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 As network traffic increases and new intrusions occur, anomaly detection 

solutions based on machine learning are necessary to detect previously 

unknown intrusion patterns. Most of the developed models require a labelled 

dataset, which can be challenging owing to a shortage of publicly available 

datasets. These datasets are often too small to effectively train machine 

learning models, which further motivates the use of real unlabeled traffic. By 

using real traffic, it is possible to more accurately simulate the types of 

anomalies that might occur in a real-world network and improve the 

performance of the detection model. We present a method able to predict 

and categorize anomalies without the aid of a labelled dataset, demonstrating 

the model’s usability while also gathering a dataset from real noisy network 

traffic. The proposed long short-term memory (LTSM) based intrusion 

detection system was tested in a real-world setting of an antivirus company 

and was successful in detecting various intrusions using 5-minute 

windowing over both the predicted and real update curves thereby 

demonstrating its usefulness. Our contribution was the development of a 

robust model generally applicable to any hypertext transfer protocol (HTTP) 

traffic with almost real-time anomaly detection, while also outperforming 

earlier studies in terms of prediction accuracy. 
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1. INTRODUCTION 

The volume of dangerous network traffic is continuously increasing. There is a significant demand 

for autonomous data processing and intrusion detection systems based on machine-learning approaches that 

can detect threats before they become visible. Because a high level of skill is required to comprehend each 

log entry from a web server request, and even more so to understand sequences of operations such as 

continuous web requests, there is a solid push to design systems that can identify both known and unknown 

intrusions. 

With an increasing amount of network traffic, the number of anomalies caused by various network 

misconfigurations continue to grow, resulting in more successful network attacks. Network anomalies must 

be detected and diagnosed to ensure the confidentiality, availability, and integrity of computer systems; as 

such, intrusions drain resources and bandwidth, rendering network services unavailable. Crucial computer 

systems are constantly under attack by numerous attackers on the internet, and intrusion detection systems 

(IDSs) play an essential role in defending them. Signature-based approaches are used to address attacks by 

extracting key characteristics and creating a unique signature for an attack. These approaches are highly 

https://creativecommons.org/licenses/by-sa/4.0/
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effective in combating previously captured attacks. However, they lack the ability to detect new intrusions or 

zero-day attacks and are not suitable for real-time anomaly detection across large amounts of data [1], [2].  

Network intrusion detection systems (NIDSs) are security systems that monitor malicious activity in 

network traffic and generate alerts when any suspicious activity is detected to further investigate the cause of 

the alert and take action. Owing to advancements in technology, traditional approaches to network anomaly 

detection are becoming ineffective as network attacks become more sophisticated [3], [4]. Network anomaly 

detection is predicated on locating data that do not follow regular behavioural patterns. Despite the 

availability of numerous methodologies, numerous research hurdles remain. There is no universally 

applicable anomaly detection approach, as data contains noise, which is an abnormality in and of itself, 

making it difficult to distinguish. Because intruders are aware of current techniques, there is a dearth of 

publicly available labelled datasets and the need for more complex and newer techniques.  

Various anomaly detection approaches have been developed, but most have limitations when used in 

real-world situations. This study aims to demonstrate the feasibility of utilising machine learning to detect 

anomalies and classify metadata in selected types of application servers that offer modular updates to 

consumers worldwide, with a focus on automatisation and usability in a real-world setting. Our idea was not 

to present a new deep learning method; instead, we wanted to show how to get close to real-time anomaly 

detection from unlabelled datasets comprised entirely of hypertext transfer protocol (HTTP) logs. 

 

 

2. RELATED WORK 

Over the past few years, various anomaly detection methods that incorporate several fields of 

machine learning have been proposed. Bayesian networks (BNs) have been widely used for grouping 

problems. Detecting anomalies using BNs has distinct and complementary strengths in spotting anomalies 

[5], [6]. Nie et al. [7] investigated the problem of network traffic modelling. To track flow trends, they 

proposed using a BN. To evaluate the performance of their model, they collected traffic datasets from 

Abilene and GÉANT networks. Compared to the three leading methodologies, their solutions regularly 

surpass them in terms of estimating inaccuracy.  

Dynamic BNs were extended by Pauwels and Calders [8] to produce a novel model that allows a 

better description of the structure and attributes of a log file. To address the drawbacks of regular dynamic 

BNs, several aspects have been added. For example, functional dependencies were added to provide a better 

description of the log file structure. They then detailed their approach to generating models that reflected the 

multidimensional and sequential nature of the log data. Their method performed well in a variety of contexts 

with varying levels of anomalies in both the training and test datasets, with an area under the ROC curve 

(AUC) of 0.84 on the BPIC dataset.  

A feed-forward neural network was introduced by Poojitha et al. [9], [10] to detect anomalies using 

10% of the KDD Cup 99 data encompassing both traffic during normal and abnormal behaviour, trained by a 

backpropagation method. The test results showed that the proposed approach is effective at accurately 

(94.93% accuracy) detecting various attacks with a low percentage of false positives and negatives. The 

proposed method detects normal traffic, disk operating system (DOS), and probe attacks well but fails to 

detect R2L and U2R attacks owing to the very large dimensions of the input data.  

Anomaly detection has also been performed with autoencoders (AEs), although this time to identify 

outliers in the first place. In recent years, AEs have become increasingly popular. AEs have been used in 

several investigations to detect anomalies. The anomaly detection performance of AE, denoising autoencoder 

(DAE), principal component analysis (PCA), and kernel PCA approaches were examined by Sakurada and 

Yairi [11]. A hybrid method with kernel density estimation was utilised in a study by Cao et al. [12], and 

successful results were produced on the KDD dataset.  

Recurrent neural networks (RNN), such as long short-term memory (LSTM) or gated recurrent unit 

(GRU), have been widely utilised in traffic prediction, with excellent results when traffic varies during the 

week or day [13]–[15], and are thus suitable for network traffic predictions. Lu and Yang [16] used wavelet 

transformations and an LSTM network to forecast network traffic originating in a domain name system 

(DNS) server. The purpose was to estimate the mean rate of arriving packets per minute on the following day 

using the number of arrived packets per second. They built four prediction models: least squares support 

vector machine (LSSVM), backpropagation (BP) neural network, Linan network, and LSTM network 

utilising the db3 wavelet, with the proposed model based on wavelet transformation and LSTM network to 

achieve the best results.  

Using an LSTM network, Trinh et al. [17] investigated the efficiency of RNN on mobile traffic data. 

The LSTM network was able to capture the temporal correlation of traffic even for remote timeslots, which 

made it particularly helpful in real-time applications. Zhuo et al. [18] used three network traffic datasets to 

test their LSTM using a deep neural network (DNN) prediction model. The first dataset includes network 
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traffic history data from 11 European cities provided by network service providers. The second dataset was 

based on web traffic history data from the United Kingdom Education and Research Networking Association 

(UKERNA) academic research website. The third dataset is based on network traffic statistics collected by 

the Beijing University of Posts and Telecommunications, which is the backbone node of China’s education 

network. Their research revealed that LSTM can be used effectively as a timing sequence forecast model and 

that adding auto-correlation features improved accuracy when working with large granularity datasets.  

Naseer et al. [19] used multiple DNN architectures such as convolutional neural networks, AEs, and 

RNN to propose, implement, and train intrusion detection models. These deep models were trained on the 

NSLKDD training dataset and tested on NSLKDD’s NSLKDDTest+ and NSLKDDTest21 test datasets. The 

authors implemented traditional machine learning intrusion detection system models with a variety of  

well-known classification approaches, including extreme learning machine (ELM), k-nearest neighbors 

algorithm (k-NN), decision tree (DT), random forest (RF), support vector machine (SVM) and naive Bayes 

(NB). The RoC curve, area under the RoC, precision-recall curve, mean average (mAP) precision and 

classification accuracy of both DNNs and conventional machine learning models were tested using  

well-known classification measures. On the test dataset, both deep convolutional neural network (CNN) and 

LSTM models performed well, with an accuracy of 85 and 89%, respectively.  

Malaiya et al. [20] conducted an empirical evaluation of deep learning to investigate if it can be 

used to discover network anomalies. The fully connected network (FCN), variational autoEncoder (VAE), 

and LSTM with sequence to sequence (LSTM Seq2Seq) structures are used to create a collection of deep 

learning models. The authors used publicly available traffic data sets from NSLKDD and Kyoto-Honeypot to 

examine the models. Their experimental results are noteworthy, as the model based on the LSTM Seq2Seq 

structure performed well on both traffic data sets, with 99% binary classification accuracy.  

Kim and Co [21] proved the usefulness of LSTM and CNNs for the task of web traffic anomaly 

detection by comparing their suggested model to various machine learning methods and achieving superior 

results. The authors presented a C-LSTM architecture, which was found using parametric tests, model 

comparison experiments, and data analysis. They employed the C-LSTM to extract patterns from web traffic 

data that included spatial and temporal information. The characteristics of normal and abnormal data 

categorized by the C-LSTM were revealed by a confusion matrix and t-SNE analysis. The proposed C-LSTM 

model classifies and extracts characteristics that could not be extracted using traditional machine learning 

approaches. Their approach outperforms other cutting-edge machine learning techniques on Yahoo’s  

well-known Webscope S5 dataset, reaching an overall accuracy of 98.6% and recall of 89.7% on the test 

dataset. 

 

 

3. DATASET 

This study was conducted on a dataset acquired from an antivirus company offering anti-virus and 

firewall software. The company’s application servers provide virus signatures and software module updates 

to consumers worldwide. Client software downloads these updates at a time set by the client. Consequently, 

the resource use of these servers varies dramatically over time. While some usage patterns are predictable, 

such as recently issued virus signature updates, the usual release patterns of various client software modules, 

day/night cycles across different time zones, and less traffic on vacations and weekends, others can be sudden 

and difficult to predict.  

These updates are tracked by the Zabbix monitoring system and NGINX logs client connections 

requesting updates. Table 1 lists the currently logged attributes. A dataset containing NGINX logs from 

numerous update servers in the same hosting area was gathered for this experiment. Thousands of requests 

are generated each minute and millions each day from single server traffic, creating approximately 50 GB of 

logs per day. Due to the voluminosity of the data, logs were grouped by minutes and aggregated according to 

the timestamp when the request was submitted, as shown in Table 2.  

This dataset was used to identify potential anomalies, such as a specific anomaly linked to other 

issues such as client misconfiguration or a rapid connection peak, which could lead to a problem and help us 

address it early in the process. It is worth noting that the data were noisy and already contained anomalies, 

which we could not extract because it would require a long and complex expert examination, which would be 

nearly impossible with such a vast amount of data. We attempted to address this problem by collecting 

additional data such that anomalies would only account for a small percentage of the total data, and the 

remainder would be normal, desirable traffic. The timestamp was a critical feature to include in the dataset 

because collected logs alter their behaviour over days and weeks as clients download less on weekends and at 

different times during the day. This is why it was split into many features for the model to be able to learn 

these cycles. 
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Table 1. Logged attributes 
Attribute Description 

remote addr client IP address  
remote user authentication  

http x eset updateid license key  

time local local time in the Common Log Format  
http host HTTP server host  

request method HTTP request method  

uri path to the update being requested  
server protocol server protocol version  

status response status  

body bytes sent request body length  
request length request length including request line, header, and request body  

request time request processing time in seconds with a millisecond’s resolution  

http user agent identification of the client originating the request  

 

 

Table 2. Logs grouped by time of origin by minutes 
Server Time local Count Body bytes sent Avg body bytes sent Request length Avg request length 

1 23/Aug/2020:00:00:00 37607 1388254369 36914 23273524 618 
1 23/Aug/2020:00:01:00 34044 1159650997 34063 21327793 626 
1 23/Aug/2020:00:02:00 34578 1570963146 45432 22320593 645 
1 23/Aug/2020:00:03:00 35372 1302698163 36828 22967956 649 
1 23/Aug/2020:00:04:00 33731 1345533685 39890 21899394 649 

 

 

The logs in the dataset ranged from November to February and were collected from numerous 

servers in the same area with similar update curves and attributes. We chose to use data from servers located 

in Bratislava and Vienna; a total of five servers. The server is identified by the number above the rows 

(number one in the sample shown in the Table 3). Each row has columns with values from all five servers, as 

illustrated in Table 3, with only the first server’s data presented. Multiple server lines were concatenated 

based on the timestamp, resulting in a single line containing data from all parsed servers at the same time 

(each row represents one timestamp with 40 attributes-8 for each server, as seen in Table 3). 

The “count” feature was our target for the anticipated output because we wanted to predict future 

request count. We were able to forecast future values by shifting the target feature value back in time, 

according to the chosen prediction window. The data were split at a 90:10 ratio. We aimed for a scaler that 

could scale the data according to our user-defined parameters because the data from our update servers 

reached varying maximum and minimum values over time. As a result, we avoided employing library scalers 

that scale the data based on the minimum and maximum values in the current vector. The own scaler was 

necessary to scale the data and inverse-scale the data using the same values, resulting in the same scaled 

values at each time. 

 

 

Table 3. Input dataset sample showing data from first chosen server 
1        

count body bytes sent avg body bytes sent request length avg request length day hour minute 

37607 1388254369 36914 23273524 618 6 0 0 
34044 1159650997 34063 21327793 626 6 0 1 

34578 1570963146 45432 22320593 645 6 0 2 

35372 1302698163 36828 22967956 649 6 0 3 
33731 1345533685 39890 21899394 649 6 0 4 

 

 

4. NETWORK ARCHITECTURE 

Because the update curve is based on previous values, an RNN was chosen to forecast future update 

server requests. It was possible to determine whether there was a problem with the updates by comparing the 

actual values to the predicted values using the predicted update curve. The network architecture was chosen 

according to related work and according to the best prediction results in our experiments comparing GRU 

and LSTM with various configurations, as shown in Table 4. 

An LSTM neural network model was chosen based on processed and aggregated update server logs. 

It can forecast the future update curve based on a variable-length input. This model can learn and predict 

common release patterns for various client software modules in the future. 

The model was trained by early stopping to avoid overfitting. Each batch consisted of 1,440 

timestamps, representing one day. In our situation, the historical traffic patterns throughout workdays, 
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weekends, and holidays can be tracked by LSTM. To lessen the influence of unusual traffic on the learning 

curve, we acquired a large dataset of 489 600 records collected over three months. From the total amount of 

data provided to the network, the anomaly data made up a very minor amount. Naturally, under the 

professional assumption that the large majority of data is regular traffic free of anomalies. 

For the final implementation, we chose the network that performed the best in our experiments in 

Table 4. It consists of a 512-unit LSTM layer and a dense layer that outputs the target value-request count. 

The dense layer is used to transform the output of the LSTM layer into a form that can be used to make 

predictions. It is connected to all units in the preceding and subsequent layers, allowing it to learn a rich 

representation of the data and make more accurate predictions. The rectified linear unit (ReLU) activation 

function is used to introduce non-linearity into the network, allowing it to learn more complex patterns in the 

data. The mean squared error (MSE) loss function and RMSprop optimizer are used to train the model, while 

early stopping is used to prevent overfitting. 

The train and validation split for the network was 90:10. The MinMaxScaler was used to scale the 

data, as it is non-distorting meaning it preserves the shape of the original distribution. We trained the model 

on 20 epochs each consisting of 100 steps. The model’s architecture can be seen in Figures 1 and 2. 

 

 

Table 4. RNN comparison (average loss from 5 runs) 
Type Units Optimizer Activation Loss on the train set Loss on the test set 
GRU 512 RMSprop sigmoid 0.0040 0.0041 

LSTM 512 RMSprop sigmoid 0.0039 0.0039 
GRU 512 Adam sigmoid 0.0041 0.0042 

LSTM 512 Adam sigmoid 0.0042 0.0043 
GRU 512 RMSprop ReLU 0.0046 0.0047 

LSTM 512 RMSprop ReLU 0.0038 0.0038 
LSTM 256 RMSprop ReLU 0.0054 0.0054 
LSTM 1024 RMSprop ReLU 0.0295 0.0295 

 

 

 
 

Figure 1. Model’s architecture 

 

 

 
 

Figure 2. Model’s description 

 

 

The update curve prediction trained on one week of data from five servers achieved an MSE loss of 

0.00399 on the training set and an MSE loss of 0.0040 on the test set, but it did not represent the peaks 

correctly enough, as shown in Figure 3. The prediction trained on two weeks of data achieved an MSE loss of 

0.0015 on the training set and the same loss on the test set; however, it still did not represent the peaks 
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correctly enough, despite being better than using 1-week data. For the final training, we used 3 months data 

and the model’s performance can be seen in Figure 4. From this data, the model was able to deduce update 

patterns. 

 

 

 
 

Figure 3. Prediction on 1-week train data 

 

 

 
 

Figure 4. Prediction on train data on three months data 

 

 

5. CLASSIFICATION 

For test data, the model obtained an MSE loss of 0.0021 with a mean absolute error (MAE) of 

0.0305 using data representing 489 600 records collected over three months. Figure 4 depicts the prediction 

on a sample of 10,000 training records, whereas Figure 5 depicts the prediction on a sample of 10,000 test 

records. Although the loss was higher after two weeks of training, the model was still able to predict the 

update peaks, which was critical for our future anomaly classification. 

 

 

 
 

Figure 5. Prediction on test data on three months data 
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The rules for distinguishing between the anticipated update curve and real traffic were developed 

based on the analysis of historical data and network behavior. The system was designed to detect anomalies 

such as sudden spikes or drops in network activity, as well as unusual patterns in traffic that deviated 

significantly from the expected update curve. By detecting these anomalies, the system could alert network 

administrators to potential issues and allow them to take corrective actions before they impacted network 

performance or caused downtime. This capability of the system ensured smooth network operations and 

reduced the risk of business interruptions. 

− Missed update: the anticipated load, which typically lasts several hours, does not occur.  

− Unusually large update: the update was not served within an hour because the load did not sink. Clients 

may not have received everything yet. The load persisted for several hours.  

− Unexpected traffic: clients began downloading without us expecting it, indicating a higher load. Someone 

may have released an additional update, or it may be New Year’s Day or the day after the holidays.  

− Degraded performance: the amount of traffic is substantially lower than expected. 

The actual and predicted update curves were both windowed using a 5-minute window for 

classification, and the trends of both curves were observed. Unexpected traffic was defined as an increasing 

trend in the actual update curve but a decreasing trend in the prediction. It was classified as a missed update 

if the actual update curve had a descending trend but the prediction showed an ascending trend. The 

remaining two groups were determined using a threshold based on the window’s maximum value if the 

trends match. A degraded performance occurs when the maximum value of the actual curve is less than the 

maximum value of the predicted curve by a value greater than or equal to the threshold. An update is 

classified as an unusually large update if the maximum value of the actual curve exceeds the predicted 

curve’s maximum value by a value greater than or equal to the threshold.  

The actual and predicted curves for one day are depicted in detail in Figure 6. At the peak, where the 

selected time point is located, the system generates three notifications. The curve was initially classified as an 

unexpected update because the actual curve is rising, whereas the predicted curve is not. Then, because the 

actual update values achieved larger numbers of requests (“count”), it will be classified as unexpected traffic, 

and it will generate a missed update classification because the actual traffic is falling but the prediction curve 

is growing. 

 

 

 
 

Figure 6. Real vs. one day ahead predicted traffic 

 

 

We can alter these two variables when classifying in real-time and generating alerts. Either the 

classification window or threshold at which we decide whether to generate an alert. The classifier generates a 

large number of alerts when employing a window of 5 min, which provides a good real-time reaction time 

and a threshold of 20,000, as shown in Table 5. When we increase the threshold value to 30,000, we generate 

all the alerts that we can see with our eyes from Figure 6. Table 6 lists these alerts. Increasing the threshold 

further caused us to lose information about the first delayed update; therefore, we settled on a threshold of 

30,000. 
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Table 5. Alerts generated for Figure 6 
Time point (minutes) Alert 

20-25 missed update 
25-30 missed update 
30-35 degraded performance 
35-40 degraded performance 
40-45 degraded performance 
45-50 degraded performance 
50-55 degraded performance 
55-60 missed update 
90-95 unusually large update 
95-100 unusually large update 

100-105 unusually large update 
105-110 missed update 
110-115 unusually large update 
115-120 unusually large update 
335-340 missed update 
345-350 missed update 
640-645 unusually large update 
645-650 unusually large update 
650-655 unusually large update 
655-660 missed update 
660-665 unexpected traffic 
665-670 unusually large update 
670-675 missed update 
675-680 missed update 
680-685 unusually large update 
685-690 unusually large update 
690-695 unusually large update 
695-700 missed update 
700-705 unusually large update 

 

Time point (minutes) Alert 
705-710 degraded performance 
710-715 degraded performance 
715-720 degraded performance 
720-725 degraded performance 
725-730 unexpected traffic 
730-735 unexpected traffic 
735-740 unexpected traffic 
820-825 missed update 
825-830 missed update 
830-835 unexpected traffic 
840-845 unusually large update 
855-860 unusually large update 
860-865 unusually large update 
865-870 unexpected traffic 
870-875 unusually large update 
875-880 unusually large update 
880-885 unexpected traffic 
885-890 unusually large update 
890-895 unusually large update 
895-900 unusually large update 

1000-1005 unexpected traffic 
1005-1010 missed update 
1010-1015 missed update 
1050-1055 unusually large update 
1065-1070 degraded performance 
1070-1075 unusually large update 
1275-1280 unusually large update 
1280-1285 unusually large update 

 
 

 

 

Table 6. Alerts generated for Figure 6 using a threshold of 30,000 
Time point (minutes) Alert 

20-25 missed update 
25-30 missed update 
30-35 degraded performance 
35-40 degraded performance 
40-45 degraded performance 
45-50 degraded performance 
50-55 degraded performance 
55-60 missed update 

115-120 unusually large update 
640-645 unusually large update 
645-650 unusually large update 
650-655 unusually large update 
655-660 missed update 
660-665 unexpected traffic 
665-670 unusually large update 
670-675 missed update 
675-680 missed update 
680-685 unusually large update 
685-690 unusually large update 
690-695 unusually large update 
695-700 missed update 
705-710 degraded performance 

 

Time point (minutes) Alert 
710-715 degraded performance 
715-720 degraded performance 
720-725 degraded performance 
725-730 unexpected traffic 
730-735 unexpected traffic 
820-825 missed update 
825-830 missed update 
830-835 unexpected traffic 
840-845 unusually large update 
855-860 unusually large update 
860-865 unusually large update 
865-870 unexpected traffic 
870-875 unusually large update 
875-880 unusually large update 
880-885 unexpected traffic 
885-890 unusually large update 
890-895 unusually large update 

1000-1005 unexpected traffic 
1005-1010 missed update 
1010-1015 missed update 
1065-1070 degraded performance 

 
 

 

 

6. RESULTS AND DISCUSSION 

In the first stage, various regression models were tested to determine the best-performing model in 

predicting the network traffic curve. The selected model was then used as a component in the second stage, 

which focused on classifying anomalies in the network based on the predicted update curve. This two-stage 

assessment approach ensured that the developed system could accurately predict and classify network traffic 

anomalies. 

 

6.1.  Prediction evaluation 

The first element of our proposed methodology is an LSTM neural network, which uses aggregated 

HTTP log data as input to solve a regression problem, in our case, predict the traffic load in the future so we 
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can compare it with real data curves in the future and classify occurring anomalies. It is very challenging to 

determine how accurate the model must be in order to assist us in finding the anomalies we seek. Because of 

this, we concentrated on comparing the actual curve to the predicted curve to determine how effectively the 

model can identify anomalies and whether it can classify them accurately. You can see a comparison of the 

model’s prediction accuracy with other studies in the section 7 (discussion). Both the prediction and 

classification results are described in Table 5. 

 

6.2.  Expert evaluation 

The second component of the system is a real-time windowing classifier that works with both the 

real traffic and the prediction curve of the regression model. We did not have a labelled dataset; therefore, we 

could not use this method to determine the correctness of the system. We relied on expert analysis against 

which the model alerts were matched. The following compares the ESET expert Ing. Matej Březina, who 

works in the Update Systems Department of ESET Internal Systems, and our proposed approach. 

The expert stated that there were missed updates on February 24th, ranging from midnight to 10 am. 

As seen in Figure 7, the model was able to predict the updates, so we see two red peaks between time points 

0 and 400, marked by the yellow rectangle. The next update occurred at 10 am, which corresponds to time 

point 600 in our sequence. According to the expert, the model anticipated an update at time point 1,060, 

which is too late, possibly because of the large volume of data without automatic update release (the updates 

are currently not released automatically, so the delay in updates is not an issue and the model is therefore not 

as accurate as it could be with automatic updates). The update took place at time point 1,000, as is typical. 

According to the expert, the rest of the sequence was normal as it did not cause any issues. 

 

 

 
 

Figure 7. Real vs. one day ahead predicted traffic from February 24th 

 

 

The classifier alerts, as shown in Table 7, correspond to the expert analysis and are thus considered 

correct. Because the classifier is designed to create alerts in real-time, it not only generates missed update 

alerts but also degraded performance updates when the curve is no longer rising or falling, indicating that the 

performance is degraded. The classifier again issued alerts at the time points referred to by the expert, as 

shown in Table 8. These categories correspond to the established threshold and trend guidelines. The 

classifier sent similar notifications for both missed updates: a missed update notice followed by a degraded 

performance alert, indicating that the update did not occur. The classifier detected more “missed updates” in 

both cases as the update curve began to rise again, but real traffic did not increase.  

These alarms may be avoided by smoothing both the anticipated and actual update curves, such as 

with a rolling mean; however, this would reduce our accuracy, which is undesirable. It is preferable to send 

an alert as soon as a problem arises, and a smooth curve would cost us valuable time. The same is true for 

unexpected traffic, which occurs when the actual traffic increases, despite the prediction trend.  

The server was flapping between 9 and 11 a.m. on February 26th, 2020, as shown in Figure 8, near 

the 600 time point in dark gray marked by the rectangle. Because certain server logs were missing due to 

external difficulties, the model input comprised four days of data to achieve a four-day-ahead prediction. The 

model was able to anticipate how typical traffic would look, which corresponds to the light gray line if the 

server was not flapping, as seen in red around the 600 time point. 
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Table 7. Alerts generated for the first update expected after midnight 
Time point (minutes) Alert 

35-40 missed update 
40-45 degraded performance 
45-50 degraded performance 
50-55 degraded performance 
55-60 missed update 
60-65 degraded performance 
65-70 unexpected traffic 
70-75 degraded performance 
75-80 degraded performance 
80-85 degraded performance 
85-90 degraded performance 

 

 

Table 8. Alerts generated for the second update expected around 5 a.m 
Time point (minutes) Alert 

330-335 missed update 
335-340 degraded performance 
340-345 degraded performance 
345-350 missed update 
350-355 degraded performance 
355-360 degraded performance 
360-365 degraded performance 
365-370 degraded performance 
370-375 degraded performance 
375-380 unexpected traffic 
380-385 degraded performance 
385-390 degraded performance 

 

 

 
 

Figure 8. Real vs. 4 days ahead predicted traffic from February 26th 

 

 

7. DISCUSSION 

The first component of the system is an LSTM neural network that solves a regression problem with 

extremely particular data as input. As a result, there have not been many studies for comparison. The 

majority of the studies focused on network traffic prediction using the GEANT backbone network dataset, 

which includes traffic matrices that are different from our input data because they contain universal traffic 

data, and our update server data is not only very specific, but we only use features from HTTP logs. The 

prediction MSE for an LSTM network employing traffic matrices was approximately 0.042 [22], whereas our 

model attained an MSE of 0.0025, which is not comparable. Consequently, the following comparison is 

based on articles that deal with similar issues and use a similar, not identical, dataset, in our instance, network 

data. 

Network packets between two virtual machines were collected using Wireshark containing HTTP, 

TCP, and ICMP requests from their local network to compare the performance of RNNs in this area, 

according to Ramakrishnan and Soni [23]. The results of comparing the planned system request count 
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prediction with their packet count forecasts are listed in Table 9. Both our models performed slightly better, 

although the results were similar. 

 

 

Table 9. Comparison with Ramakrishnan and Soni [23]. We switched our proposed neural network using 

LSTM to GRU for this comparison 
Model GRU LSTM 

Comparison MSE 0.0030 0.0028 
MSE of our proposed system 0.0028 0.0025 

 

 

Different LSTM models for network traffic prediction have been compared by Nihale et al. [24]. 

RJ Hyndman compared six different time series in the paper. Data were captured every 5 min, hour, and day 

in the gathered time series. The daily findings were compared with the daily results from the publications, 

and the results are shown in Table 10. The better results of our proposed model can be explained by 

combining traffic from multiple servers in the same region, resulting in better forecasts as the curves are 

similar. 

 

 

Table 10. Comparison with various models mentioned in the paper by Nihale et al. [24] using normalized 

root mean square error (NRMSE) 

Model 

Autoregressive integrated 

moving average 

(ARIMA)+RNN 

Vanilla 

LSTM 

(VLSTM) 

Delta LSTM 

(DLSTM) 

Cluster 

LSTM 

(CLSTM) 

Clusted Delta 

LSTM 

(CDLSTM) 

Proposed 
system 
LSTM 

NRMSE 0.115 0.120 0.114 0.112 0.109 0.042 

 

 

The same dataset previously mentioned by RJ Hyndman was used in the study by Oliveira et al. [25] 

to compare multilayer perceptron using backpropagation (MLP-BP) as the training algorithm, multilayer 

perceptron with resilient backpropagation (MLP-RP), RNN, and deep learning stacked autoencoder (SAE). 

These models are compared with the proposed model in Table 11. These improved results can be explained 

by the unique use of our model. As we could not find any similar-sized NGINX logs dataset to compare with, 

we compared our model’s performance on the web server access logs dataset containing 3.3 GB of web 

server logs from the Iranian shopping website zanbil.ir. A sample log can be seen in Figure 9.  

The shopping dataset did not contain all attributes we logged in our dataset and we, therefore, had to 

retrain our model so it only took the attributes present in the shopping dataset into account. This meant 

removing the body bytes sent attribute and also the server number as the target dataset only contained logs 

from one server and we used data gathered from 5 servers in the same region. After parsing and aggregating 

the shopping logs, the dataset consisted of 6,754 rows, whereas our dataset from one server consisted of  

97 920 rows. We have extracted a random sample of the same length from our dataset and trained our model 

on both the ESET and shopping datasets. The retrained model achieved an MSE of 0.0225 on the ESET 

sample test set and an MSE of 0.035 on the shopping dataset test set. 

The train performance of our model on the shopping dataset can be observed in Figure 10. By 

looking at the figure, we can see the model predicting the traffic curve very well and it is also trying to model 

the peaks and trying to smooth out some possible anomalies. For the model to be more precise, it needs more 

data for training. Still, this proves the usability of our model for predicting traffic from any web server log 

source.  

 

 

Table 11. Comparison with various models mentioned in the paper by Oliveira et al. [25] 
Model MLP-BP MLP-RP RNN SAE Proposed system LSTM 

NRMSE 0.200 0.202 0.197 0.336 0.042 

 

 

 
 

Figure 9. Web server access logs Kaggle dataset sample 
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Figure 10. Model train performance on the web server access logs dataset 

 

 

The test performance of our model on the shopping dataset can be seen in Figure 11. As we can see, 

the model learned the traffic peak behavior but was not able to model the peaks clearly. We observed this 

exact behavior when we trained the model on our two-week data sample and saw that the performance 

improved with more data. On three months of data, the model was able to predict the peaks, which made it 

possible to use the model for our anomaly detection. With the shopping data, we only had around 7% of the 

data we trained our model on. Unfortunately, all publicly available datasets are small and this was the largest 

we were able to find at the time of writing this article. As our model is trained on real traffic and not just 

filtered normal traffic without anomalies, we need millions of requests to be able to lower the importance of 

anomalies in the training set so we can later detect them in our test set. We still think that this proves the 

usefulness of our approach, it just needs a longer period of data to be able to model the peaks more precisely. 

 

 

 
 

Figure 11. Model test performance on the web server access logs dataset 

 

 

8. CONCLUSION 

We proposed a method for detecting and classifying anomalies in HTTP logs that do not require 

extensive expert analysis for removing anomalies from real-time data or data labelling, which requires expert 

domain and system knowledge. Numerous studies claim to have achieved successful prediction and 

classification outcomes, but they frequently only did so on a single dataset and are not universally applicable 

to other datasets. We present a methodology applicable to any dataset consisting of HTTP logs. We examined 

the model in an actual network anomaly setting where we presented the value of our work. We were able to 

predict and categorize anomalies without the aid of a labelled dataset, demonstrating the model’s usability 

while also gathering a substantial dataset from noisy network traffic. The proposed LSTM-based intrusion 

detection system was tested in a real-world setting and was successful in detecting various intrusions while in 

use, thereby demonstrating its usefulness. We divided anomalies into four categories using 5-minute 

windowing over both the predicted and real update curves: unexpected traffic (the load was high and we did 
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not expect an update), unusually large update (we issued an update and the load was higher than usual), 

missed update (the load was low but we did expect an update), and degraded performance (the load of an 

issued update was lower than usual). The system’s overall findings and neural network performance, 

achieving an MSE of 0.0021 on our collected noisy dataset, were compared to existing solutions and expert 

analysis, where we achieved NRMSE and MSE values of an order of magnitude better. We hereby proved its 

usability as the system is able to provide sufficient update curve prediction accuracy on noisy web server 

traffic even without automatic updates and almost real-time reactions to occurring events, which is essential 

to take action against threats attacking the system and its infrastructure. The features used for anomaly 

detection in the paper were not novel but were chosen specifically because they represented a straightforward 

and generalizable methodology that could be applied to any HTTP log data. The goal was to create a model 

that could be used with minimal preprocessing or feature engineering, making it easy to apply to a wide 

range of different datasets and scenarios. By using well-established features that are commonly found in 

HTTP log data, we sought to create a model that would be simple to understand and implement, while still 

providing performance in terms of anomaly detection. Overall, the focus was on creating a straightforward 

and effective approach to anomaly detection, rather than on developing novel or cutting-edge features. The 

novelty of this work lies in using only HTTP web server logs to detect web server network intrusions in near 

real-time, without the need for a labelled or cleaned dataset. We not only compared our model’s performance 

to that of other models trained on similar data, but we also deployed the model in a real-world setting of an 

antivirus company to demonstrate its practical value, as well as a study of how well the model performs in a 

real-world setting. The antivirus company validated the value of our approach for their ability to react 

promptly to emerging anomalies. The techniques we described are not novel, but we presented a new 

methodology to apply existing techniques to live data that already has anomalies without having to label 

them, allowing us to identify anomalies and assist professionals in their work. This methodology enables the 

use of any dataset composed of HTTP logs as input data, providing a robust solution that performs effectively 

on a variety of datasets. 

 

 

ACKNOWLEDGEMENTS 

We would like to thank ESET Research Centre for its cooperation. We would also like to express 

our gratitude to Matej Březina for providing extensive information regarding ESET update servers. This 

publication has been written thanks to the support of the Operational Programme Integrated Infrastructure for 

the project: Research in the SANET network and possibilities of its further use and development (ITMS 

code: 313011W988), co-funded by the European Regional Development Fund (ERDF). 

 

 

REFERENCES 
[1] X. Ni, D. He, S. Chan, and F. Ahmad, “Network anomaly detection using unsupervised feature selection and density peak 

clustering,” in Applied Cryptography and Network Security, Springer International Publishing, 2016, pp. 212–227. 

[2] I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised clustering approach for network anomaly detection,” in Networked 
Digital Technologies, Springer Berlin Heidelberg, 2012, pp. 135–145. 

[3] N. Chouhan, A. Khan, and H.-R. Khan, “Network anomaly detection using channel boosted and residual learning based deep 

convolutional neural network,” Applied Soft Computing, vol. 83, Oct. 2019, doi: 10.1016/j.asoc.2019.105612. 
[4] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Network traffic anomaly detection and prevention: concepts, techniques, 

and tools. Springer, 2017. 

[5] S. Mascaro, A. E. Nicholso, and K. B. Korb, “Anomaly detection in vessel tracks using Bayesian networks,” International 

Journal of Approximate Reasoning, vol. 55, no. 1, pp. 84–98, Jan. 2014, doi: 10.1016/j.ijar.2013.03.012. 

[6] A. A. H. Riyaz, F. Nasaruddin, A. Gani, I. A. T. Hashem, E. Ahmed, and M. Imran, “Real-time big data processing for anomaly 

detection: A Survey,” International Journal of Information Management, vol. 45, pp. 289–307, Apr. 2019, doi: 
10.1016/j.ijinfomgt.2018.08.006. 

[7] L. Nie, D. Jiang, and Z. Lv, “Modeling network traffic for traffic matrix estimation and anomaly detection based on Bayesian 

network in cloud computing networks,” Annals of Telecommunications, vol. 72, no. 5–6, pp. 297–305, Jun. 2017, doi: 
10.1007/s12243-016-0546-3. 

[8] S. Pauwels and T. Calders, “Extending dynamic bayesian networks for anomaly detection in complex logs,” arXiv preprint 

arXiv:1805.07107, May 2018. 
[9] G. Poojitha, K. N. Kumar, and P. J. Reddy, “Intrusion detection using artificial neural network,” in 2010 Second International 

conference on Computing, Communication and Networking Technologies, Jul. 2010, pp. 1–7, doi: 

10.1109/ICCCNT.2010.5592568. 
[10] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly detection techniques,” Journal of Network and Computer 

Applications, vol. 60, pp. 19–31, Jan. 2016, doi: 10.1016/j.jnca.2015.11.016. 

[11] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlinear dimensionality reduction,” in Proceedings of 
the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Dec. 2014, pp. 4–11, doi: 

10.1145/2689746.2689747. 

[12] V. L. Cao, M. Nicolau, and J. McDermott, “A hybrid autoencoder and density estimation model for anomaly detection,” in 
Parallel Problem Solving from Nature PPSN XIV, Springer International Publishing, 2016, pp. 717–726. 

[13] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: a deep learning approach for short‐term traffic forecast,” 

IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, Mar. 2017, doi: 10.1049/iet-its.2016.0208. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5165-5178 

5178 

[14] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network methods for traffic flow prediction,” in 2016 31st Youth 

Academic Annual Conference of Chinese Association of Automation (YAC), Nov. 2016, pp. 324–328, doi: 
10.1109/YAC.2016.7804912. 

[15] A. Lazaris and V. K. Prasanna, “An LSTM framework for modeling network traffic,” in 2019 IFIP/IEEE Symposium on 

Integrated Network and Service Management (IM), 2019, pp. 19–24. 
[16] H. Lu and F. Yang, “A network traffic prediction model based on wavelet transformation and LSTM network,” in 2018 IEEE 9th 

International Conference on Software Engineering and Service Science (ICSESS), Nov. 2018, pp. 1–4, doi: 

10.1109/ICSESS.2018.8663884. 
[17] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction from raw data using LSTM networks,” in 2018 IEEE 29th 

Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep. 2018, pp. 1827–1832, 

doi: 10.1109/PIMRC.2018.8581000. 
[18] Q. Zhuo, Q. Li, H. Yan, and Y. Qi, “Long short-term memory neural network for network traffic prediction,” in 2017 12th 

International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nov. 2017, pp. 1–6, doi: 

10.1109/ISKE.2017.8258815. 
[19] S. Naseer et al., “Enhanced network anomaly detection based on deep neural networks,” IEEE Access, vol. 6, pp. 48231–48246, 

2018, doi: 10.1109/ACCESS.2018.2863036. 

[20] R. K. Malaiya, D. Kwon, J. Kim, S. C. Suh, H. Kim, and I. Kim, “An empirical evaluation of deep learning for network anomaly 
detection,” in 2018 International Conference on Computing, Networking and Communications (ICNC), Mar. 2018, pp. 893–898, 

doi: 10.1109/ICCNC.2018.8390278. 

[21] T.-Y. Kim and S.-B. Cho, “Web traffic anomaly detection using C-LSTM neural networks,” Expert Systems with Applications, 
vol. 106, pp. 66–76, Sep. 2018, doi: 10.1016/j.eswa.2018.04.004. 

[22] R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Applying deep learning approaches for network traffic prediction,” in 

2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Sep. 2017,  
pp. 2353–2358, doi: 10.1109/ICACCI.2017.8126198. 

[23] N. Ramakrishnan and T. Soni, “Network traffic prediction using recurrent neural networks,” in 2018 17th IEEE International 
Conference on Machine Learning and Applications (ICMLA), Dec. 2018, pp. 187–193, doi: 10.1109/ICMLA.2018.00035. 

[24] S. Nihale, S. Sharma, L. Parashar, and U. Singh, “Network traffic prediction using long short-term memory,” in 2020 

International Conference on Electronics and Sustainable Communication Systems (ICESC), Jul. 2020, pp. 338–343, doi: 
10.1109/ICESC48915.2020.9156045. 

[25] T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Computer network traffic prediction: a comparison between traditional and deep 

learning neural networks,” International Journal of Big Data Intelligence, vol. 3, no. 1, 2016, doi: 10.1504/IJBDI.2016.073903. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Lenka Benova     received her Bachelor’s degree in Computer Engineering in 2019 

from the Faculty of Informatics and Information Technologies of the Slovak University of 

Technology in Bratislava. In 2021, she received her Master’s degree at the before mentioned 

university in the field of Computer Science. She is currently a Ph.D. student of Applied 

Informatics at the Faculty of Informatics and Information Technologies, Slovak University of 

Technology with a focus on increasing web server security. She can be contacted at email: 

lenka.benova@stuba.sk. 

  

 

Ladislav Hudec     received his Ing diploma summa cum laude in electronics from 

the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 

Prague, in 1974. In 1985, he received a C.Sc degree (Ph.D.) in Computer Machinery from the 

Faculty of Electrical Engineering, Slovak Technical University, Bratislava, in 1989 he was 

appointed Associate Professor. Since 1974 he is with the Slovak Technical University. During 

the period 1992-1993, he served as Director of the SARC-Centre for Advancement, Science 

and Technology, Bratislava. During the period from 1993-2010, he served as National 

Coordinator at the European Cooperation in Science and Technology (COST). He is currently 

an Associate Professor of Computer Science and Engineering, Deputy Director of the Institute 

of Computer Engineering and Applied Informatics, Faculty of Informatics and Information 

Technology, Slovak University of Technology. He reads lectures on Principles of information 

technologies security, Security of information technologies and Internet security. He is the 

author or co-author of over 60 scientific papers published in journals and proceedings of 

conferences and over 80 technical papers in the field of fault-tolerant computing, embedded 

systems, and computer security. He led over 90 research grants and industrial contracts. He is a 

member of the Information System Audit and Control Association (ISACA), and holder of the 

CISA license. He can be contacted at email: ladislav.hudec@stuba.sk. 

 

https://orcid.org/0000-0001-9959-8548
https://scholar.google.com/citations?hl=en&user=Kud5flYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57854701400
https://orcid.org/0000-0002-1443-6118
https://scholar.google.com/citations?hl=en&user=b0yBZ2oAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=16480285000

