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 Lung sound is one indicator of abnormalities in the lungs and respiratory 

tract. Research for automatic lung sound classification has become one of 

the interests for researchers because lung disease is one of the diseases with 

the most sufferers in the world. The use of lung sounds as a source of 

information because of the ease in data acquisition and auscultation is a 

standard method in examining pulmonary function. This study simulated the 

potential use of Higuchi fractal dimension (HFD) as a feature extraction 

method for lung sound classification. HFD calculations were run on a series 

of k values to generate some HFD values as features. According to the 

simulation results, the proposed method could produce an accuracy of up to 

97.98% for five classes of lung sound data. The results also suggested that 

the shift in HFD values over the selection of a time interval k can be used for 

lung sound classification 
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1. INTRODUCTION 

Lung sounds are important pieces of information used by physicians in detecting abnormalities 

either in the lungs or respiratory tract [1]. Though various medical imaging techniques have been developed, 

lung auscultation sounds remain an effective media for diagnosing lung diseases. Various digital signal 

processing techniques have been developed to reduce subjectivity in analyzing lung sounds [2], as well as 

classification methods applied to obtain high accuracy in the classification of lung sounds [3]. 

Fractal dimension analysis is a highly reliable method for biomedical signal analysis [4]. Higuchi’s 

fractal dimension (HFD) is one of the fractal dimension measurement methods that is known to be a quite 

efficient and accurate way to measure the fractal dimension of a signal [5], [6]. HFD is widely used in the 

analysis of the biological signal such as electromyogram (EMG), and electrocardiogram (ECG). The 

classification of several classes of limb motion by EMG signals has been carried on [7], and some other 

fractal methods were combined with relevant vector machine (RVM) were used to distinguish seven classes 

of EMG data. HFD and Katz were measured on wavelet sub-band for detecting voice pathology [8]. HFD 

was also utilized to identify heart rate variability (HRV) on a cardiac patient ECG stress test [9]. HFD 

measurement depends on the value of the specified maximum time interval kmax. In previous studies, HFD 

was commonly measured at only one particular value of kmax [7]–[9]. Some researchers tried to analyze the 

HFD value in a range of kmax to obtain an optimum HFD value [10]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Kitaoka et al. [11] stated that the human airway tree system has fractal properties. The fractality of 

the human airway tree indicates that the lung sounds produced will also be fractal. Gnitecki and Moussavi 

[12] have tested the fractality of lung sounds using three fractal methods, Katz fractal dimension (KFD), 

variance fractal dimension (VFD), and Katz-Sevcik fractal dimension (KSFD). The results prove that the 

fractality of lung sounds can be used to differentiate between normal and abnormal lung sounds. In another 

study, Rizal et al. [13] used fractal dimensions at several scales for lung sound classification. In lung sounds, 

a multiscale process called coarse-grained procedure [13] is carried out, and then the fractal dimension is 

calculated as a feature. Tests were carried out on eight fractal dimensions, and the Petrosian C fractal 

dimension produced the highest accuracy. Suppose in the study, the fractal dimension is calculated on the 

multiscale processed signal; HFD can be calculated at various resolutions to make several fractal dimension 

values as in [8]. 

In this study, HFD measurement with a resolution range of kmax values for signal analysis was 

investigated. The inappropriateness of the obtained HFD value was used as the features of the signal. This 

method was proved to be an effective way as seizure EEG signal classification method [14]. For an example 

case, we used some synthetic and real measured lung sound signals. To evaluate the accuracy of the resulting 

features, multilayer perceptron (MLP) was used as the classifier for lung sound classification. In this paper, 

we used HFD value shifting produced from a range of kmax values as features for lung sound classification. 

Several HFD values from this process will hopefully generate higher accuracy compared with a single value 

HFD.  

This paper is organized as: section 2 describes the proposed method and material employed in this 

study. Section 3 describes the simulation results and discussion of the research. Section 4 concludes the 

results of this study and describes the potential future work. 

 

 

2. METHOD 

Figure 1 shows the proposed system. The input signal was normalized and the subsequent process 

was the measurement of HFD for one hundred kmax values, i.e., kmax=1, 2, 3, …, 100. The HFD values 

obtained were then used as the features of the input signal. Feature selection was performed afterwards to 

find the range of kmax values on HFD that produce the highest accuracy for lung sound classification. 

Meanwhile, for the classification process, MLP was used as a classifier. The classification result was 

compared to lung sound data label to count the classification accuracy. A detailed description is presented in 

the following subsections. 

 

 

 
 

Figure 1. Proposed method 

 

 

2.1.  Higuchi fractal dimension 

The Higuchi method (HFD) is the one-dimensional fractal measurement algorithm generally applied 

in a biomedical signal [5]. The advantages of the HFD are the high accuracy and efficient way to measure the 

fractal dimension (FD) [15]. If a signal 𝑋𝑚
𝑘  has a sample size N, it can set up a subset signal with k time 

interval with different resolutions as shown in (1). 

 

Xm
k : x(m), x(m + k), x(m + 2k), … , x (m + [

N−m

k
] k) (1) 

 

The value of m in (1) indicates the start time (m=1, 2, ..., k). Using (1), we will have a set of new signals with 

different resolution. Furthermore, the length of the curve of 𝑋𝑚
𝑘 , i.e., 𝑙𝑚(𝑘) is defined as in (2). 

 

lm(k) =
∑ |x(m+ik)−x(m+(i−1)k)|(N−1)

⌊N−m/k⌋
i=k

(⌊N−m/k⌋)k
 (2) 

 

The (⌊𝑁 − 𝑚/𝑘⌋)𝑘 denominator is a normalization factor. Based on (2), we can calculate the length of the 

curve for each interval k as described in (3). 
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L(k) = ∑ lm(k)k
m=1  (3) 

 

From the slope of the plot 𝑙𝑛(𝐿(𝑘)) against 𝑙𝑛(1/𝑘), we can obtain FD. Where 𝐿(𝑘) is the length of 

curve for each interval k. Fractal dimension were derived from the relationship 𝐿(𝑘) ∝ 𝑘−𝐷, the HFD was 

denoted as D. 

 

2.2.  Synthetic input signal 

Synthetics signal were generated to assess the HFD measurement performance. The signal had some 

specific characteristics, thus HFD performance can be observed in fractal dimension measurement on the 

signals. We used Weierstrass cosine function (WCF) [16], as expressed in (4). 

 

𝑊𝐻(𝑡) = ∑ 𝛾−𝑘𝐻 cos(2𝜋𝛾𝑘𝑡) , 0 < 𝐻 < 1, 𝛾 > 1∞
𝑘=0  (4) 

 

WCF is a continuous function but is differentiable nowhere. The fractal dimension of WCF function is  

D=2–H, as H is Haussdorf dimension [17]. With γ is an integer value, the function will be periodic with 

period=1. In this study, we used N=1,000, γ=2, H=0.1–0.9 to obtain a signal with the fractal dimensions of 

1.9, 1.7, 1.5, 1.3, and 1.1, respectively. In addition, Figure 2 shows the WCF signal with different FD value. 

Figure 2(a) shows WCF with FD=1.1, Figure 2(b) shows WCF with FD=1.5, while WCF with FD=1.9 is 

presented in Figure 2(c). WCF with higher FD value has higher fluctuation. 

 

 

   
(a) (b) (c) 

 

Figure 2. WCF signal with fractal dimension (a) FD=1.1, (b) FD=1.5, and (c) FD=1.9 

 

 

2.3.  Lung sound dataset 

The lung sound data were gathered from several online sources and had been used in our previous 

study [18], [19]. Data were obtained from the internet as in [20] and CD complimentary books [21]. The data 

consisted of five classes with 22 normal bronchial, 18 wheezes, 20 crackles, 19 pleural rubs, and 20 stridors. 

The data were recorded from 9 patients with a range of age from two weeks old to 79 years old. The wheeze 

data were taken from the patient with chronic obstructive lung disease and asthma, while crackle sounds were 

recorded from the patient with interstitial pulmonary fibrosis and cystic fibrosis [18]. Stridors were recorded 

from patient with laryngeal web and patient with viral croup and asthma. Each lung sound has a length of one 

cycle of respiration (one inspiration and one expiration) with the sample number 15,000-34,000 as the 

sampling frequency of 8,000 Hz and wave format. Lung sound data is taken from recordings on the internet 

so that the lung sound data is clean from heart sounds which are the source of noise from lung sounds. The 

process of removing heart sounds from the lungs is a separate research topic [22]. 

Normal bronchial sound is a common lung sound heard in the [23]. The wheeze sound is a lung 

sound with high pitch, continuous, musical characteristics, and has a dominant frequency in the range of  

400-600 Hz [24]. Asthma is one of lung diseases that produces wheeze sound. Asthma is caused by an 

obstruction of the airways [25]. Meanwhile, the crackle is a nonmusical, discontinuous, and short duration 

lung sound. The lung diseases that produce this sound are chronic bronchitis, asbestosis, and pneumonia [1]. 

Pleural rub or friction rub occurs as pleural friction in pleurisy diseases [1]. A high-pitch wheeze commonly 

called a stridor, occurs due to the obstruction of the central airways [2]. The five classes of data have 

different properties expected to be classified correctly by the proposed method. Examples of raw data for 

both wheezing and stridor sound are shown in Figure 3. Figure 3(a) shows wheeze sound and its frequency 

spectrum, while Figure 3(b) displays stridor sound and its frequency spectrum. Stridor has higher frequency 

component compare to wheeze as its definition explained before. 
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(a) 

 

 
(b) 

 

Figure 3. Plot of lung sound signal and its frequency spectrum (a) wheeze and (b) stridor 

 

 

3. RESULTS AND DISCUSSION 

3.1.  HFD measurement result on synthetic signal 

HFD measurement with kmax=1, 2, 3, …, 100 for WCF signal with FD=1.1–1.9 is shown in Figure 4. 

For kmax=1, HFD=0 occurred due to Xm
k = X1

1 indicating a signal 𝑥(𝑛) in itself. The zero HFD value could be 

ignored as being inaccurate. Meanwhile, in line with the increase in the value of kmax, there was a tendency 

for the HFD of WCF signal to increase [16]. The HFD value became higher than the actual FD of WCF. The 

calculation of statistical values of HFD at WCF is shown in Table 1. 

 

 

 
 

Figure 4. HFD measurement for WCF for kmax=1, 2, 3, …, 100 

 

 

Table 1. HFD (min, max, mean, SD) for each signal 
Input Signal HFD 

Min Max Mean SD 
WCF FD=1.1 1.1268 1.2062 1.1601 0.0257 
WCF FD=1.2 1.2129 1.2751 1.2367 0.0203 
WCF FD=1.3 1.3058 1.3517 1.3211 0.0156 
WCF FD=1.4 1.3944 1.4348 1.4100 0.0131 
WCF FD=1.5 1.4804 1.5230 1.5017 0.0127 
WCF FD=1.6 1.5634 1.6140 1.5935 0.0148 
WCF FD=1.7 1.6480 1.7084 1.6866 0.0173 
WCF FD=1.8 1.7238 1.8065 1.7811 0.0217 
WCF FD=1.9 1.8106 1.8999 1.8786 0.0222 
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From Table 1, it can be observed that the HFD value of WCF is quite close to the theoretical value 

for higher values of kmax. The standard deviation (SD) of HFD is quite small. It can be noted that the HFD is 

very accurate for the fractal dimension measurement of a signal. 

 

3.2.  HFD measurement result on lung sound 

Figure 5 shows some sample measurement results of HFD on five types of lung sounds. Wheeze, 

crackle, and friction rub tended to have a similar pattern. The HFD was relatively high at kmax=2, but then 

declined, and rose again. Meanwhile, the bronchial and stridor had a pattern that tended to increase from 

kmax=2. The difference of this pattern would be tested to see it is capable of being used as a differentiator 

between the data class of lung sounds. Minimum, maximum, average, and standard deviation of HFD values 

is summarized in Table 2.  

 

 

 
 

Figure 5. HFD measurement for kmax=1, 2, 3, …, 100 for typical lung sound 

 

 

Table 2. HFD for each lung sound data class 
Data class HFD 

Min Max Mean SD 
Wheeze 1.073576 1.916041 1.683621 0.228785 
Normal 1.018532 1.91493 1.644381 0.294868 
Crackle 1.022018 1.880041 1.590555 0.197504 

Friction rub 1.048141 1.851147 1.559593 0.240628 
Stridor 1.230591 1.772475 1.674746 0.108781 

 

 

Table 2 shows that stridor has the lowest standard deviation for HFD value among the lung sounds. 

Although stridor has large fluctuation in time domain since it has high frequency component above 1,000 Hz, 

the stridor only appears in inspiration phase. Stridor had lower HFD values compare to wheeze or other lung 

sound. The HFD value in normal signals tends to be in the middle of pathology lung sounds caused by 

pathology sounds having certain characteristics related to their frequency components. For example, wheeze 

has a high-frequency component, so the signal fluctuations in the frequency domain are relatively high. This 

makes the HFD wheeze value relatively high. Meanwhile, crackle has a lower average HFD value than 

normal lung sounds because crackle sounds have a rather discontinuous sound. The frequency spectrum tends 

to be at low frequencies. Low frequency can be seen as low fluctuations in the time domain. This low 

fluctuation causes a low HFD value. Figure 6 shows the lung sound from all classes with both spectrum and 

HFD values for kmax=2-100. Figure 6(a) shows a plot of the wheeze sound and its frequency spectrum along 

with the resulting characteristics of the HFD with kmax=2-100. Meanwhile, Figure 6(b) shows the signal plot, 

frequency spectrum, and features resulting from the HFD with kmax=2-100 for normal lung sound. Crackle’s 

signal plot, frequency spectrum, and HFD value is displayed in Figure 6(c). Pleural rub plot is presented in 

Figure 6(d), while Figure 6(e) display stridor, plot in time domain, frequency domain, and HFD value. As 

mention before, although the stridor has a frequency component >1,000 Hz and high fluctuations in the time 

domain, it has an HFD with a low standard deviation. This is because stridor appears only during the 

inspiratory phase. 

Wheeze and crackle have different characteristics, i.e., continuous and discontinuous, respectively. 

Larger time interval, kmax, means more samples of the signal that will be bypassed. It is going to make the 

discontinuity of the crackle not visible. In addition, the slope of the plot 𝑙𝑛(𝐿(𝑘)) against 𝑙𝑛(1/𝑘) will be 

smoother and result in greater HFD value [8]. The larger HFD values for larger kmax values have become a 
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common pattern for all lung sound classes. The HFD difference in a range of kmax is in the HFD value curve 

as in Figures 5 and 6. This curvature is influenced by the distribution of the lung sound sample signal. High 

fluctuating pulmonary sound with relatively equal amplitude as wheeze will produce a relatively large HFD 

while high-fluctuated signals with uneven amplitude such as stridor will produce relatively small HFDs. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

Figure 6. Signal, frequency spectrum, and HFD value for kmax=2-100 (a) wheeze, (b) normal lung sound,  

(c) crackle, (d) pleural rub, and (e) stridor  
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From Table 2, the HFD values were in the range of 1.0–1.9 with an average value of around 1.5–1.6. 

Using the analysis of variance (ANOVA) statistical test, we found the F-value for HFD value using  

kmax=2–100 is 2647.455. A higher F-value indicates a better performance for separating data than a lower  

F-value. The F-value is inversely related to P-value. Table 3 shows the F-value and P-value of ANOVA 

analysis for several combinations of kmax for HFD measurement. Table 3 indicates that HFD values using 

kmax=2–100 produce very high F-value and very low P-value. F-value tended to decrease when we reduce the 

number of HFD values.  

 

 

Table 3. F-value and P-value for each range of kmax using ANOVA 
kmax F-Value P-Value 

2–100 2647.455 0 
2–50 1473.032 0 
2–40 1188.647 0 
2–30 1043.025 0 
2–20 1117.155 0 
2–10 569.234 1.4E-227 
2–5 171.027 4.48E-80 

 

 

3.3.  HFD measurement for lung sound classification 

In this study, MLP was applied with the altered number of hidden neurons, i.e., 15, 30, and 45 [26]. 

Meanwhile, for validation, we used N-fold cross validation (NFCV) [27]. In this case, a three-fold CV was 

applied, so each of the data sets would consist of 6–8 data. By choosing N=3 for N-fold CV, we divide the 

data into three sets, 2 data sets are training data, and 1 data set is test data. The testing process is carried out 

three times until all data sets have become test data. Accuracy is the average of the three accuracies for each 

iteration. The advantage of this method is that it can avoid overfitting. 

To see the range of values kmax producing the highest accuracy, we evaluated it using HFD 

generated by the kmax value in a particular range. The accuracy obtained is as shown in Table 4. The highest 

accuracy achieved was 93.94% with a range of kmax from 2 to 50, then 2 to 40, and finally 2 to 30. The range 

of kmax=2–30 was considered the best due to fewer number of features used. Meanwhile, the kmax value with a 

narrower range produced the lower accuracy. As in Figure 5, the difference pattern is quite prominent in the 

range of kmax=2–30. 

Table 4 display the accuracy of lung sound classification using different number of features and 

different MLP configuration. In Table 4, the feature selection is carried out by reducing the amount kmax used 

to measure the HFD. Reducing the number of features and using the right MLP parameters are proven to 

produce higher accuracy than 100 HFD values. 

The use of different kmax values in the HFD calculation produced different HFD value. This occurred 

because the signal 𝑋𝑚
𝑘  in (1) could produce different series. Next, the calculation of the (2) and (3) would also 

be different. Even if the value of HFD produced only slight shifts, the changes in the value of HFD at a 

certain interval kmax value were quite capable of distinguishing between data classes. The improved accuracy 

achieved was high considering the same data by only using one value of HFD (kmax=40), producing a 

maximum of 66.67% accuracy. The standard criterion to choose kmax was not provided [28].  

However, some researchers tried to make some approach to choose appropriate kmax value. The 

author stated in [29] that in order to select an appropriate kmax value, HFD values were plotted against a range 

of kmax. The point where the FD plateaus was considered a saturation point, and that kmax value was chosen. 

In [29], kmax=60 was used as in [30].We choose kmax=40 for comparison because kmax=40 produce the nearest 

WCF’s HFD value with theoretical FD for FD≥1.5. Study in [4] showed that Higuchi’s algorithm provided 

most accurate FD for synthetic signal with FD≥1.5. 

The disadvantages of the proposed method were related to the number of features more than using a 

single value of kmax. However, with the four features, such as the results obtained, the resulted accuracy was 

very high away from more than the use of a single value HFD. The use of HFD for lung sound analysis is 

rarely used before. The fractal dimension often used for lung sound analysis could be KFD, VFD, and SFD 

[12]. Fractal dimension is used for the heart sound reduction at lung sound recordings [31]. Meanwhile, KFD 

and SVD combined with wavelet are used to improve the sound quality of lung and bowel sounds for the 

detection of Crackle and other abnormalities [32], [33]. HFD was rarely used for lung sounds analysis for 

calculations involving a linear regression process on a double logarithmic plot of 𝐿 (𝑘) and 𝑘 to determine 

the value of HFD. KFD, SFD, and SVD can be directly calculated from a series of signals. 

Table 5 presents accuracy of lung sound classification using MLP and seven fractal dimensions. The 

fractal dimensions are KFD, VFD, and SVD as used in [12] and box-counting fractal dimension (BCFD), 

HFD (kmax=40), Petrosian C and Petrosian D as used in [4]. The result shows that the accuracy is about 
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62.63%-72.73%. Single fractal dimension cannot produce sufficient accuracy for lung sound classification. 

Some improvement must be done on those FD measurements if we want to increase the accuracy, for 

example, combine with other methods such as wavelet as in [33]. 

The same approach was used to detect Alzheimer’s disease (AD) through the EEG signal [34]. The 

results showed that in patients with AD, HFD values were calculated in the range of kmax=2–128, tending to 

be lower than normal and ordinary aging. HFD proved to be sensitive to changes in the nervous system due 

to aging and AD [31]. Although the proposed method almost the same with study in [26], there some 

differences in this paper. In the study of [34], 127 HFD values were needed as features for EEG signal. 

Meanwhile, in our study, the result showed that HFD values with kmax=2–30 produced higher accuracy than 

HFD values with kmax=2–100.  

In the next stage, we test which features play the most role using feature subset selection (FSS) [35]. 

The FSS method chosen was wrapper subset selection (WSS), which obtained 4 HFD characteristics  

(kmax=5, 7, 11, and 99), resulting in the highest accuracy of 97.98%, better than the accuracy shown in  

Table 4. This proves that the proposed method is capable of producing high enough accuracy with the right 

selection of features. Another study combined the time series method with the fractal method to analyze 

several breath sounds [36], [37]. The use of several different features will directly add to the computational 

complexity. Meanwhile, in this study, HFD was calculated repeatedly with different resolutions.  

In this study, we did not discuss the effect of the data length on HFD value as done in [38]. The data 

used in this study had 15,000–34,000 samples. The focus of this study was not measuring the accuracy of the 

HFD method for fractal dimension measurement. HFD values shifting due to changes in the value of kmax 

were used as features of lung sound signal. The results showed that the selection of an appropriate range of 

kmax value could produce a very high accuracy.  

In this study, the data set used was limited, making it impossible to separate training data, testing 

data, and other data for verification. But in this study, we used N-fold CV, so the performance test was 

carried out three times to prove that the performance of the proposed method was good enough. In another 

study, a larger data set was used with fairly high accuracy in the case of EEG signals. Using larger data sets 

with better testing will challenge future research. This proposed method is expected to be an option for other 

biomedical signal processing methods. 

 

 

Table 4. Accuracy of lung sounds classification using MLP 

kmax value 
Accuracy (%) 

Number of hidden neurons 
15 30 45 

2–100 90.91 91.92 91.92 
2–50 93.94 92.93 93.94 
2–40 92.93 93.94 93.94 
2–30 91.92 93.94 93.94 
2–20 91.92 89.9 91.92 
2–10 89.9 86.87 87.88 
2–5 78.79 73.74 77.78 

 

 

Table 5. Accuracy of lung sound classification using MLP and fractal dimension 
Fractal dimension Accuracy (%) 

VFD 72.73 
SFD 70.71 

BCFD 68.69 
KFD 66.67 
HFD 66.67 

Petrosian C 62.63 
Petrosian D 62.63 

 

 

4. CONCLUSION 

This study describes the measurement of HFD with various resolutions for feature extraction in the 

classification of lung sounds. The selection of different kmax values on HFD measurement produces some 

different fractal dimension values. The HFD values with this particular a range of kmax can be utilized as the 

features for the classification of lung sounds. The results showed the highest accuracy of 97.98% achieved 

for HFD with kmax equals to 5, 7, 11, and 99. Further research is required to see the effect of the data length 

and shifting of the data on the accuracy. In addition, exploration of the use of this method for other 

biomedical signals is interesting to do or exploration using more advanced classification methods. 
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