 

pooling that are often employed in neural networks. The fully connected approach is then utilized to 

aggregate all of the information collected for picture categorization. 

 

 

  
  

Figure 3. Illustration of padding and convolution Figure 4. Example of maximum and average pooling 

 

 

3.3.  Dataset preprocessing and analysis  

The dataset from www.kaggle.com [26] consists of two comma separated values (CSV) files: 

train.csv and train bounding boxes.csv, as well as two picture folders: train images and segmentation. The 

train images folder has a number of patient id subfolders (StudyInstanceUID), each of which contains a 

different number of images and has the digital imaging and communications in medicine (DCM or DICOM) 

extension. The segmentation folder comprises a series of patient id subfolders (StudyInstanceUID), and each 

subfolder contains mask pictures in neuroimaging informatics technology initiative (NIfTI) format. The 

train.csv file contains 2,019 rows of patient data showing a fracture (number 1) or no fracture (number 0) for 

each segment (segments C1 to C7) and the entire cervical spine of each patient as shown in Figure 5. The 

train bounding boxes.csv file contains 7,217 patient rows with descriptions of the position and size of the box 

(mask) of the fault area as shown in Figure 6. 

Because of restricted computer capabilities, only the required and relevant medical information is 

included in each DICOM picture file, namely: 

http://www.kaggle.com/
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− Obtaining data and generating a PatientID column from a StudyInstanceUID column 

− Identifying patients with fracture data in their cervical vertebrae (patient overall=1) 

− Counting the number of photographs associated with each PatientID 

− Select data TransferSyntaxIUD=Explicit VR Little Endian 

− Select PhotometricInterpretationInfo=MONOCHROME2  

− Select BitsStored=16 

− Select a picture with a resolution of 512×512 pixels. 

− Retrieves RowsColumns and PixelSpacing information for each DICOM picture 

− Retrieves WindowCenter and WindowWidth information for each DICOM image 

− Selects each image with PixelRepresentation=1 

Figure 7 shows some of the data resulting from the merger of the selected data. 

 

 

  
  

Figure 5. Train.csv file Figure 6. Train bounding boxes.csv file 

 

 

 
 

Figure 7. The results of merging with the selected data 

 

 

The selection of data is done based on the number of image slices from each patient so that the 

training data is separated into two parts. The first data set is patient data with the number of slices ranging 

from 0 to 350 images, while the second data set consists of the number of slices of more than 350 images. In 

preparation for the training procedure, the data were further separated into three parts: training data (90%), 

validation data (5%), and test data (5%). 

 

3.4.  Pre-trained EfficientNet architecture  

Because of its ability to handle vast volumes of input, CNN is a strong and widely used multi-layer 

neural network [27]. In the past, most computer vision researchers extracted features manually in order to 

gain better classification results. CNN currently conducts feature extraction automatically during the training 

phase by utilizing the pooling layer and convolution layer [28]. In general, increasing the available resources 

allows CNN to improve its accuracy. Increasing the layer depth [29] or breadth [30] is a typical method. A 

less common, but more popular method is to raise the image resolution size [31]. In comparison to other 

designs, the EfficientNet family has a balanced layer thickness, layer breadth, and picture resolution as 

shown in Figure 8(a)-(e). Scaling the model using transfer learning datasets (ImageNet, CIFAR-10,  

CIFAR-100, CIFAR-101, and Flower), the EfficientNet family significantly outperforms other architectures 

with high effectiveness, efficiency, fewer parameters, and faster computation [32]. 
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Figure 8. Model sizing EfficientNet layer (a) illustrates a rudimentary network, (b)-(d) are traditional scaling 

methods that enhance only one network dimension (width, depth, or resolution), and (e) is our suggested 

integrated scaling approach that evenly scales each of the three aspects at a constant ratio 
 

 

We present a framework in this research that makes use of eight architectural model versions from 

the EfficientNet family: B0 through B7. These eight variants are utilized as a comparison to acquiring a 

decent accuracy value; the training procedure with these eight variants is carried out independently. The 

mobile subblock array (MBConv) introduced by Tan et al. [33], [34] is the foundation of EfficientNet. The 

greater the variance, the greater the number of channels as shown in Table 1. 

Because of the restricted quantity of data, transfer learning (ImageNet) is utilized to achieve model 

convergence rapidly. Pooling is needed to turn the feature map into a number because the categorization is 

binary. The sigmoid activation function is then used to connect this layer to the dense layer. Adamax 

optimization, loss calculation using categorical cross-entropy, metric accuracy, learning rate 0.001, and 

epoch 50 are used to compile the model [35]. 

 

 

Table 1. Number of channels per stage from 8 variants of EfficientNet architecture 
Subblock B0 B1 B2 B3 B4 B5 B6 B7 

Conv3×3 32 32 32 40 48 48 56 64 
MBConv1, k3×3 16 16 16 24 24 24 32 32 

MBConv1, k3×3 24 24 24 32 32 40 40 48 

MBConv1, k3×3 40 40 48 48 56 64 72 80 
MBConv1, k3×3 80 80 88 96 112 128 144 160 

MBConv1, k3×3 112 112 120 136 160 176 200 224 

MBConv1, k3×3 192 192 208 232 272 304 344 384 
MBConv1, k3×3 320 320 352 384 448 512 576 640 

Conv1×1+Pooling+FC 1,280 1,280 1,408 1,536 1,792 2,048 2,304 2,560 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The procedure was carried out in two steps in this investigation. That example, the first step runs the 

classification model on the training data, while the second stage uses bounding boxes and segmented image data 

to locate fracture locations on the test data. The input data is split into two categories. The first group is patient 

data, which consists of picture fragments ranging from 0 to 350. This first group has a total of 18,288 photos. 

This input data (18,288 photos) is split into three categories: 90% for training data (16,459 images), 5% for 

validation data (915 images), and 5% for test data (915 images). The second group consists of patient data, 

which includes over 350 picture fragments. This second group has a total of 10,614 images. This input data 

(10,614 images) is split into three categories: 90% for training data (9,552 images), 5% for validation data  

(531 images), and 5% for test data (531 images).  

Figure 9 shows the training results in the form of loss and accuracy graphs for the patient data group 

that has a number of slices between 0-350 images. The graphs of training loss and validation of loss appear to 

coincide with loss values between 3.6 and 4.1. In general, the graphs for accuracy training and validation 

appear to be spread out, except for versions B2 and B3 which look rather tight. 

Figure 10 is the result of training for the patient data group which has more than 350 image slices. 

The training loss and validation loss graphs seem to coincide, but still have a loss value between 2.7 and 3.2. 

The graphs of accuracy training and accuracy validation look better and coincide, although B4 and B7 seem 

to spread at the beginning of the epoch but then narrow at the end of the epoch. 
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Figure 9. The results of the training process using the EfficientNet version Eff-B0-Eff-B7 for the patient data 

group that has slices between 0-350 images 
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Figure 10. Results of the training process using EfficientNet versions Eff-B0-Eff-B7 for patient data groups 

that have slices of more than 350 images 
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The training process takes a significant period of time due to limited infrastructure. As a result, it 

was concluded in this study that the training process was carried out with epoch 50, with the purpose of 

achieving a reasonably excellent accuracy value. Table 2 displays the processing time for each version, and it 

can be observed that the time has increased owing to the thicker number of layers. Between versions B4 and 

B5, there was a significant increase in time.  

 

 

Table 2. The length of time required for the training process for each version of EfficienNet 
Slice B0 B1 B2 B3 B4 B5 B6 B7 

0-350 1:27:36 1:18:22 1:29:47 1:30:15 1:51:9 3:29:52 3:16:49 4:30:28 
>350 0:38:31 0:47:25 0:55:21 1:26:25 1:20:36 5:40:29 5:44:43 5:47:55 

 

 

After the model is obtained using 8 versions of the EfficienNet architecture and two different input 

datasets. Furthermore, test data will be fed to the model to measure the performance capabilities of the 

model. This measurement uses a confusion matrix consisting of 5 variables, namely precision, recall,  

F1-score, support, and accuracy as shown in Figure 11. Figure 12 is the confusion matrix, the test results of 

the model for a dataset group of 0-350 images and a dataset group of more than 350 images. Measurement 

variables from training and testing results are numerically collected in one Table 3. 

 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

 

F1 score = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (2) 

 

Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

Accuracy =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁
 (4) 

 

 

 
 

Figure 11. Calculation accuracy with the confusion matrix 

 

 

Table 3 shows that the accuracy values for the patient group with the number of slices 0-350 in the 

“TRAINING” column vary from 0.65 to 0.85, while the loss values range from 3.5 to 4.1. The “TESTING” 

column displays accuracy (0.65 to 0.78), precision (0.5), and recall (0.5 to 0.7). The F1-score for the  

0-350 group is roughly 50%, showing that there is some overfitting since the data used during training gives 

strong predictions but produces poorer predictions during testing. The model for this group does not 

generalize well, thus when tests are performed using other data, the accuracy is reduced, or the results are not 

as predicted. 

The accuracy values for ‘Train’ and ‘Validation’ in the set of patients with more than 350 slices in 

the “TRAINING” column vary from 0.97 to 0.99, while the loss values range from 2.7 to 3.2. The 

“TESTING” column displays accuracy scores ranging from 0.96 to 0.99, precision values ranging from 0.6 to 
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0.95, and recall levels ranging from 0.75 to 1.0. The F1-score is approximately 90%, and the training and 

testing accuracy appears to be extremely good. The loss amount must still be increased by increasing the 

percentage from 5% to 10% for each validation and testing data set. EfficientNet B6 achieved the maximum 

accuracy value of 0.9925 for patient data groups with slices of more than 350 pictures. Select the 

EfficientNet B6 kernel model at the end of the procedure to be utilized in deciding the classification and 

segmentation of the test data as shown in Figures 10 and 11. An Intel(R) Core i5-10400F CPU operating at 

2.90 GHz, 8 GB of RAM, Windows 10 (64-bit) OS, and NVIDIA GeForce GT 710 graphics powered this 

experiment. The training method in this study was carried out on a Kaggle notebook, and we employed CPU 

and GPU accelerators (T4x2) on Kaggle concurrently to boost the notebook environment’s power and 

shorten training time. 

 

 
CONFUSION MATRIX 

0-350  >350 

B0 

 
 

B4 

 
 

 B0 

 
 

B4 

 
 

B1 

 
 

B5 

 
 

 B1 

 
 

B5 

 
 

B2 

 
 

B6 

 
 

 B2 

 
 

B6 

 
 

B3 

 
 

B7 

 
 

 B3 

 
 

B7 

 
 

 

Figure 12. Confusion matrix: test findings and data 

 

 

Table 3. Variables for measuring the results of training and testing 
Slice  TRAINING TESTING 

Train Validation Classification Report 

acc loss acc Loss acc precision recall F1-score 

0-350 

B0 0.7650 3.7146 0.7823 3.6356 0.7574 0.4934 0.5114 0.5022 

B1 0.7525 3.7635 0.7101 3.7850 0.6689 0.3883 0.6667 0.4908 

B2 0.7850 3.8196 0.7954 3.8150 0.7836 0.5425 0.6119 0.5751 

B3 0.8200 3.7246 0.7549 3.8762 0.7443 0.4775 0.7260 0.5761 

B4 0.8175 4.0363 0.6455 4.1676 0.6940 0.4247 0.7854 0.5513 
B5 0.8250 3.8555 0.7505 3.9375 0.7563 0.4926 0.6119 0.5458 

B6 0.8550 3.6374 0.8074 3.7517 0.7825 0.5345 0.7178 0.6090 

B7 0.7825 3.8687 0.7801 3.8874 0.7694 0.5123 0.7626 0.6128 

          

>350 

B0 0.9800 2.7584 0.9736 2.7401 0.9642 0.8636 0.7451 0.8000 

B1 0.9725 2.9985 0.9755 3.0127 0.9718 0.7903 0.9608 0.8673 
B2 0.9825 2.7296 0.9887 2.7164 0.9718 0.7812 0.9804 0.8696 

B3 0.9775 3.2519 0.9623 3.2390 0.9586 0.7042 0.9804 0.8197 

B4 0.9750 2.9239 0.9831 2.9313 0.9699 0.7612 1.000 0.8644 
B5 0.9700 3.0613 0.9906 2.9986 0.9925 0.9273 1.000 0.9623 

B6 0.9825 2.8169 0.9944 2.7675 0.9925 0.9434 0.9804 0.9615 

B7 0.9820 3.1506 0.9605 3.1485 0.9529 0.6711 1.000 0.8031 
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This report only presents one patient who was diagnosed as having a fracture in the C1 segment to 

avoid using too many pages to graphically demonstrate the results of classification and segmentation. 

Figure 13 depicts an extraction picture from a patient with the ID: 1.2.826.0.1.3680043.12281, and Figure 14 

depicts a visual segmentation result from the same patient, which clearly indicates an upper neck fracture 

(C1) in slices 126 and 127. 

 

 

 
 

Figure 13. Extraction images of test data 

 

 

 
 

Figure 14. The results of the segmentation of the test data 

 

 

5. CONCLUSION 

Steps in identifying C1 segment cervical spine fractures include data preparation (combining, 

choosing, and sorting), training the dataset to construct the model, calculating accuracy and loss values, 

predicting test data, and creating fracture localization boxes. Even though the training and validation 

accuracy is around 80%, the training and validation loss values are still around 30%, and the F1-score is still 

about 50% for the patient group with a number of slices ranging from 0 to 350 images. This model cannot be 

utilized to effectively generalize test data since it produces unexpected predictions. Adding patient data with 

a number of slices of 0-350 images can enhance results by balancing the data. 

Meanwhile, version B6 earned the greatest training accuracy score (98.25%), training validation 

value of 99.4%, testing accuracy of 99.25%, precision, recall, and F1-score extremely excellent in the patient 

data group with more than 350 slices. Despite the fact that the training and validation loss values still need to 

be improved by raising the original percentages for validation and testing data by 5% to 10%. Because it 

produces predicted outcomes, the model for this data group may be used to generalize to additional test data. 

Using a higher version of the design (deeper layers) does not always result in better accuracy, 

according to our observations. By selecting the appropriate data set, high accuracy may be reached. Based on 

the processing time of each version, the training duration for the EfficientNet version with a thicker layer 

tends to be longer when utilizing the same data. Several parameters, such as the number of epochs, learning 

rate, number of layers, and input pixel size utilized during training, are chosen to attain a high accuracy value 

while taking into account the computer infrastructure employed. 

 

 

REFERENCES 
[1] K. S. Saladin, “Anatomy and physiology,” SEER Training Modules, National Cancer Institute, 2012. 

https://training.seer.cancer.gov/anatomy/ (accessed Aug. 20, 2022). 

[2] A. Lichtenegger, “Modeling and simulation of the cervical spine: mechanical stress in injuries,” Diploma Thesis, reposiTUm, 
2015. doi: 10.34726/hss.2015.24612. 

[3] T. Delcourt, T. Bégué, G. Saintyves, N. Mebtouche, and P. Cottin, “Management of upper cervical spine fractures in elderly 

patients: current trends and outcomes,” Injury, vol. 46, pp. 24–27, Jan. 2015, doi: 10.1016/S0020-1383(15)70007-0. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Classification of cervical spine fractures using 8 variants EfficientNet … (Adhitio Satyo Bayangkari Karno) 

7075 

[4] M. B. Harris et al., “Mortality in elderly patients after cervical spine fractures,” The Journal of Bone and Joint Surgery-American 
Volume, vol. 92, no. 3, pp. 567–574, Mar. 2010, doi: 10.2106/JBJS.I.00003. 

[5] H. L. Fredø, I. J. Bakken, B. Lied, P. Rønning, and E. Helseth, “Incidence of traumatic cervical spine fractures in the Norwegian 

population: a national registry study,” Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, vol. 22, no. 1, 
Dec. 2014, doi: 10.1186/s13049-014-0078-7. 

[6] P. Leucht, K. Fischer, G. Muhr, and E. J. Mueller, “Epidemiology of traumatic spine fractures,” Injury, vol. 40, no. 2,  

pp. 166–172, Feb. 2009, doi: 10.1016/j.injury.2008.06.040. 
[7] M. Watanabe, D. Sakai, Y. Yamamoto, M. Sato, and J. Mochida, “Upper cervical spine injuries: age-specific clinical features,” 

Journal of Orthopaedic Science, vol. 15, no. 4, pp. 485–492, Jul. 2010, doi: 10.1007/s00776-010-1493-x. 

[8] L. Tanzi, E. Vezzetti, R. Moreno, A. Aprato, A. Audisio, and A. Massè, “Hierarchical fracture classification of proximal femur X-
Ray images using a multistage deep learning approach,” European Journal of Radiology, vol. 133, Dec. 2020, doi: 

10.1016/j.ejrad.2020.109373. 

[9] F. Yang, G. Wei, H. Cao, M. Xing, S. Liu, and J. Liu, “Computer-assisted bone fractures detection based on depth feature,” IOP 
Conference Series: Materials Science and Engineering, vol. 782, no. 2, Mar. 2020, doi: 10.1088/1757-899X/782/2/022114. 

[10] P. A. Grützner and N. Suhm, “Computer aided long bone fracture treatment,” Injury, vol. 35, no. 1, pp. 57–64, Jun. 2004, doi: 

10.1016/j.injury.2004.05.011. 
[11] D.-Y. Gu, K.-R. Dai, S.-T. Ai, and Y.-Z. Chen, “Computer-aided fracture diagnosis and classification package embedded in the 

integrated electronic patient record system,” in IFMBE Proceedings, Springer Berlin Heidelberg, 2009, pp. 1–4. 

[12] L. Nascimento and M. G. Ruano, “Computer-aided bone fracture identification based on ultrasound images,” in 2015 IEEE 4th 
Portuguese Meeting on Bioengineering (ENBENG), Feb. 2015, pp. 1–6, doi: 10.1109/ENBENG.2015.7088892. 

[13] M. P. Koivikko and S. K. Koskinen, “MRI of cervical spine injuries complicating ankylosing spondylitis,” Skeletal Radiology, 

vol. 37, no. 9, pp. 813–819, Sep. 2008, doi: 10.1007/s00256-008-0484-x. 
[14] N. D. Tomycz et al., “MRI Is unnecessary to clear the cervical spine in obtunded/comatose trauma patients: the four-year 

experience of a level i trauma center,” Journal of Trauma: Injury, Infection and Critical Care, vol. 64, no. 5, pp. 1258–1263, May 

2008, doi: 10.1097/TA.0b013e318166d2bd. 
[15] T. E. Darsaut et al., “A pilot study of magnetic resonance imaging-guided closed reduction of cervical spine fractures,” Spine,  

vol. 31, no. 18, pp. 2085–2090, Aug. 2006, doi: 10.1097/01.brs.0000232166.63025.68. 

[16] A. R. Vaccaro, K. O. Kreidl, W. Pan, J. M. Cotler, and M. E. Schweitzer, “Usefulness of MRI in isolated upper cervical  spine 
fractures in adults,” Journal of Spinal Disorders, vol. 11, no. 4, Aug. 1998, doi: 10.1097/00002517-199808000-00003. 

[17] W. Yuan et al., “Establishment of intervertebral disc degeneration model induced by ischemic sub-endplate in rat tail,” The Spine 

Journal, vol. 15, no. 5, pp. 1050–1059, May 2015, doi: 10.1016/j.spinee.2015.01.026. 
[18] Y. Kumar and D. Hayashi, “Role of magnetic resonance imaging in acute spinal trauma: a pictorial review,” BMC 

Musculoskeletal Disorders, vol. 17, no. 1, Dec. 2016, doi: 10.1186/s12891-016-1169-6. 

[19] M. Utz, S. Khan, D. O’Connor, and S. Meyers, “MDCT and MRI evaluation of cervical spine trauma,” Insights into Imaging,  
vol. 5, no. 1, pp. 67–75, Feb. 2014, doi: 10.1007/s13244-013-0304-2. 

[20] M. Pandey et al., “The transformational role of GPU computing and deep learning in drug discovery,” Nature Machine 

Intelligence, vol. 4, no. 3, pp. 211–221, Mar. 2022, doi: 10.1038/s42256-022-00463-x. 
[21] J. E. Small, P. Osler, A. B. Paul, and M. Kunst, “CT cervical spine fracture detection using a convolutional neural network,” 

American Journal of Neuroradiology, vol. 42, no. 7, pp. 1341–1347, Jul. 2021, doi: 10.3174/ajnr.A7094. 

[22] H. Salehinejad et al., “Deep sequential learning for cervical spine fracture detection on computed tomography imaging,” in 2021 
IEEE 18th International Symposium on Biomedical Imaging (ISBI), Apr. 2021, pp. 1911–1914, doi: 

10.1109/ISBI48211.2021.9434126. 

[23] A. F. Voter, M. E. Larson, J. W. Garrett, and J.-P. J. Yu, “Diagnostic accuracy and failure mode analysis of a deep learning 
algorithm for the detection of cervical spine fractures,” American Journal of Neuroradiology, vol. 42, no. 8, pp. 1550–1556, Aug. 

2021, doi: 10.3174/ajnr.A7179. 

[24] A. Boonrod, A. Boonrod, A. Meethawolgul, and P. Twinprai, “Diagnostic accuracy of deep learning for evaluation of C-spine 
injury from lateral neck radiographs,” Heliyon, vol. 8, no. 8, Aug. 2022, doi: 10.1016/j.heliyon.2022.e10372. 

[25] Z. Merali, J. Z. Wang, J. H. Badhiwala, C. D. Witiw, J. R. Wilson, and M. G. Fehlings, “A deep learning model for 
detection of cervical spinal cord compression in MRI scans,” Scientific Reports, vol. 11, no. 1, May 2021, 

doi: 10.1038/s41598-021-89848-3. 

[26] A. Flanders et al., “RSNA 2022 cervical spine fracture detection,” Kaggle, https://www.kaggle.com/competitions/rsna-2022-
cervical-spine-fracture-detection/overview (accessed Jul. 29, 2022). 

[27] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network,” in 2017 International 

Conference on Engineering and Technology (ICET), Aug. 2017, pp. 1–6, doi: 10.1109/ICEngTechnol.2017.8308186. 

[28] N. Remzan, K. Tahiry, and A. Farchi, “Brain tumor classification in magnetic resonance imaging images using convolutional 

neural network,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 6, pp. 6664–6674, Dec. 

2022, doi: 10.11591/ijece.v12i6.pp6664-6674. 
[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90. 

[30] B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert, “Multi-level residual networks from dynamical systems view,” arXiv 
preprint arXiv:1710.10348, 2017. 

[31] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture optimization,” Advances in neural information processing 

systems, vol. 31, 2018. 
[32] M. Tan and Q. V Le, “EfficientNet: rethinking model scaling for convolutional neural networks,” in 36th International 

Conference on Machine Learning, 2019, pp. 10691–10700. 

[33] M. Tan et al., “MnasNet: platform-aware neural architecture search for mobile,” arXiv preprint arXiv: 1807.11626, Jul. 2018. 
[34] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: inverted residuals and linear bottlenecks,” arXiv 

preprint arXiv: 1801.04381, Jan. 2018. 

[35] W. Hastomo, A. S. B. Karno, N. Kalbuana, A. Meiriki, and Sutarno, “Characteristic parameters of epoch deep learning to predict 
Covid-19 data in Indonesia,” Journal of Physics: Conference Series, vol. 1933, no. 1, Jun. 2021, doi: 10.1088/1742-

6596/1933/1/012050. 

 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7065-7077 

7076 

BIOGRAPHIES OF AUTHORS 

 

 

Adhitio Satyo Bayangkari Karno     obtained a Bachelor’s degree (S-1) majoring 

in Mathematics and Natural Sciences in 1992, and a Master’s degree (S-2) from the Faculty of 

Computer Science, Master of Information Technology in 2010 from the Universitas Indonesia 

(UI), Indonesia. His research interests include artificial intelligence, deep learning, and 

machine learning. His occupation until now is as a lecturer at several universities in Indonesia. 

He can be contacted at email: Adh1t10.2@gmail.com. 

  

 

Widi Hastomo     received Bachelor of Computer Science and Master in 

information technology degree from STMIK Jakarta. His research interests include artificial 

intelligence and deep learning. His work has been documented in more than 25 papers. He can 

be contacted at email: Widie.has@gmail.com. 

  

 

Tri Surawan     obtained a Bachelor’s degree (S-1) in 1992 and Master’s degree  

(S-2) in 2005 majoring in Mathematics and Natural Sciences, from the Universitas Indonesia 

(UI), Indonesia. His research interests include materials and artificial intelligence. His 

occupation until now is as a lecturer at several universities in Indonesia. He can be contacted at 

email: tri.surawan@gmail.com. 

  

 

Serlia Raflesia Lamandasa     Department of Management, Faculty of Economics, 

University of Sam Ratulangi Manado in 1988 (S1) and Department of Management of 

Development Resources, University of Sam Ratulangi Manado in 2002 (S2). Permanent 

Lecturer at the Faculty of Economics, UNSIMAR since January 1, 1989-now. Lecturer in 

human resources management, production operational management, operational research,  

HR planning and control, performance assessment. She can be contacted at email: 

serlia@unsimar.ac.is. 

  

 

Sudarto Usuli     Bachelor’s degree (S-1) in University of Sintuwu Maroso, and 

Master’s degree (S-2) in University of Muhammadiyah Makassar. Currently, the focus is on 

research in the field of operational management and public financial management. He can be 

contacted at email: sudarto@unsimar.ac.id. 

  

https://orcid.org/0000-0002-7901-6499
https://scholar.google.com/citations?user=GHcB56QAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=57226515789
https://orcid.org/0000-0001-7866-4438
https://scholar.google.com/citations?user=At0NDosAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57226515844
https://orcid.org/0000-0003-2972-8161
https://scholar.google.com/citations?user=YY_teXAAAAAJ&hl=id&oi=ao
https://orcid.org/0000-0003-4090-4330
https://scholar.google.com/citations?user=br8ei0QAAAAJ&hl=id&oi=ao
https://orcid.org/0000-0001-9624-4111
https://scholar.google.com/citations?user=Mono9pMAAAAJ&hl=id&oi=ao


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Classification of cervical spine fractures using 8 variants EfficientNet … (Adhitio Satyo Bayangkari Karno) 

7077 

 

Holmes Rolandy Kapuy     holds a Doctor in Economy majoring Management from 

Faculty of Economics and Business Airlangga University, and a Magister of Management 

from Tadulako University. Currently the focus of research is on marketing strategy and 

management information systems. He can be contacted at email: rolandykapuy@gmail.com. 

  

 

Aji Digdoyo     obtained of a Bachelor’s Mechanical Engineer Degree (S-1) in 1988 

and Master’s degree (S-2) in 1998 majoring in Environmental sciences, from the “University 

of Indonesia (UI),” Indonesia. His research interests include renewable energy and artificial 

intelligence. His Occupation until now is a lecturer Faculty of Technology Industry, University 

Jayabaya in Department of Mechanical Engineer, Indonesia. He can contact at email: 

digdoyoaji@gmail.com. 

 

mailto:digdoyoaji@gmail.com
https://orcid.org/0000-0001-9568-3446
https://scholar.google.com/citations?user=qW8JOXsAAAAJ&hl=id&oi=ao
https://orcid.org/0000-0001-6591-9737
https://scholar.google.com/citations?user=wkU_3EkAAAAJ&hl=en

