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 The objectives of this research were developing a model for forecasting 

vegetable prices in Nakhon Si Thammarat Province using random forest and 

comparing the forecast results of different crops. The information used in this 

paper were monthly climate data and average monthly vegetable prices 

collected between 2011 – 2020 from Nakhon Si Thammarat meteorological 

station and Nakhon Si Thammarat Provincial Commercial Office, 

respectively. We evaluated model performance based on mean absolute 

percentage error (MAPE), root mean squared error (RMSE), and mean 

absolute error (MAE). The experimental results showed that the random forest 

model was able to predict the prices of vegetables, including pumpkin, 

eggplant, and lentils with high accuracy with MAPE values of 0.09, 0.07, and 

0.15, with RMSE values of 1.82, 1.46, and 2.33, and with MAE values of 3.32, 

2.15, and 5.42, respectively. The forecast model derived from this research 

can be beneficial for vegetable planting planning in the Pak Phanang River 

Basin of Nakhon Si Thammarat Province, Thailand. 
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1. INTRODUCTION 

Nakhon Si Thammarat is a province in the south of Thailand, where most of the population is engaged 

in agriculture. The main problems found in vegetable cultivation in the province are droughts. According to 

the statistics, Nakhon Si Thammarat experienced a total of 5 droughts during 2013 to 2019. In 2016, there were 

12 districts with the highest drought level, and the agriculture was damaged by 883.54 square kilometres [1]. 

Besides the unfavourable climate, farmers face the problem of plant disease, pest infestation, and low consumer 

prices as farmers cannot set desired prices [2]. 

Although the price of vegetables has a large impact on the population, it is volatile and changes 

quickly. This makes it more difficult to predict future prices consistently. Nonetheless, vegetable price 

prediction is necessary for the general public to recognize the price of vegetables in advance [3].   

There is currently a lot of research focusing on improving forecasting models to be more accurate by 

using modern statistical and computing methods such as machine learning (ML) and artificial intelligence (AI) 
depending on the goals and nature of the problem [4]. ML is a subdomain of AI [5]. It is a science of training 

computers to act without giving any command to it [6]. In AI, we make computers artificially more intelligent 

https://creativecommons.org/licenses/by-sa/4.0/
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as they perform tasks on their own. These systems are highly accurate and fast in doing their tasks. While in 

machine learning, we create and train a model using various techniques such as supervised learning, unsupervised 

learning, and reinforcement learning [6]. The data in machine learning is made up of examples, and each example 

is described by a set of attributes. These characteristics are also known as variables [7], [8]. There are two types 

of supervised learning: classification and regression. In particular, the dependent variable in the classification 

problem is discrete but continuous in the regression problem [9]. 

Random forest is a machine learning technique that employs a large number of classifications or 

regression sub-trees. It is a popular prediction algorithm because it is a versatile algorithm for analyzing large 

datasets.  Furthermore, it has a high prediction accuracy and provides information on important variables for 

classification [10]. 

In previous research, a variety of machine learning techniques have been applied to data analysis in 

order to identify patterns and trends.  For example, one study compared the performance of random forest and 

multiple regression models in predicting apartment prices [11], while another used linear regression and 

random forest regression to forecast ticket prices for public transportation [12]. In addition, decision trees and 

random forest models were utilized to predict crop prices [13], and machine learning methods were employed 

to forecast the prices of agricultural products [8] and used cars [14]. A comparison was also conducted on the 

efficiency of machine learning models for predicting bird's eye chili prices in Nakhon Si Thammarat province 

[15].  Moreover, deep learning has been applied to forecasting in some cases [16], [17].  However, using 

machine learning models with a small dataset to predict vegetable prices may overfit the dataset and might not 

be efficient.  Therefore, we propose using random forest models to forecast vegetable prices in Nakhon Si 

Thammarat Province and comparing the results for different crops.  As a result, we propose to i)  use random 

forests to forecast vegetable prices in Nakhon Si Thammarat Province and ii) compare the results across crops. 

 

 

2. METHOD  
2.1.  Dataset 

The Meteorological Station and the Provincial Commercial Office in Nakhon Si Thammarat province 

provided historical data on the climate and vegetable prices between 2011 and 2020 for this study in comma-

separated values (CSV) file format. The dataset consists of 7 attributes, namely month, temperature (degree 

Celsius), rainfall (mm.), humidity (%), seasons, average price per month (Bath), and average price per year 

(Bath). The dataset contains no missing data nor any significant outliers. Table 1 displays the attributes and 

their data type of the dataset. 
 

 

Table 1. List of attributes 
No Attribute Data Type 

1 Month Date 
2 Temperature Number 

3 Rainfall Number 

4 Humility Number 
5 Season Number 

6 Average price per month Number 

7 Average price per year Number 

 

 

2.2.  Research tools 

In this study, we chose to run the experiments with Scikit- learn [18], Python's most comprehensive 

and open- source machine learning package.  Scikit- learn covers four major machine learning topics:  data 

transformation, supervised learning, unsupervised learning, and model evaluation and selection.  Scikit- learn 

provides various ready-to-use pre-processing algorithms and machine learning models which can be directly 

applied to the collected dataset.  

 

2.3.  Research process 

We followed the setup in [19] and divided the dataset into two parts for this study: the training set and 

the test set. The training set, which contains 84 data points (70%), is used to train the model. The test set, which 

contains 36 samples (30%) , is reserved for measuring the performance of the models.  Figure 1 [20] depicts a 

more detailed overview of how machine learning models are trained and tested. 
 

2.4. Accuracy measures for forecasting 

The performances of the models were measures with three metrics that are commonly used for 

regression problems. Particularly, we used mean absolute error (MAE), root mean squared error (RMSE), and 
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mean absolute percentage error ( MAPE)  [8], [21].  To formally quantify the metrics, let 𝐿𝑖 and 𝑃𝑖  be the 

observed price and the forecasted price of a data point i, respectively. 

The MAE determines the average size of error in a series of forecasts without taking into account their 

direction.  It is the test sample's average of the absolute disparities between prediction and actual observation, 

with all individual deviations given equal weight. It can be formally defined as (1). 

 

MAE =  
1

𝑁 
∑ |𝐿𝑖

𝑁
𝑖=1 − 𝑃𝑖| (1) 

 

 

 
 

Figure 1. The overview of how the machine learning models is trained and tested [20] 

 

 

The RMSE is the square root of the average of the error squares.  It is, in other words, the average 

squared difference between the estimated and actual values. Because of its square design, serious mistakes are 

amplified and have a significantly greater effect on the value of the performance indicator. Simultaneously, the 

impact of relatively minor mistakes will be significantly reduced.  This element of the squared error is 

sometimes referred to as penalizing excessive errors or being susceptible to outliers.  It is mathematically 

defined as (2). 

 

RMSE = √
1

𝑁
 ∑ (𝐿𝑖 − 𝑃𝑖)2𝑁

𝑖=1      (2) 

 

The MAPE is the extension of the MAE that satisfies the criteria of reliability, ease of interpretation, 

and clarity of presentation.  It is formally defined as (3). Interpretation criteria to evaluate the performance of 

the predictive model using the MAPE are shown in Table 2 [22]. 

 

MAPE = 
1

𝑛
∑ |

𝐿𝑖−𝑃𝑖

𝐿𝑖

𝑛
𝑖=1 |𝑥100% (3) 

 

 

Table 2. Interpretation of typical MAPE values 
MAPE Interpretation 

<10 Highly accurate forecasting 

10 to 20 Good forecasting 
20 to 50 Reasonable forecasting 

>50 Inaccurate forecasting 

 

 

2.5. Random forest model 

Random forest is an ensemble machine learning methodology that is a mixture of several tree-based 

predictors. It is a supervised method that can handle both regression (problems with continuous dependent 

variables) and classification (problems with categorical dependent variables) tasks. The core concept of the 

method is to integrate many decision trees to decide the final output rather than depending on individual 

decision trees, which reduces model variance [23]–[26]. Random forest constructs numerous versions of 
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decision trees by sampling different subsets of the given training data. These tree predictions are combined 

with a majority vote to get the final projection. As a consequence, over-fitting is reduced, and predicted 

accuracy is improved [27]. An overview of how the algorithms work is depicted in Figure 2. The random forest 

training algorithm is mainly defined as follows. 
 

Algorithm:  
Step 1:   From the dataset, pick M random records. 

Step 2:  Based on M records, build a decision tree. 

Step 3a:  From your algorithm, choose the number of trees and repeat steps 1 and 2.  

Step 3b: In case of a regression problem, for a new record, each tree in the forest predicts 

a value for Y (output). 

 

 

 
 

Figure 2. General structure of a random forest [28] 

 

 

For each sub-tree, the prediction function f(x) is defined as formulas (4) and (5) [29] 

 

f(x) = ∑ 𝑐𝑚  ∏(x, 𝑅𝑚 ) 𝑀
𝑚=1    (4) 

 

where M is the number of regions in the feature space, Rm is a region corresponding to m, cm is a constant 

corresponding to m:  

 

∏(x, Rm) = { 1, if x ∈ Rm 0, otherwise  (5)  
 

The final classification decision is made from the majority a vote of all trees. 

 

 

3. RESULTS AND DISCUSSION  

3.1. Results 

This study developed a random forest model for predicting vegetable prices in Nakhon Si Thammarat 

province using scikit-learn (random forest regressor). Six hyper-parameter combinations were investigated, 

specifically three estimator values 50, 100, and 150) and two max depth values 5 and 10). Table 3 displays the 

model's predicted outcomes. 

The forecast model development results are shown in Table 3. Setting the number of estimators option 

to 50 and the maximum depth to 10 consistently results in the least amount of error in terms of MAE, RMSE, and 
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MAPE.  According to Table 4, the MAPE for prediction accuracy was less than 10, indicating that the random 

forest model forecast was highly accurate for pumpkin and eggplant, while the result for lentils was good. 
 

 

Table 3. The results of the development of the forecast model using the random forest 
No n_estimators max_depth Accuracy 

measures 

Pumpkin Eggplant Lentils 

1  50  5 MAE 3.41 2.18 5.98 
   RMSE 1.84 1.47 2.44 

   MAPE 0.10 0.07 0.16 

2 100  5 MAE 3.44 2.15 6.07 
   RMSE 1.85 1.47 2.46 

   MAPE 0.10 0.07 0.16 

3 150  5 MAE 3.41 2.17 5.67 
   RMSE 1.84 1.47 2.38 

   MAPE 0.10 0.07 0.15 

4  50 10 MAE 3.32 2.15 5.42 

   RMSE 1.82 1.46 2.33 

   MAPE 0.09 0.07 0.15 

5 100 10 MAE 3.39 2.21 6.33 
   RMSE 1.84 1.48 2.51 

   MAPE 0.10 0.07 0.17 
6 150 10 MAE 3.33 2.16 6.39 

   RMSE 1.82 1.47 2.53 

   MAPE 0.09 0.07 0.17 

 

 

Table 4. Accuracy measures for forecasting pumpkin, eggplant, and lentils 
Accuracy measures 

for forecasting 

Pumpkin Eggplant Lentils 

MAE 3.32 2.15 5.42 
RMSE 1.82 1.46 2.33 

MAPE 0.09 0.07 0.15 

 

 

Table 5 compares the actual and expected costs of pumpkin, eggplant, and lentils over a 12-month 

period.  Setting the number of estimators to 50 and the maximum depth to 10 yields the least error model. 
Figure 3 shows that anticipated vegetable prices were nearly identical to actual prices for the values of pumpkin 

in Figure 3(a), eggplant in Figure 3(b), and lentils in Figure 3(c). 
 

 

Table 5. Actual and predicted values of three vegetables in random forest model 

Month 
Pumpkin Eggplant Lentils  

Actual Predicted Actual Predicted Actual Predicted 

January 42.81 42.11 41.88 42.50 46.25 52.67 
February 38.44 37.16 36.88 36.64 40.31 41.81 

March 31.56 35.39 31.25 33.47 42.81 43.22 

April 26.88 30.57 35.63 36.95 48.75 47.71 
May 25.31 26.14 39.38 38.83 53.13 50.91 

June 26.88 26.55 40.63 39.94 48.75 47.01 

July 25.94 27.45 39.38 39.97 36.25 40.91 
August 30.63 35.43 38.13 40.77 41.25 45.18 

September 39.38 38.69 43.75 41.22 44.69 44.18 

October 48.75 43.99 46.25 44.66 54.69 52.90 
November 45.31 43.15 48.75 48.33 57.50 59.88 

December 38.75 40.44 50.63 47.98 76.56 66.44 

 

 

3.2.  Discussion 

In this study, a random forest model was developed to predict vegetable prices in the province of 

Nakhon Si Thammarat.  The results showed that the random forest model was an appropriate model for 

forecasting crop price because the forecasted outcomes were quite accurate.  The findings are consistent with 

previous research, which found that random forest makes predictions with low RMSE and performs well with 

a high R- squared value [14].  Another study showed that random forest was a suitable model for predicting 

bird's eye chili prices in Nakhon Si Thammarat province [15]. A random forest approach for real- time price 

forecasting was discovered to be suitable and predict consistent results in the New York power market [30]. 
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Furthermore, the random forest is used to predict house prices, with an error margin of 5 compared between 

anticipated and actual prices [31]. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 3. Actual and predicted values of three vegetables in random forest model; (a) actual and predicted 

values of pumpkin, (b) actual and predicted values of eggplant, and (c) actual and predicted values of lentils. 

 

 

4. CONCLUSION  

Forecasting vegetable prices is essential for farmers who want to know the price of their crops in 

advance. In this study, the random forest model was used to forecast vegetable prices. The study's data set, in 

particular, included seven characteristics. The prediction results showed that the random forest model was 

capable of accurately forecasting vegetable prices for pumpkin, eggplant, and lentils with MAPE values of 0.09, 

0.07, and 0.15; RMSE values of 1.82, 1.46, and 2.33, and MAE values of 3.32, 2.15, and 5.42, respectively. 

However, the model developed in this study was only applicable to climate and vegetable price data 

from Nakhon Si Thammarat Province. Additionally, the model user must consider additional factors such as 

soil conditions, pests, plant diseases, vegetable varieties, and so on. For future work, other types of vegetable 

can be studied. Additional independent variables can be used. To further improve prediction accuracy, different 

supervised learning approaches can also be explored. 
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