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 As in Industry 4.0 era, the impact of the internet of things (IoT) on the 

advancement of the agricultural sector is constantly increasing. IoT enables 

automation, precision, and efficiency in traditional farming methods, 

opening up new possibilities for agricultural advancement. Furthermore, 

many IoT-based smart farming systems are designed based on fog and edge 

architecture. Fog computing provides computing, storage, and networking 

services to latency-sensitive applications (such as Agribots-agricultural 

robots-drones, and IoT-based healthcare monitoring systems), instead of 

sending data to the cloud. However, due to the limited computing and 

storage resources of fog nodes used in smart farming, designing a modules 

placement scheme for resources management is a major challenge for fog 

based smart farming applications. In this paper, our proposed module 

placement algorithm aims to achieve efficient resource utilization of fog 

nodes and reduce application delay and network usage in Fog-based smart 

farming applications. To evaluate the efficacy of our proposal, the simulation 

was done using iFogSim. Results show that the proposed approach is able to 

achieve significant reductions in latency and network usage. 
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1. INTRODUCTION  

Agriculture 4.0 refers to managing farms through the integration of modern technologies in order to 

increase productivity and reduce the amount of time farmers spend on performing repetitive tasks [1]. In 

addition, internet of things (IoT) provides cost-effective and sustainable solutions for agriculture due to its 

highly scalable, interoperable, pervasive, and open nature. Furthermore, IoT technology is also beneficial for 

farmers, as it allows them to access key information about their farms, such as soil quality, nutrient 

requirements for healthy plant growth, and water consumption levels. By providing precise data on these 

parameters, farmers can optimize their farming practices to achieve better yields and reduce waste. 

Friha et al. [2] provide a comprehensive review of emerging technologies for IoT-based smart 

agriculture. Rayhana et al. [3] conducted a study that evaluates both the current technologies used in 

greenhouse cultivation and the latest advancements in IoT technologies that enable smart greenhouse 

farming. Beng et al. [4] introduced a wireless sensor network (WSN) system for monitoring the health of 

livestock. The system utilizes near field communication (NFC) technology to measure essential parameters, 

including temperature. Table 1 presents several initiatives that harness the power of cloud computing to 

create solutions for smart agriculture. Through virtualization, the cloud provides a variety of services and 

https://creativecommons.org/licenses/by-sa/4.0/
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options for smart farming applications, including infrastructure-as-a-service (IaaS), platform-as-a-service 

(PaaS), and software-as-a-service (SaaS) [5]. Furthermore, the cloud can be used to aggregate data from IoT 

sensors such as soil sensors, satellite images, and weather stations to help farmers make better decisions 

about managing their crops. The cloud also provides enough storage and computing power to analyse the 

collected data and package it in a form useful to farmers as well as send instructions to some control  

IoT-based devices such as irrigation systems. However, due to the increasing number of sensors in smart 

farms and the use of latency-sensitive applications such as agricultural robots (Agribots), drones, and 

livestock health monitoring systems, transferring all of the collected data to the cloud is not suitable or 

scalable for these smart farming applications. 

 

 

Table 1. Example of IoT based smart farming systems 
Notation Description 

IoT-based farm management systems  [6]–[8] 

IoT-based climate monitoring system [9]–[11] 

IoT-based livestock monitoring systems [12]–[14] 

irrigation systems based on IoT [15]–[17] 

Greenhouses monitoring systems based on IoT [18]–[20] 
IoT-based Agribots [21]–[23] 

IoT-based agricultural Drones [24], [25] 

 

 

Generally, the cloud-based smart farming architecture faces several issues, such as high latency, 

overfull bandwidth, and unavailability of cloud services due to communication failure. Thus, the traditional 

cloud-based architecture cannot meet the required levels of quality of service (QoS) for real-time smart 

farming applications. To solve these challenges, a new paradigm called fog computing was proposed. Fog 

computing is an extension of cloud computing to the edge network, providing computer, storage, and 

networking services to IoT devices instead of sending data to the cloud for processing. However, due to the 

resource limitations of fog nodes, designing a module placement scheme is necessary to make full use of fog 

nodes and meet the real-time requirement of latency-sensitive smart farming applications. 

Basically, each IoT application can be divided into several modules that are responsible for 

performing one specific task on collected data [26]. For example, the application model of the IoT-based 

greenhouse monitoring system consists of many application modules as shown in Figure 1, depending on the 

number of sensors used in the application and the available resources. Each module has a specific resource 

requirement (central processing unit (CPU), random access memory (RAM), and bandwidth, in contrast, fog 

nodes may not have sufficient resources to handle the demands of these modules and the massive data issued 

from agricultural sensors. Thus, it is important to adopt a module placement algorithm that determines the 

suitable fog nodes to host smart farming application modules. Thus, avoid situations where some fog nodes 

are overloaded and others remain under-loaded, which may lead to a decrease in the QoS in terms of latency 

and network usage. 

 

 

 
 

Figure 1. Application model for IoT-based greenhouse monitoring system 
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In this paper, we propose a module placement algorithm for fog-based smart farming applications. 

The main contributions of this paper are as follows: 

a. Design fog-based architecture for smart farming applications. In the proposed architecture, special nodes 

called fog controller nodes are integrated in order to manage the resources in the fog layer. 

b. Introducing an algorithm for placing smart farming application modules on fog devices based on the 

proposed fog-based architecture. 

c. The proposed scheme was evaluated using an IoT-based greenhouse monitoring system. The simulation 

was performed based on a real implementation, which utilized various sensors and actuators, as well as 

the iFogSim simulator. 
The rest of this paper is organized as follows. Section 2 presents a summary of related studies. In 

section 3, we introduce the proposed system architecture. Section 4 presents the proposed module placement 

algorithm. Section 5 illustrates the implementation and evaluation of simulation results. Finally, a conclusion 

will be drawn in section 6. 

 

 

2. RELATED WORKS 

Several studies focus on the role of fog computing in IoT-based smart farming applications.  

Taneja et al. [27] introduce an innovative system based on fog computing architecture for livestock health 

monitoring and animal behavior analysis, specifically in dairy farming. The collected sensor data is sent to 

a fog-based platform for further analysis. The proposed solution focuses on providing early warning alerts 

by utilizing behavioral analytics to ensure the well-being of the animals. This approach enables the farmer 

to identify potential diseases in the early stages and take necessary actions. Ammad et al. [28] introduces a 

new fog-based framework that aims to improve energy efficiency in smart environments enabled by the 

IoT. This framework includes two new layers, namely a sensor-based energy-efficient hardware layer and 

a policy layer, which are added to the existing fog-based architecture. The purpose of these layers is to 

track energy consumption and facilitate energy-aware decision-making. Ribeiro et al. [29] presents a novel 

method for data collection and storage in smart agriculture environments, along with two distinct 

approaches for data filtering through the implementation of a fog-based architecture. Two experiments 

were designed, each utilizing a real dataset comprising humidity and temperature values. In both 

experiments, fog nodes applied the k-nearest neighbors (k-NN) algorithm to filter the data and categorize 

it based on its value range. The smart agricultural knowledge discovery system presented in [30] employs 

the IoT and fog computing paradigm. This system offers users access to real-time information and 

knowledge, which enhances crop yield performance and reduces resource wastage without compromising 

quality. The performance of the proposed system has been analyzed and the results show that the proposed 

system performs superior in terms of latency, scalability, cost, and security of data. Izolan et al. [31] 

present a cost-effective fog computing platform for soil moisture management that uses a density map of 

soil moisture to analyze moisture levels across areas, enabling efficient irrigation management. Malik  

et al. [32] propose a fog-based framework that allows users to simulate custom farming scenarios, 

covering aspects such as sensor placement, line-of-sight deployment, coverage areas, mobile node 

mobility models, and data gathering through relay or airborne systems. Alharbi and Aldossary [33], an 

energy-efficient edge-fog-cloud architecture is suggested for IoT-based smart agriculture. The architecture 

utilizes edge and fog layers located in close proximity to smart farms, allowing for the collection and 

processing of diverse sensor data at the fog layer. The main goal is to optimize energy efficiency and 

improve data management in smart agriculture. One of the main limitations of the mentioned fog -based 

farming systems is the use of the traditional fog-based architecture without taking into account the limited 

resources of the fog nodes. Furthermore, it is noticeable that the previous papers did not focus on the 

module’s placement issues. The inefficient management of the fog layer resources and the failure to give 

priority to delay-sensitive application modules lead to hosting these modules in cloud servers, which 

increases delay and network usage. 

 

 

3. PROPOSED SYSTEM ARCHITECTURE  

This section presents an overview of a proposed smart farming architecture based on fog computing, 

comprising of three distinct layers. The first layer is the IoT layer that contains agricultural sensors such as 

temperature sensors, nitrogen, phosphorus, and potassium (NPK) sensors, and wearable livestock health 

monitoring systems. The second layer is the fog computing layer, where the fog nodes (FNs) and fog 

controller nodes (FCNs) are located. The third layer is the central cloud server, which has more resources for 

storage and processing compared to the fog layer resources. 
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3.1.  IoT layer  

This layer consists of IoT sensors, agricultural UAVs, and Agribots that are normally equipped with 

many sensors capable of sensing the environment and collecting data such as soil moisture, temperature, and 

soil NPK levels. The sensors used are often heterogeneous and geographically distributed across different 

smart farms. The collected data is sent to the associated fog node on the next level. 

 

3.2.  Fog layer 

This layer consists of a set of fog nodes that receive data from the sensor layer. At the site closest to 

the agricultural sensors, this layer has more resources than the sensor layer. Furthermore, compared to some 

traditional fog-based smart farming architectures, this layer contains FCNs for effective resource 

management. FCNs play the role of load balancers in the proposed architecture. FCNs are aware of the 

available FN resources in the fog layer. Thus, overloading or under-loading situations in the fog network can 

be avoided because FCNs check the availability of resources before assigning modules to the FN. 

In our proposed smart farming architecture, applications are classified into two categories: real-time 

(e.g., Agribots, agricultural drones, and livestock monitoring systems) and near real-time (e.g., irrigation 

systems, soil monitoring systems, and temperature sensors). FCNs prioritize data from delay-sensitive 

applications using the algorithm proposed in the next section. 

In this paper, we consider that each smart farming application consists of multiple modules that 

constitute the data processing elements. Each module has resource requirements, such as CPU, RAM, and 

bandwidth. FCNs decide which FN will run the module based on its requirements and the available resources 

in the fog layer, using the proposed module placement algorithm. By adopting this strategy, the fog layer 

resources can be utilized effectively, leading to reduced delays and network usage, thereby improving the 

performance of various fog-based smart farming systems. 

 

3.3.  Cloud layer  

Fog computing complements the cloud, and therefore, dependence on cloud resources still plays an 

important role. The cloud has powerful computing and storage capabilities that can support fog in extensive 

computational analysis and permanent storage of data. This makes data available to farmers in the form of 

graphs and reports. 

 

 

4. PROPOSED MODULE PLACEMENT ALGORITHM 

Consider a fog-based smart farming network with a set of fog node controllers FCN, a set of fog 

nodes F, and set of IoT sensors. The notations used in this paper are presented in Table 2. 

 

𝐹𝑓𝑖 = {𝑓1 , 𝑓2 , … , 𝑓𝑛 } (1) 

 

where 𝑓𝑖 is the i-th fog node available for IoT sensors. 

Each FN has a limited capacity of resources (CPU, memory and bandwidth). The capacity of the 

said fog node 𝑓𝑖 in the proposed architecture is represented as (2). 

 

𝐶𝑓𝑖 = {𝐶𝑃𝑈𝑖 , 𝑅𝐴𝑀𝑖 , 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖  } (2) 

 

As mentioned earlier, each smart farming application consists of multiple modules that constitute the data 

processing elements. Thus, a set of smart farming application modules is denoted by (3). 

 

𝑀 = {𝑚𝑖} (3) 

 

Each module 𝑚𝑖 has to be placed on fog node and is defined by specific requirements such as CPU, 

memory, bandwidth and deadline. Thus, the requirement of a smart farming application module mi is denoted 

by Rmi, where, 

 

 𝑅𝑚𝑖 = {𝐶𝑃𝑈𝑖 , 𝑅𝐴𝑀𝑖 , 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖 } (4) 

 

A fog node fi cannot accept module 𝑚𝑖  beyond its capacity, where, 

 

 𝑅𝑚𝑖 ≤ 𝐶𝑓𝑖  ;  ∀𝑓 ∈ 𝐹 and ∀𝑚 ∈ 𝑀 (5) 
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For delay-sensitive applications, the total time 𝑇𝑚𝑖  required for transmission and processing of a module 

𝑚𝑖  should be less than the deadline 𝐷𝑚𝑖  of this module, where,  

 

𝑇𝑚𝑖 ≤ 𝐷𝑚𝑖    ∀𝑚 ∈ 𝑀 (6) 

 

 

Table 2. Notations and description of terms 
Notation Description 

𝐹 Set of fog devices 
𝑓𝑖 i-th fog node in the fog-smart farming network 
𝑀 set of smart farming application modules 

 𝑅𝑚𝑖 requirement of a module 𝑚𝑖 
𝐶𝑓𝑖 Capacity of the fog node 𝑓𝑖 
𝑚𝑖 i-th module of the smart farming application 
𝑇𝑚𝑖 Total time required for processing module 𝑚𝑖   
𝐷𝑚𝑖 Deadline of module 𝑚𝑖   

 

 

Algorithm 1 provides a summary of the proposed module placement scheme for smart farming 

applications. This algorithm outlines the step-by-step process for determining the optimal placement of 

modules within a network of fog nodes to improve the efficiency and effectiveness of smart farming systems. 

By following the algorithm, farmers can ensure that modules are placed in the optimal locations to maximize 

performance and minimize delays, ultimately leading to better outcomes for their farms. 

 

Algorithm 1. Module placement scheme for fog based smart farming 
Input: M (set of application modules), F (set of fog nodes) 

Output: Rsp (selected fog node) 

Function modulePlacement (𝑀 𝑚𝑖, F 𝑓𝑖 ): 

    Sort M and F in order of (5) and (6) 

    Sort F in terms of proximity from low to high 

    Rsp=null 

    for each fog node 𝑓𝑖  in F: 

        if not is Overloaded (𝑓𝑖 ) and capacity 

(𝑓𝑖 )>=requirement(𝑚𝑖): 

            Calculate delay for 𝑓𝑖  using (6) 

            Arrange delays in ascending order 

            Rsp=𝑓𝑖  

            Update capacity of 𝑓𝑖  

            break 

    if Rsp==null: 

        if 𝑚𝑖 is from an urgent smart farming application: 

            while true: 

                Select a fog node 𝑓𝑖  randomly from F  

                if 𝑓𝑖  has no urgent tasks:  

                    Rsp=𝑓𝑖  

                    Break  

            end while 

        else: 

            Rsp=Cloud 

        end if 

    Return Rsp 

End function 

 

The proposed algorithm is designed to iterate through the available FCNs, taking into account the 

resources available within the fog layer. By looping through the FCNs, the algorithm can determine which 

nodes have sufficient resources to process incoming data from the sensor layer in a timely and efficient 

manner. Additionally, it is important to note that the fog layer is constantly receiving data from the sensor 

layer. This incoming data stream is a crucial component of the smart farming system, as it provides the 

algorithm with the necessary inputs to make placement decisions. By continuously monitoring this data 

stream and iterating through the available FCNs, the algorithm can dynamically adjust module placement to 

ensure that the system operates optimally at all times. As presented in Figure 2, the modules are classified 

based on (6) into two main categories: i) modules for delay-sensitive applications and ii) modules for delay-

tolerant applications. 

In the case of the agricultural robot, for example, this application is based on the sense-process-

actuate model. In other words, the robot’s motion depends on the duration of data collection and transmission 

by the various embedded sensors. Thus, processing the captured data in the cloud, because FNs are 
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overloaded in the fog layer, will make the sense-process-actuate model very slow or unavailable due to 

communication failure. This algorithm helps by performing the processing of data very close to the 

agricultural robots, as well as distributing the modules effectively among all FNs, thus meeting the levels of 

QoS required for this kind of smart agriculture application.  

When all FNs in the fog layer are overloaded, and the received modules are intended for  

latency-sensitive applications, the FCNs will select a FN that hosts delay-tolerant modules randomly and 

assign the new modules to it. The delay-tolerant modules are then transmitted directly to the cloud. The cloud 

servers are responsible for receiving processing results from the fog layer for storage, performing further 

analysis, and enabling farmers to access the data. 

This approach ensures that latency-sensitive applications are handled appropriately by assigning 

them to FNs that can process them quickly, while delay-tolerant modules are routed directly to the cloud to 

reduce latency. By distributing the modules effectively among the FNs, the system can balance the workload 

and prevent any FN from becoming overloaded. Overall, this strategy helps to maintain the required levels of 

QoS for smart agriculture applications and ensures that the processing of data is done efficiently and effectively. 

 

 

 
 

Figure 2. IoT-based smart farming applications 

 

 

5. PERFORMANCE EVALUATION  

In this section, we validate the proposed scheme by implementing it in an IoT-based smart 

greenhouse application. Furthermore, the algorithm was simulated using iFogSim [34]. In this experiment, 

we designed and implemented an IoT-based greenhouse monitoring system case study using many sensors 

and actuators that are connected wirelessly to evaluate the proposed algorithm with real data. 

 

5.1. Implementation of IoT-based smart greenhouse system  

Our scenario involves a greenhouse equipped with harvesting robots and distributed sensors and 

actuators located throughout the facility. During the daytime, each sensor continuously measures specific 

environmental conditions, such as temperature, humidity, or soil pH, at its specific location and reports these 

measurements to the fog nodes. By using harvesting robots to collect data from various locations, we can 

efficiently monitor and optimize the greenhouse environment to improve crop yield and quality. 

As depicted in Figure 3, our implementation of the IoT-based greenhouse application utilized a 

range of sensors for precise data collection and control. In Figure 3(a), we integrated a rain sensor (YL83) to 

detect precipitation. Figure 3(b) showcases the implementation of a temperature and humidity sensor 

(DHT11) for monitoring air temperature and humidity levels. An ultrasonic sensor was integrated in  

Figure 3(c) to enable obstacle avoidance by the agricultural robot. Figure 3(d) illustrates the integration of a 

gas sensor (MQ2) for monitoring air quality. Lastly, Figure 3(e) presents the incorporation of a soil moisture 

sensor that enables precision agriculture practices by providing accurate data on soil moisture content. 

 

5.2. Implementation in iFogSim  

In this section, we utilized iFogsim simulator to evaluate the proposed module placement scheme 

algorithm. iFogSim is a toolkit based on CloudSim and is widely used for simulating IoT, edge, fog, and 

cloud computing environments. The key performance metrics considered for the simulation of the proposed 

architecture and algorithm are latency and network usage. The analysis of this implementation was done on a 

DELL computer with Intel Core i5 CPU and 8 GB of memory running Windows 10-64 bit. For the 

simulation, we set the parameters (such as CPU length, RAM, and Bandwidth) for each node in the fog layer 

as shown in Table 3. We divided the computing power of the devices into several levels. Level 0 contains the 

cloud server, as we find in level 1 the proxy that connects the cloud and FCNs, which are located in level 2, 

level 3 contains fog nodes, and finally level 4 which contains the various sensors and actuators deployed in 

the smart greenhouses. During the simulation, the size of the topology configuration was gradually increased 

by adding more connected sensors to preview its impact on latency and network usage.  
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(a) (b) (c) (d) (e) 

 

Figure 3. Illustration of sensors used in the IoT-based greenhouse monitoring system (a) YL83 and 

nodeMCU, (b) DHT11 and nodeMCU, (c) ultrasonic sensor with nodeMCU, (d) MQ2, and  

(e) soil moisture sensor 

 

 

Table 3. Configuration details of the proposed architecture 
Parameter Cloud Proxy FCN Fog node 

CPU length (MIPS) 44,800 23,800 23,800 18,500 

RAM (MB) 40,000 6,000 6,000 4,000 
Uplink bandwidth (MB) 100 10,000 10,000 10,000 

Download bandwidth (MB) 10,000 10,000 10,000 10,000 

Level 
Rate/MIPS 

0 
0.01 

1 
0 

2 
0 

3 
0 

Busy power (Watt) 16*103 107.33 107.33 107.33 

Idle power (watt) 16*83.25 83.43 83.43 83.43 

 

 

5.2.1. Latency  

Providing real-time processing is critical for latency-sensitive smart farming applications. The main 

benefit of the proposed algorithm is that it makes the FCNs aware of the resources available in the fog layer 

before assigning any modules, ensuring they are placed appropriately. Furthermore, the proposed algorithm 

prioritizes latency-sensitive data. Figure 4 provides a comparison of the latency between the cloud, fog, and 

proposed schemes. With an increase in the number of connected sensors in the smart greenhouse, it is 

observed that the latency significantly increases in the cloud compared to the fog and the proposed scheme. 

In contrast, the delay in the traditional fog-based implementation increases in comparison to our proposed 

scheme. That is because when the number of sensors in a network in a smart greenhouse increases, only fog 

nodes dedicated to that network process data before sending it to the cloud. Thus, due to the absence of FCNs 

that manage resources in the network, the FNs are overloaded and become the bottleneck in the fog network. 

Thus, the delay increases compared to our suggestion which may have a negative impact on latency-sensitive 

smart farming applications. 

 

 

 
 

Figure 4. Comparison of latency 
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5.2.2. Network usage  

IoT sensors deployed within greenhouses transmit real-time task execution requests to a designated 

fog device. Subsequently, the assigned fog nodes diligently process and analyze the data streams received 

from the smart farming sensors, taking into consideration their sensitivity to latency as well as the availability 

of system resources. This comprehensive approach ensures efficient and timely decision-making while 

optimizing the utilization of resources, ultimately enhancing the overall performance and productivity of the 

greenhouse system. 

The simulation results presented in Figure 5 demonstrate that the proposed approach has a favorable 

impact on network usage compared to cloud and fog. Additionally, network usage increases as the number of 

connected sensors increases. The FCNs, which manage the load distribution in the fog layer based on the 

proposed algorithm, allow FNs to process the data from the associated sensors, resulting in decreased 

network usage in our proposal. Moreover, data is only sent to the cloud when nodes are overloaded or when 

the data is tolerant of delay. By optimizing the resources in the fog layer, the proposed approach meets the 

requirements of latency-sensitive applications in IoT-based intelligent farming with regards to latency and 

network usage. 

 

 

 
 

Figure 5. Comparison of network usage 

 

 

6. CONCLUSION  

Fog computing, as an extension of cloud computing to the edge of the network, offers numerous 

benefits for IoT-based smart farming applications. In this paper, we presented a module placement scheme 

for fog-based smart farming applications, which significantly reduces delays and network usage in the 

proposed fog-based architecture, as demonstrated by our simulation results. In future work, we intend to 

develop the proposed algorithm taking into account the mobility of IoT-based agricultural robots in the smart 

farming network. 
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