
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 5, October 2023, pp. 5165~5178

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i5.pp5165-5178  5165

Journal homepage: http://ijece.iaescore.com

Web server load prediction and anomaly detection from

hypertext transfer protocol logs

Lenka Benova, Ladislav Hudec
Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia

Article Info ABSTRACT

Article history:

Received Oct 6, 2022

Revised Feb 13, 2023

Accepted Feb 27, 2023

 As network traffic increases and new intrusions occur, anomaly detection

solutions based on machine learning are necessary to detect previously

unknown intrusion patterns. Most of the developed models require a labelled

dataset, which can be challenging owing to a shortage of publicly available

datasets. These datasets are often too small to effectively train machine

learning models, which further motivates the use of real unlabeled traffic. By

using real traffic, it is possible to more accurately simulate the types of

anomalies that might occur in a real-world network and improve the

performance of the detection model. We present a method able to predict

and categorize anomalies without the aid of a labelled dataset, demonstrating

the model’s usability while also gathering a dataset from real noisy network

traffic. The proposed long short-term memory (LTSM) based intrusion

detection system was tested in a real-world setting of an antivirus company

and was successful in detecting various intrusions using 5-minute

windowing over both the predicted and real update curves thereby

demonstrating its usefulness. Our contribution was the development of a

robust model generally applicable to any hypertext transfer protocol (HTTP)

traffic with almost real-time anomaly detection, while also outperforming

earlier studies in terms of prediction accuracy.

Keywords:

Anomaly detection

Intrusion detection system

Machine learning

Network traffic prediction

Web server logs

This is an open access article under the CC BY-SA license.

Corresponding Author:

Lenka Benova

Faculty of Informatics and Information Technologies, Slovak University of Technology

Ilkovicova 2, Bratislava, Slovakia

Email: lenka.benova@stuba.sk

1. INTRODUCTION

The volume of dangerous network traffic is continuously increasing. There is a significant demand

for autonomous data processing and intrusion detection systems based on machine-learning approaches that

can detect threats before they become visible. Because a high level of skill is required to comprehend each

log entry from a web server request, and even more so to understand sequences of operations such as

continuous web requests, there is a solid push to design systems that can identify both known and unknown

intrusions.

With an increasing amount of network traffic, the number of anomalies caused by various network

misconfigurations continue to grow, resulting in more successful network attacks. Network anomalies must

be detected and diagnosed to ensure the confidentiality, availability, and integrity of computer systems; as

such, intrusions drain resources and bandwidth, rendering network services unavailable. Crucial computer

systems are constantly under attack by numerous attackers on the internet, and intrusion detection systems

(IDSs) play an essential role in defending them. Signature-based approaches are used to address attacks by

extracting key characteristics and creating a unique signature for an attack. These approaches are highly

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5165-5178

5166

effective in combating previously captured attacks. However, they lack the ability to detect new intrusions or

zero-day attacks and are not suitable for real-time anomaly detection across large amounts of data [1], [2].

Network intrusion detection systems (NIDSs) are security systems that monitor malicious activity in

network traffic and generate alerts when any suspicious activity is detected to further investigate the cause of

the alert and take action. Owing to advancements in technology, traditional approaches to network anomaly

detection are becoming ineffective as network attacks become more sophisticated [3], [4]. Network anomaly

detection is predicated on locating data that do not follow regular behavioural patterns. Despite the

availability of numerous methodologies, numerous research hurdles remain. There is no universally

applicable anomaly detection approach, as data contains noise, which is an abnormality in and of itself,

making it difficult to distinguish. Because intruders are aware of current techniques, there is a dearth of

publicly available labelled datasets and the need for more complex and newer techniques.

Various anomaly detection approaches have been developed, but most have limitations when used in

real-world situations. This study aims to demonstrate the feasibility of utilising machine learning to detect

anomalies and classify metadata in selected types of application servers that offer modular updates to

consumers worldwide, with a focus on automatisation and usability in a real-world setting. Our idea was not

to present a new deep learning method; instead, we wanted to show how to get close to real-time anomaly

detection from unlabelled datasets comprised entirely of hypertext transfer protocol (HTTP) logs.

2. RELATED WORK

Over the past few years, various anomaly detection methods that incorporate several fields of

machine learning have been proposed. Bayesian networks (BNs) have been widely used for grouping

problems. Detecting anomalies using BNs has distinct and complementary strengths in spotting anomalies

[5], [6]. Nie et al. [7] investigated the problem of network traffic modelling. To track flow trends, they

proposed using a BN. To evaluate the performance of their model, they collected traffic datasets from

Abilene and GÉANT networks. Compared to the three leading methodologies, their solutions regularly

surpass them in terms of estimating inaccuracy.

Dynamic BNs were extended by Pauwels and Calders [8] to produce a novel model that allows a

better description of the structure and attributes of a log file. To address the drawbacks of regular dynamic

BNs, several aspects have been added. For example, functional dependencies were added to provide a better

description of the log file structure. They then detailed their approach to generating models that reflected the

multidimensional and sequential nature of the log data. Their method performed well in a variety of contexts

with varying levels of anomalies in both the training and test datasets, with an area under the ROC curve

(AUC) of 0.84 on the BPIC dataset.

A feed-forward neural network was introduced by Poojitha et al. [9], [10] to detect anomalies using

10% of the KDD Cup 99 data encompassing both traffic during normal and abnormal behaviour, trained by a

backpropagation method. The test results showed that the proposed approach is effective at accurately

(94.93% accuracy) detecting various attacks with a low percentage of false positives and negatives. The

proposed method detects normal traffic, disk operating system (DOS), and probe attacks well but fails to

detect R2L and U2R attacks owing to the very large dimensions of the input data.

Anomaly detection has also been performed with autoencoders (AEs), although this time to identify

outliers in the first place. In recent years, AEs have become increasingly popular. AEs have been used in

several investigations to detect anomalies. The anomaly detection performance of AE, denoising autoencoder

(DAE), principal component analysis (PCA), and kernel PCA approaches were examined by Sakurada and

Yairi [11]. A hybrid method with kernel density estimation was utilised in a study by Cao et al. [12], and

successful results were produced on the KDD dataset.

Recurrent neural networks (RNN), such as long short-term memory (LSTM) or gated recurrent unit

(GRU), have been widely utilised in traffic prediction, with excellent results when traffic varies during the

week or day [13]–[15], and are thus suitable for network traffic predictions. Lu and Yang [16] used wavelet

transformations and an LSTM network to forecast network traffic originating in a domain name system

(DNS) server. The purpose was to estimate the mean rate of arriving packets per minute on the following day

using the number of arrived packets per second. They built four prediction models: least squares support

vector machine (LSSVM), backpropagation (BP) neural network, Linan network, and LSTM network

utilising the db3 wavelet, with the proposed model based on wavelet transformation and LSTM network to

achieve the best results.

Using an LSTM network, Trinh et al. [17] investigated the efficiency of RNN on mobile traffic data.

The LSTM network was able to capture the temporal correlation of traffic even for remote timeslots, which

made it particularly helpful in real-time applications. Zhuo et al. [18] used three network traffic datasets to

test their LSTM using a deep neural network (DNN) prediction model. The first dataset includes network

Int J Elec & Comp Eng ISSN: 2088-8708 

Web server load prediction and anomaly detection from hypertext transfer protocol logs (Lenka Benova)

5167

traffic history data from 11 European cities provided by network service providers. The second dataset was

based on web traffic history data from the United Kingdom Education and Research Networking Association

(UKERNA) academic research website. The third dataset is based on network traffic statistics collected by

the Beijing University of Posts and Telecommunications, which is the backbone node of China’s education

network. Their research revealed that LSTM can be used effectively as a timing sequence forecast model and

that adding auto-correlation features improved accuracy when working with large granularity datasets.

Naseer et al. [19] used multiple DNN architectures such as convolutional neural networks, AEs, and

RNN to propose, implement, and train intrusion detection models. These deep models were trained on the

NSLKDD training dataset and tested on NSLKDD’s NSLKDDTest+ and NSLKDDTest21 test datasets. The

authors implemented traditional machine learning intrusion detection system models with a variety of

well-known classification approaches, including extreme learning machine (ELM), k-nearest neighbors

algorithm (k-NN), decision tree (DT), random forest (RF), support vector machine (SVM) and naive Bayes

(NB). The RoC curve, area under the RoC, precision-recall curve, mean average (mAP) precision and

classification accuracy of both DNNs and conventional machine learning models were tested using

well-known classification measures. On the test dataset, both deep convolutional neural network (CNN) and

LSTM models performed well, with an accuracy of 85 and 89%, respectively.

Malaiya et al. [20] conducted an empirical evaluation of deep learning to investigate if it can be

used to discover network anomalies. The fully connected network (FCN), variational autoEncoder (VAE),

and LSTM with sequence to sequence (LSTM Seq2Seq) structures are used to create a collection of deep

learning models. The authors used publicly available traffic data sets from NSLKDD and Kyoto-Honeypot to

examine the models. Their experimental results are noteworthy, as the model based on the LSTM Seq2Seq

structure performed well on both traffic data sets, with 99% binary classification accuracy.

Kim and Co [21] proved the usefulness of LSTM and CNNs for the task of web traffic anomaly

detection by comparing their suggested model to various machine learning methods and achieving superior

results. The authors presented a C-LSTM architecture, which was found using parametric tests, model

comparison experiments, and data analysis. They employed the C-LSTM to extract patterns from web traffic

data that included spatial and temporal information. The characteristics of normal and abnormal data

categorized by the C-LSTM were revealed by a confusion matrix and t-SNE analysis. The proposed C-LSTM

model classifies and extracts characteristics that could not be extracted using traditional machine learning

approaches. Their approach outperforms other cutting-edge machine learning techniques on Yahoo’s

well-known Webscope S5 dataset, reaching an overall accuracy of 98.6% and recall of 89.7% on the test

dataset.

3. DATASET

This study was conducted on a dataset acquired from an antivirus company offering anti-virus and

firewall software. The company’s application servers provide virus signatures and software module updates

to consumers worldwide. Client software downloads these updates at a time set by the client. Consequently,

the resource use of these servers varies dramatically over time. While some usage patterns are predictable,

such as recently issued virus signature updates, the usual release patterns of various client software modules,

day/night cycles across different time zones, and less traffic on vacations and weekends, others can be sudden

and difficult to predict.

These updates are tracked by the Zabbix monitoring system and NGINX logs client connections

requesting updates. Table 1 lists the currently logged attributes. A dataset containing NGINX logs from

numerous update servers in the same hosting area was gathered for this experiment. Thousands of requests

are generated each minute and millions each day from single server traffic, creating approximately 50 GB of

logs per day. Due to the voluminosity of the data, logs were grouped by minutes and aggregated according to

the timestamp when the request was submitted, as shown in Table 2.

This dataset was used to identify potential anomalies, such as a specific anomaly linked to other

issues such as client misconfiguration or a rapid connection peak, which could lead to a problem and help us

address it early in the process. It is worth noting that the data were noisy and already contained anomalies,

which we could not extract because it would require a long and complex expert examination, which would be

nearly impossible with such a vast amount of data. We attempted to address this problem by collecting

additional data such that anomalies would only account for a small percentage of the total data, and the

remainder would be normal, desirable traffic. The timestamp was a critical feature to include in the dataset

because collected logs alter their behaviour over days and weeks as clients download less on weekends and at

different times during the day. This is why it was split into many features for the model to be able to learn

these cycles.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5165-5178

5168

Table 1. Logged attributes
Attribute Description

remote addr client IP address
remote user authentication

http x eset updateid license key

time local local time in the Common Log Format
http host HTTP server host

request method HTTP request method

uri path to the update being requested
server protocol server protocol version

status response status

body bytes sent request body length
request length request length including request line, header, and request body

request time request processing time in seconds with a millisecond’s resolution

http user agent identification of the client originating the request

Table 2. Logs grouped by time of origin by minutes
Server Time local Count Body bytes sent Avg body bytes sent Request length Avg request length

1 23/Aug/2020:00:00:00 37607 1388254369 36914 23273524 618
1 23/Aug/2020:00:01:00 34044 1159650997 34063 21327793 626
1 23/Aug/2020:00:02:00 34578 1570963146 45432 22320593 645
1 23/Aug/2020:00:03:00 35372 1302698163 36828 22967956 649
1 23/Aug/2020:00:04:00 33731 1345533685 39890 21899394 649

The logs in the dataset ranged from November to February and were collected from numerous

servers in the same area with similar update curves and attributes. We chose to use data from servers located

in Bratislava and Vienna; a total of five servers. The server is identified by the number above the rows

(number one in the sample shown in the Table 3). Each row has columns with values from all five servers, as

illustrated in Table 3, with only the first server’s data presented. Multiple server lines were concatenated

based on the timestamp, resulting in a single line containing data from all parsed servers at the same time

(each row represents one timestamp with 40 attributes-8 for each server, as seen in Table 3).

The “count” feature was our target for the anticipated output because we wanted to predict future

request count. We were able to forecast future values by shifting the target feature value back in time,

according to the chosen prediction window. The data were split at a 90:10 ratio. We aimed for a scaler that

could scale the data according to our user-defined parameters because the data from our update servers

reached varying maximum and minimum values over time. As a result, we avoided employing library scalers

that scale the data based on the minimum and maximum values in the current vector. The own scaler was

necessary to scale the data and inverse-scale the data using the same values, resulting in the same scaled

values at each time.

Table 3. Input dataset sample showing data from first chosen server
1

count body bytes sent avg body bytes sent request length avg request length day hour minute

37607 1388254369 36914 23273524 618 6 0 0
34044 1159650997 34063 21327793 626 6 0 1

34578 1570963146 45432 22320593 645 6 0 2

35372 1302698163 36828 22967956 649 6 0 3
33731 1345533685 39890 21899394 649 6 0 4

4. NETWORK ARCHITECTURE

Because the update curve is based on previous values, an RNN was chosen to forecast future update

server requests. It was possible to determine whether there was a problem with the updates by comparing the

actual values to the predicted values using the predicted update curve. The network architecture was chosen

according to related work and according to the best prediction results in our experiments comparing GRU

and LSTM with various configurations, as shown in Table 4.

An LSTM neural network model was chosen based on processed and aggregated update server logs.

It can forecast the future update curve based on a variable-length input. This model can learn and predict

common release patterns for various client software modules in the future.

The model was trained by early stopping to avoid overfitting. Each batch consisted of 1,440

timestamps, representing one day. In our situation, the historical traffic patterns throughout workdays,

Int J Elec & Comp Eng ISSN: 2088-8708 

Web server load prediction and anomaly detection from hypertext transfer protocol logs (Lenka Benova)

5169

weekends, and holidays can be tracked by LSTM. To lessen the influence of unusual traffic on the learning

curve, we acquired a large dataset of 489 600 records collected over three months. From the total amount of

data provided to the network, the anomaly data made up a very minor amount. Naturally, under the

professional assumption that the large majority of data is regular traffic free of anomalies.

For the final implementation, we chose the network that performed the best in our experiments in

Table 4. It consists of a 512-unit LSTM layer and a dense layer that outputs the target value-request count.

The dense layer is used to transform the output of the LSTM layer into a form that can be used to make

predictions. It is connected to all units in the preceding and subsequent layers, allowing it to learn a rich

representation of the data and make more accurate predictions. The rectified linear unit (ReLU) activation

function is used to introduce non-linearity into the network, allowing it to learn more complex patterns in the

data. The mean squared error (MSE) loss function and RMSprop optimizer are used to train the model, while

early stopping is used to prevent overfitting.

The train and validation split for the network was 90:10. The MinMaxScaler was used to scale the

data, as it is non-distorting meaning it preserves the shape of the original distribution. We trained the model

on 20 epochs each consisting of 100 steps. The model’s architecture can be seen in Figures 1 and 2.

Table 4. RNN comparison (average loss from 5 runs)
Type Units Optimizer Activation Loss on the train set Loss on the test set
GRU 512 RMSprop sigmoid 0.0040 0.0041

LSTM 512 RMSprop sigmoid 0.0039 0.0039
GRU 512 Adam sigmoid 0.0041 0.0042

LSTM 512 Adam sigmoid 0.0042 0.0043
GRU 512 RMSprop ReLU 0.0046 0.0047

LSTM 512 RMSprop ReLU 0.0038 0.0038
LSTM 256 RMSprop ReLU 0.0054 0.0054
LSTM 1024 RMSprop ReLU 0.0295 0.0295

Figure 1. Model’s architecture

Figure 2. Model’s description

The update curve prediction trained on one week of data from five servers achieved an MSE loss of

0.00399 on the training set and an MSE loss of 0.0040 on the test set, but it did not represent the peaks

correctly enough, as shown in Figure 3. The prediction trained on two weeks of data achieved an MSE loss of

0.0015 on the training set and the same loss on the test set; however, it still did not represent the peaks

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5165-5178

5170

correctly enough, despite being better than using 1-week data. For the final training, we used 3 months data

and the model’s performance can be seen in Figure 4. From this data, the model was able to deduce update

patterns.

Figure 3. Prediction on 1-week train data

Figure 4. Prediction on train data on three months data

5. CLASSIFICATION

For test data, the model obtained an MSE loss of 0.0021 with a mean absolute error (MAE) of

0.0305 using data representing 489 600 records collected over three months. Figure 4 depicts the prediction

on a sample of 10,000 training records, whereas Figure 5 depicts the prediction on a sample of 10,000 test

records. Although the loss was higher after two weeks of training, the model was still able to predict the

update peaks, which was critical for our future anomaly classification.

Figure 5. Prediction on test data on three months data

Int J Elec & Comp Eng ISSN: 2088-8708 

Web server load prediction and anomaly detection from hypertext transfer protocol logs (Lenka Benova)

5171

The rules for distinguishing between the anticipated update curve and real traffic were developed

based on the analysis of historical data and network behavior. The system was designed to detect anomalies

such as sudden spikes or drops in network activity, as well as unusual patterns in traffic that deviated

significantly from the expected update curve. By detecting these anomalies, the system could alert network

administrators to potential issues and allow them to take corrective actions before they impacted network

performance or caused downtime. This capability of the system ensured smooth network operations and

reduced the risk of business interruptions.

− Missed update: the anticipated load, which typically lasts several hours, does not occur.

− Unusually large update: the update was not served within an hour because the load did not sink. Clients

may not have received everything yet. The load persisted for several hours.

− Unexpected traffic: clients began downloading without us expecting it, indicating a higher load. Someone

may have released an additional update, or it may be New Year’s Day or the day after the holidays.

− Degraded performance: the amount of traffic is substantially lower than expected.

The actual and predicted update curves were both windowed using a 5-minute window for

classification, and the trends of both curves were observed. Unexpected traffic was defined as an increasing

trend in the actual update curve but a decreasing trend in the prediction. It was classified as a missed update

if the actual update curve had a descending trend but the prediction showed an ascending trend. The

remaining two groups were determined using a threshold based on the window’s maximum value if the

trends match. A degraded performance occurs when the maximum value of the actual curve is less than the

maximum value of the predicted curve by a value greater than or equal to the threshold. An update is

classified as an unusually large update if the maximum value of the actual curve exceeds the predicted

curve’s maximum value by a value greater than or equal to the threshold.

The actual and predicted curves for one day are depicted in detail in Figure 6. At the peak, where the

selected time point is located, the system generates three notifications. The curve was initially classified as an

unexpected update because the actual curve is rising, whereas the predicted curve is not. Then, because the

actual update values achieved larger numbers of requests (“count”), it will be classified as unexpected traffic,

and it will generate a missed update classification because the actual traffic is falling but the prediction curve

is growing.

Figure 6. Real vs. one day ahead predicted traffic

We can alter these two variables when classifying in real-time and generating alerts. Either the

classification window or threshold at which we decide whether to generate an alert. The classifier generates a

large number of alerts when employing a window of 5 min, which provides a good real-time reaction time

and a threshold of 20,000, as shown in Table 5. When we increase the threshold value to 30,000, we generate

all the alerts that we can see with our eyes from Figure 6. Table 6 lists these alerts. Increasing the threshold

further caused us to lose information about the first delayed update; therefore, we settled on a threshold of

30,000.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5165-5178

5172

Table 5. Alerts generated for Figure 6
Time point (minutes) Alert

20-25 missed update
25-30 missed update
30-35 degraded performance
35-40 degraded performance
40-45 degraded performance
45-50 degraded performance
50-55 degraded performance
55-60 missed update
90-95 unusually large update
95-100 unusually large update

100-105 unusually large update
105-110 missed update
110-115 unusually large update
115-120 unusually large update
335-340 missed update
345-350 missed update
640-645 unusually large update
645-650 unusually large update
650-655 unusually large update
655-660 missed update
660-665 unexpected traffic
665-670 unusually large update
670-675 missed update
675-680 missed update
680-685 unusually large update
685-690 unusually large update
690-695 unusually large update
695-700 missed update
700-705 unusually large update

Time point (minutes) Alert
705-710 degraded performance
710-715 degraded performance
715-720 degraded performance
720-725 degraded performance
725-730 unexpected traffic
730-735 unexpected traffic
735-740 unexpected traffic
820-825 missed update
825-830 missed update
830-835 unexpected traffic
840-845 unusually large update
855-860 unusually large update
860-865 unusually large update
865-870 unexpected traffic
870-875 unusually large update
875-880 unusually large update
880-885 unexpected traffic
885-890 unusually large update
890-895 unusually large update
895-900 unusually large update

1000-1005 unexpected traffic
1005-1010 missed update
1010-1015 missed update
1050-1055 unusually large update
1065-1070 degraded performance
1070-1075 unusually large update
1275-1280 unusually large update
1280-1285 unusually large update

Table 6. Alerts generated for Figure 6 using a threshold of 30,000
Time point (minutes) Alert

20-25 missed update
25-30 missed update
30-35 degraded performance
35-40 degraded performance
40-45 degraded performance
45-50 degraded performance
50-55 degraded performance
55-60 missed update

115-120 unusually large update
640-645 unusually large update
645-650 unusually large update
650-655 unusually large update
655-660 missed update
660-665 unexpected traffic
665-670 unusually large update
670-675 missed update
675-680 missed update
680-685 unusually large update
685-690 unusually large update
690-695 unusually large update
695-700 missed update
705-710 degraded performance

Time point (minutes) Alert
710-715 degraded performance
715-720 degraded performance
720-725 degraded performance
725-730 unexpected traffic
730-735 unexpected traffic
820-825 missed update
825-830 missed update
830-835 unexpected traffic
840-845 unusually large update
855-860 unusually large update
860-865 unusually large update
865-870 unexpected traffic
870-875 unusually large update
875-880 unusually large update
880-885 unexpected traffic
885-890 unusually large update
890-895 unusually large update

1000-1005 unexpected traffic
1005-1010 missed update
1010-1015 missed update
1065-1070 degraded performance

6. RESULTS AND DISCUSSION

In the first stage, various regression models were tested to determine the best-performing model in

predicting the network traffic curve. The selected model was then used as a component in the second stage,

which focused on classifying anomalies in the network based on the predicted update curve. This two-stage

assessment approach ensured that the developed system could accurately predict and classify network traffic

anomalies.

6.1. Prediction evaluation

The first element of our proposed methodology is an LSTM neural network, which uses aggregated

HTTP log data as input to solve a regression problem, in our case, predict the traffic load in the future so we

Int J Elec & Comp Eng ISSN: 2088-8708 

Web server load prediction and anomaly detection from hypertext transfer protocol logs (Lenka Benova)

5173

can compare it with real data curves in the future and classify occurring anomalies. It is very challenging to

determine how accurate the model must be in order to assist us in finding the anomalies we seek. Because of

this, we concentrated on comparing the actual curve to the predicted curve to determine how effectively the

model can identify anomalies and whether it can classify them accurately. You can see a comparison of the

model’s prediction accuracy with other studies in the section 7 (discussion). Both the prediction and

classification results are described in Table 5.

6.2. Expert evaluation

The second component of the system is a real-time windowing classifier that works with both the

real traffic and the prediction curve of the regression model. We did not have a labelled dataset; therefore, we

could not use this method to determine the correctness of the system. We relied on expert analysis against

which the model alerts were matched. The following compares the ESET expert Ing. Matej Březina, who

works in the Update Systems Department of ESET Internal Systems, and our proposed approach.

The expert stated that there were missed updates on February 24th, ranging from midnight to 10 am.

As seen in Figure 7, the model was able to predict the updates, so we see two red peaks between time points

0 and 400, marked by the yellow rectangle. The next update occurred at 10 am, which corresponds to time

point 600 in our sequence. According to the expert, the model anticipated an update at time point 1,060,

which is too late, possibly because of the large volume of data without automatic update release (the updates

are currently not released automatically, so the delay in updates is not an issue and the model is therefore not

as accurate as it could be with automatic updates). The update took place at time point 1,000, as is typical.

According to the expert, the rest of the sequence was normal as it did not cause any issues.

Figure 7. Real vs. one day ahead predicted traffic from February 24th

The classifier alerts, as shown in Table 7, correspond to the expert analysis and are thus considered

correct. Because the classifier is designed to create alerts in real-time, it not only generates missed update

alerts but also degraded performance updates when the curve is no longer rising or falling, indicating that the

performance is degraded. The classifier again issued alerts at the time points referred to by the expert, as

shown in Table 8. These categories correspond to the established threshold and trend guidelines. The

classifier sent similar notifications for both missed updates: a missed update notice followed by a degraded

performance alert, indicating that the update did not occur. The classifier detected more “missed updates” in

both cases as the update curve began to rise again, but real traffic did not increase.

These alarms may be avoided by smoothing both the anticipated and actual update curves, such as

with a rolling mean; however, this would reduce our accuracy, which is undesirable. It is preferable to send

an alert as soon as a problem arises, and a smooth curve would cost us valuable time. The same is true for

unexpected traffic, which occurs when the actual traffic increases, despite the prediction trend.

The server was flapping between 9 and 11 a.m. on February 26th, 2020, as shown in Figure 8, near

the 600 time point in dark gray marked by the rectangle. Because certain server logs were missing due to

external difficulties, the model input comprised four days of data to achieve a four-day-ahead prediction. The

model was able to anticipate how typical traffic would look, which corresponds to the light gray line if the

server was not flapping, as seen in red around the 600 time point.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5165-5178

5174

Table 7. Alerts generated for the first update expected after midnight
Time point (minutes) Alert

35-40 missed update
40-45 degraded performance
45-50 degraded performance
50-55 degraded performance
55-60 missed update
60-65 degraded performance
65-70 unexpected traffic
70-75 degraded performance
75-80 degraded performance
80-85 degraded performance
85-90 degraded performance

Table 8. Alerts generated for the second update expected around 5 a.m
Time point (minutes) Alert

330-335 missed update
335-340 degraded performance
340-345 degraded performance
345-350 missed update
350-355 degraded performance
355-360 degraded performance
360-365 degraded performance
365-370 degraded performance
370-375 degraded performance
375-380 unexpected traffic
380-385 degraded performance
385-390 degraded performance

Figure 8. Real vs. 4 days ahead predicted traffic from February 26th

7. DISCUSSION

The first component of the system is an LSTM neural network that solves a regression problem with

extremely particular data as input. As a result, there have not been many studies for comparison. The

majority of the studies focused on network traffic prediction using the GEANT backbone network dataset,

which includes traffic matrices that are different from our input data because they contain universal traffic

data, and our update server data is not only very specific, but we only use features from HTTP logs. The

prediction MSE for an LSTM network employing traffic matrices was approximately 0.042 [22], whereas our

model attained an MSE of 0.0025, which is not comparable. Consequently, the following comparison is

based on articles that deal with similar issues and use a similar, not identical, dataset, in our instance, network

data.

Network packets between two virtual machines were collected using Wireshark containing HTTP,

TCP, and ICMP requests from their local network to compare the performance of RNNs in this area,

according to Ramakrishnan and Soni [23]. The results of comparing the planned system request count

Int J Elec & Comp Eng ISSN: 2088-8708 

Web server load prediction and anomaly detection from hypertext transfer protocol logs (Lenka Benova)

5175

prediction with their packet count forecasts are listed in Table 9. Both our models performed slightly better,

although the results were similar.

Table 9. Comparison with Ramakrishnan and Soni [23]. We switched our proposed neural network using

LSTM to GRU for this comparison
Model GRU LSTM

Comparison MSE 0.0030 0.0028
MSE of our proposed system 0.0028 0.0025

Different LSTM models for network traffic prediction have been compared by Nihale et al. [24].

RJ Hyndman compared six different time series in the paper. Data were captured every 5 min, hour, and day

in the gathered time series. The daily findings were compared with the daily results from the publications,

and the results are shown in Table 10. The better results of our proposed model can be explained by

combining traffic from multiple servers in the same region, resulting in better forecasts as the curves are

similar.

Table 10. Comparison with various models mentioned in the paper by Nihale et al. [24] using normalized

root mean square error (NRMSE)

Model

Autoregressive integrated

moving average

(ARIMA)+RNN

Vanilla

LSTM

(VLSTM)

Delta LSTM

(DLSTM)

Cluster

LSTM

(CLSTM)

Clusted Delta

LSTM

(CDLSTM)

Proposed
system
LSTM

NRMSE 0.115 0.120 0.114 0.112 0.109 0.042

The same dataset previously mentioned by RJ Hyndman was used in the study by Oliveira et al. [25]

to compare multilayer perceptron using backpropagation (MLP-BP) as the training algorithm, multilayer

perceptron with resilient backpropagation (MLP-RP), RNN, and deep learning stacked autoencoder (SAE).

These models are compared with the proposed model in Table 11. These improved results can be explained

by the unique use of our model. As we could not find any similar-sized NGINX logs dataset to compare with,

we compared our model’s performance on the web server access logs dataset containing 3.3 GB of web

server logs from the Iranian shopping website zanbil.ir. A sample log can be seen in Figure 9.

The shopping dataset did not contain all attributes we logged in our dataset and we, therefore, had to

retrain our model so it only took the attributes present in the shopping dataset into account. This meant

removing the body bytes sent attribute and also the server number as the target dataset only contained logs

from one server and we used data gathered from 5 servers in the same region. After parsing and aggregating

the shopping logs, the dataset consisted of 6,754 rows, whereas our dataset from one server consisted of

97 920 rows. We have extracted a random sample of the same length from our dataset and trained our model

on both the ESET and shopping datasets. The retrained model achieved an MSE of 0.0225 on the ESET

sample test set and an MSE of 0.035 on the shopping dataset test set.

The train performance of our model on the shopping dataset can be observed in Figure 10. By

looking at the figure, we can see the model predicting the traffic curve very well and it is also trying to model

the peaks and trying to smooth out some possible anomalies. For the model to be more precise, it needs more

data for training. Still, this proves the usability of our model for predicting traffic from any web server log

source.

Table 11. Comparison with various models mentioned in the paper by Oliveira et al. [25]
Model MLP-BP MLP-RP RNN SAE Proposed system LSTM

NRMSE 0.200 0.202 0.197 0.336 0.042

Figure 9. Web server access logs Kaggle dataset sample

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5165-5178

5176

Figure 10. Model train performance on the web server access logs dataset

The test performance of our model on the shopping dataset can be seen in Figure 11. As we can see,

the model learned the traffic peak behavior but was not able to model the peaks clearly. We observed this

exact behavior when we trained the model on our two-week data sample and saw that the performance

improved with more data. On three months of data, the model was able to predict the peaks, which made it

possible to use the model for our anomaly detection. With the shopping data, we only had around 7% of the

data we trained our model on. Unfortunately, all publicly available datasets are small and this was the largest

we were able to find at the time of writing this article. As our model is trained on real traffic and not just

filtered normal traffic without anomalies, we need millions of requests to be able to lower the importance of

anomalies in the training set so we can later detect them in our test set. We still think that this proves the

usefulness of our approach, it just needs a longer period of data to be able to model the peaks more precisely.

Figure 11. Model test performance on the web server access logs dataset

8. CONCLUSION

We proposed a method for detecting and classifying anomalies in HTTP logs that do not require

extensive expert analysis for removing anomalies from real-time data or data labelling, which requires expert

domain and system knowledge. Numerous studies claim to have achieved successful prediction and

classification outcomes, but they frequently only did so on a single dataset and are not universally applicable

to other datasets. We present a methodology applicable to any dataset consisting of HTTP logs. We examined

the model in an actual network anomaly setting where we presented the value of our work. We were able to

predict and categorize anomalies without the aid of a labelled dataset, demonstrating the model’s usability

while also gathering a substantial dataset from noisy network traffic. The proposed LSTM-based intrusion

detection system was tested in a real-world setting and was successful in detecting various intrusions while in

use, thereby demonstrating its usefulness. We divided anomalies into four categories using 5-minute

windowing over both the predicted and real update curves: unexpected traffic (the load was high and we did

Int J Elec & Comp Eng ISSN: 2088-8708 

Web server load prediction and anomaly detection from hypertext transfer protocol logs (Lenka Benova)

5177

not expect an update), unusually large update (we issued an update and the load was higher than usual),

missed update (the load was low but we did expect an update), and degraded performance (the load of an

issued update was lower than usual). The system’s overall findings and neural network performance,

achieving an MSE of 0.0021 on our collected noisy dataset, were compared to existing solutions and expert

analysis, where we achieved NRMSE and MSE values of an order of magnitude better. We hereby proved its

usability as the system is able to provide sufficient update curve prediction accuracy on noisy web server

traffic even without automatic updates and almost real-time reactions to occurring events, which is essential

to take action against threats attacking the system and its infrastructure. The features used for anomaly

detection in the paper were not novel but were chosen specifically because they represented a straightforward

and generalizable methodology that could be applied to any HTTP log data. The goal was to create a model

that could be used with minimal preprocessing or feature engineering, making it easy to apply to a wide

range of different datasets and scenarios. By using well-established features that are commonly found in

HTTP log data, we sought to create a model that would be simple to understand and implement, while still

providing performance in terms of anomaly detection. Overall, the focus was on creating a straightforward

and effective approach to anomaly detection, rather than on developing novel or cutting-edge features. The

novelty of this work lies in using only HTTP web server logs to detect web server network intrusions in near

real-time, without the need for a labelled or cleaned dataset. We not only compared our model’s performance

to that of other models trained on similar data, but we also deployed the model in a real-world setting of an

antivirus company to demonstrate its practical value, as well as a study of how well the model performs in a

real-world setting. The antivirus company validated the value of our approach for their ability to react

promptly to emerging anomalies. The techniques we described are not novel, but we presented a new

methodology to apply existing techniques to live data that already has anomalies without having to label

them, allowing us to identify anomalies and assist professionals in their work. This methodology enables the

use of any dataset composed of HTTP logs as input data, providing a robust solution that performs effectively

on a variety of datasets.

ACKNOWLEDGEMENTS

We would like to thank ESET Research Centre for its cooperation. We would also like to express

our gratitude to Matej Březina for providing extensive information regarding ESET update servers. This

publication has been written thanks to the support of the Operational Programme Integrated Infrastructure for

the project: Research in the SANET network and possibilities of its further use and development (ITMS

code: 313011W988), co-funded by the European Regional Development Fund (ERDF).

REFERENCES
[1] X. Ni, D. He, S. Chan, and F. Ahmad, “Network anomaly detection using unsupervised feature selection and density peak

clustering,” in Applied Cryptography and Network Security, Springer International Publishing, 2016, pp. 212–227.

[2] I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised clustering approach for network anomaly detection,” in Networked
Digital Technologies, Springer Berlin Heidelberg, 2012, pp. 135–145.

[3] N. Chouhan, A. Khan, and H.-R. Khan, “Network anomaly detection using channel boosted and residual learning based deep

convolutional neural network,” Applied Soft Computing, vol. 83, Oct. 2019, doi: 10.1016/j.asoc.2019.105612.
[4] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Network traffic anomaly detection and prevention: concepts, techniques,

and tools. Springer, 2017.

[5] S. Mascaro, A. E. Nicholso, and K. B. Korb, “Anomaly detection in vessel tracks using Bayesian networks,” International

Journal of Approximate Reasoning, vol. 55, no. 1, pp. 84–98, Jan. 2014, doi: 10.1016/j.ijar.2013.03.012.

[6] A. A. H. Riyaz, F. Nasaruddin, A. Gani, I. A. T. Hashem, E. Ahmed, and M. Imran, “Real-time big data processing for anomaly

detection: A Survey,” International Journal of Information Management, vol. 45, pp. 289–307, Apr. 2019, doi:
10.1016/j.ijinfomgt.2018.08.006.

[7] L. Nie, D. Jiang, and Z. Lv, “Modeling network traffic for traffic matrix estimation and anomaly detection based on Bayesian

network in cloud computing networks,” Annals of Telecommunications, vol. 72, no. 5–6, pp. 297–305, Jun. 2017, doi:
10.1007/s12243-016-0546-3.

[8] S. Pauwels and T. Calders, “Extending dynamic bayesian networks for anomaly detection in complex logs,” arXiv preprint

arXiv:1805.07107, May 2018.
[9] G. Poojitha, K. N. Kumar, and P. J. Reddy, “Intrusion detection using artificial neural network,” in 2010 Second International

conference on Computing, Communication and Networking Technologies, Jul. 2010, pp. 1–7, doi:

10.1109/ICCCNT.2010.5592568.
[10] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly detection techniques,” Journal of Network and Computer

Applications, vol. 60, pp. 19–31, Jan. 2016, doi: 10.1016/j.jnca.2015.11.016.

[11] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlinear dimensionality reduction,” in Proceedings of
the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Dec. 2014, pp. 4–11, doi:

10.1145/2689746.2689747.

[12] V. L. Cao, M. Nicolau, and J. McDermott, “A hybrid autoencoder and density estimation model for anomaly detection,” in
Parallel Problem Solving from Nature PPSN XIV, Springer International Publishing, 2016, pp. 717–726.

[13] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network: a deep learning approach for short‐term traffic forecast,”

IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, Mar. 2017, doi: 10.1049/iet-its.2016.0208.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5165-5178

5178

[14] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network methods for traffic flow prediction,” in 2016 31st Youth

Academic Annual Conference of Chinese Association of Automation (YAC), Nov. 2016, pp. 324–328, doi:
10.1109/YAC.2016.7804912.

[15] A. Lazaris and V. K. Prasanna, “An LSTM framework for modeling network traffic,” in 2019 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM), 2019, pp. 19–24.
[16] H. Lu and F. Yang, “A network traffic prediction model based on wavelet transformation and LSTM network,” in 2018 IEEE 9th

International Conference on Software Engineering and Service Science (ICSESS), Nov. 2018, pp. 1–4, doi:

10.1109/ICSESS.2018.8663884.
[17] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction from raw data using LSTM networks,” in 2018 IEEE 29th

Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep. 2018, pp. 1827–1832,

doi: 10.1109/PIMRC.2018.8581000.
[18] Q. Zhuo, Q. Li, H. Yan, and Y. Qi, “Long short-term memory neural network for network traffic prediction,” in 2017 12th

International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nov. 2017, pp. 1–6, doi:

10.1109/ISKE.2017.8258815.
[19] S. Naseer et al., “Enhanced network anomaly detection based on deep neural networks,” IEEE Access, vol. 6, pp. 48231–48246,

2018, doi: 10.1109/ACCESS.2018.2863036.

[20] R. K. Malaiya, D. Kwon, J. Kim, S. C. Suh, H. Kim, and I. Kim, “An empirical evaluation of deep learning for network anomaly
detection,” in 2018 International Conference on Computing, Networking and Communications (ICNC), Mar. 2018, pp. 893–898,

doi: 10.1109/ICCNC.2018.8390278.

[21] T.-Y. Kim and S.-B. Cho, “Web traffic anomaly detection using C-LSTM neural networks,” Expert Systems with Applications,
vol. 106, pp. 66–76, Sep. 2018, doi: 10.1016/j.eswa.2018.04.004.

[22] R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Applying deep learning approaches for network traffic prediction,” in

2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Sep. 2017,
pp. 2353–2358, doi: 10.1109/ICACCI.2017.8126198.

[23] N. Ramakrishnan and T. Soni, “Network traffic prediction using recurrent neural networks,” in 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA), Dec. 2018, pp. 187–193, doi: 10.1109/ICMLA.2018.00035.

[24] S. Nihale, S. Sharma, L. Parashar, and U. Singh, “Network traffic prediction using long short-term memory,” in 2020

International Conference on Electronics and Sustainable Communication Systems (ICESC), Jul. 2020, pp. 338–343, doi:
10.1109/ICESC48915.2020.9156045.

[25] T. P. Oliveira, J. S. Barbar, and A. S. Soares, “Computer network traffic prediction: a comparison between traditional and deep

learning neural networks,” International Journal of Big Data Intelligence, vol. 3, no. 1, 2016, doi: 10.1504/IJBDI.2016.073903.

BIOGRAPHIES OF AUTHORS

Lenka Benova received her Bachelor’s degree in Computer Engineering in 2019

from the Faculty of Informatics and Information Technologies of the Slovak University of

Technology in Bratislava. In 2021, she received her Master’s degree at the before mentioned

university in the field of Computer Science. She is currently a Ph.D. student of Applied

Informatics at the Faculty of Informatics and Information Technologies, Slovak University of

Technology with a focus on increasing web server security. She can be contacted at email:

lenka.benova@stuba.sk.

Ladislav Hudec received his Ing diploma summa cum laude in electronics from

the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University,

Prague, in 1974. In 1985, he received a C.Sc degree (Ph.D.) in Computer Machinery from the

Faculty of Electrical Engineering, Slovak Technical University, Bratislava, in 1989 he was

appointed Associate Professor. Since 1974 he is with the Slovak Technical University. During

the period 1992-1993, he served as Director of the SARC-Centre for Advancement, Science

and Technology, Bratislava. During the period from 1993-2010, he served as National

Coordinator at the European Cooperation in Science and Technology (COST). He is currently

an Associate Professor of Computer Science and Engineering, Deputy Director of the Institute

of Computer Engineering and Applied Informatics, Faculty of Informatics and Information

Technology, Slovak University of Technology. He reads lectures on Principles of information

technologies security, Security of information technologies and Internet security. He is the

author or co-author of over 60 scientific papers published in journals and proceedings of

conferences and over 80 technical papers in the field of fault-tolerant computing, embedded

systems, and computer security. He led over 90 research grants and industrial contracts. He is a

member of the Information System Audit and Control Association (ISACA), and holder of the

CISA license. He can be contacted at email: ladislav.hudec@stuba.sk.

https://orcid.org/0000-0001-9959-8548
https://scholar.google.com/citations?hl=en&user=Kud5flYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57854701400
https://orcid.org/0000-0002-1443-6118
https://scholar.google.com/citations?hl=en&user=b0yBZ2oAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=16480285000

