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 This paper proposes a fault diagnosis scheme applied to a wind turbine 

system. The technique used is based on a modified sliding mode observer 

(SMO), which permits the reconstruction of actuator and sensor faults. 

A wind turbine benchmark with a real sequence of wind speed is exploited 

to validate the proposed fault detection and diagnosis scheme. Rotor speed, 

generator speed, blade pitch angle, and generator torque have different 

orders of magnitude. As a result, the dedicated sensors are susceptible to 

faults of quite varying magnitudes, and estimating simultaneous sensor 

faults with accuracy using a classical SMO is difficult. To address this issue, 

some modifications are made to the classic SMO. In order to test the 

efficiency of the modified SMO, several sensor fault scenarios have been 

simulated, first in the case of separate faults and then in the case of 

simultaneous faults. The simulation results show that the sensor faults are 

isolated, detected, and reconstructed accurately in the case of separate faults. 

In the case of simultaneous faults, with the proposed modification of SMO, 

the faults are precisely isolated, detected, and reconstructed, even though 

they have quite different amplitudes; thus, the relative gap does not exceed 

0.08% for the generator speed sensor fault. 
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1. INTRODUCTION 

In the last decade, the most rapidly expanding renewable energy sources are wind turbines, supplied 

by an entirely arbitrary wind speed, operating in uncertain environments, nonlinear dynamics, and exposure 

to considerable disturbances are key properties of these systems [1], [2]. Several recent studies have been 

conducted to improve the power coefficient of wind turbines as well as electricity production, blade profile 

and augmentation strategies using optimization approaches based on artificial intelligence (AI) have been 

addressed [3], [4]. Notwithstanding the implementation of advanced technology in modern wind turbines, the 

maintenance of these turbines is still long and costly, which influences their electricity production [5]. 

Odgaard et al. presented two wind turbine benchmark models (WTBMs) in 2009 [6] and 2013 [7], 

the second model is more realistic. Several research papers have been published in fault detection and 

isolation (FDI), and fault tolerant control (FTC) based on these WTBMs [8]–[11]. The main objective of an 

FDI system is to raise an alarm when an abnormal operation occurs in the monitored process and to locate its 

https://creativecommons.org/licenses/by-sa/4.0/
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source. A widely studied methodology is the observer-based approach, which analyzes the residuals that 

represent the difference between the actual and observer outputs of the monitored system [12], [13]. In this 

paper, an observer class known as the sliding mode observer [14] is adopted. This observer class aims to 

reconstruct the fault instead of examining the residual. 

An unknown input proportional integral observer for decoupling the unknown input was established 

in Sun [15], and an optimization of it is introduced to lessen the effects of sensor noise, the actuator faults of 

the WTBM were also estimated using the suggested observer. A Kalman-like observer and support vector 

machines-based FDI system were proposed in [16], [17]. Shi and Patton [18] proposed an observer based 

active fault tolerant control (AFTC) approach. By modeling the wind turbine as a linear parameter varying 

(LPV) model using linear matrix inequality linear matrix inequality (LMI), to evaluate the system states and 

faults, an extended state observer was established. To examine some faults in wind turbines, a deep learning 

fault detection and classification method based on the time series analysis method and convolutional neural 

networks (CNN) is provided [19]. Changes in wind turbine blade vibration responses WTB can be used to 

detect the presence of damage. Xu et al. [20] introduced a probabilistic analysis approach for wind turbine 

damage detection. 

Sliding mode observers sliding mode observers (SMOs) are characterized by robustness to 

disturbances and modeling uncertainties as well as their ability to estimate unknown inputs. SMOs have been 

widely used for FDI [14], [21]–[24]. Using a Takagi-Sugeno SMO, the actuator parameter faults in the 

WTBM were only partially identified and reconstructed [25], the reconstruction’s accuracy needs to be 

improved because the method lacks robustness regarding model uncertainty. SMO is used by 

Rahnavard et al. [26], [27] to address the fault detection (FD) of sensors and actuators in the WTBM. 

In contrast to WTBM-based approaches that merely detect and isolate the fault without providing 

any information on its magnitude, this paper proposes an FDI scheme that, in addition to faithfully 

reconstructing the fault, provides the exact magnitude, making it exploitable in FTC schemes that require 

knowledge of the fault magnitude. A modified fault estimation scheme based on the SMO is presented in this 

paper, particularly to detect, isolate, and estimate the sensor faults of the WTBM. The proposed modification 

is related to the discontinuous switching term of the observer, which allows an accurate reconstruction, 

especially in the case of simultaneous faults. The aerodynamic torque is considered as an input, and the 

MATLAB/Simulink environment is used to implement the simulations. The paper is structured as: section 2 

briefly describes the WTBM, section 3 presents the fault estimation scheme along with modifications to the 

SMO and numerical values of its parameters, section 4 addresses fault scenarios and simulation results, and 

section 5 concludes the paper. 

 

 

2. WIND TURBINE MODEL 

The model considered is similar to the one studied in [7], it is a horizontal axis wind turbine with 

three blades, Figure 1 depicts a system overview of this system. This benchmark model contains the 

following subsystems: blade and pitch system, drive train, converter, and generator, the wind turbine’s 

aerodynamic characteristics are strongly dependent on the blade pitch angles, the rotor speed, and the wind 

speed, which is the driving force of the wind power system. The resulting aerodynamic torque is transmitted 

from the rotor to the generator via the drive train, and at the output, the electrical energy is obtained from the 

converter. Depending on the different operating requirements, a controller is set up to control the blade pitch 

angles and the generator torque [28]. 

 

2.1.  Blade and pitch subsystem 

This block contains the aerodynamic model, blades, and pitch system. The aerodynamic torque is 

given by the relation: 
 

𝜏𝑟 =
𝜌𝜋𝑅3𝐶𝑞(𝜆,𝛽)𝑣𝑤

2

2
  (1) 

 

𝐶𝑞(𝜆, 𝛽) =
𝐶𝑝(𝜆,𝛽)

𝜆
 (2) 

 

𝐶𝑞 (𝜆, 𝛽)  is the torque coefficient, the profile used for 𝐶𝑞 (𝜆, 𝛽)  is shown in Figure 2, 𝐶𝑞 is a nonlinear 

function as a function of the pitch angle 𝛽 and on tip speed ratio 𝜆, therefore 𝜏𝑟 is a nonlinear function of 𝛽, 𝜆 

and the wind speed 𝑣𝑤. 

The pitch system is a hydraulic system consisting of three identical actuators, each with an internal 

controller, the actuator i adjusts the pitch angle βi(i=1, 2, 3) of the blades by rotating them. This subsystem 

can be represented by the following second order transfer function: 
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βi(s)

βr,i
=

ωni
2

s2+2.ξi.ωni.s+ωni
2  (3) 

 

where 𝛽𝑖 denote the pitch angle, 𝛽𝑟,𝑖 denote the reference to the pitch angle, 𝜔𝑛𝑖 denote the natural frequency 

of the pitch actuator model [rad/s], and 𝜉𝑖 denote the damping ratio of the pitch actuator model. All 𝛽𝑖, all 

𝜔𝑛𝑖  and all 𝜉𝑖  are equal in free fault, otherwise are different. In the following only one pitch actuator is 

considered. 

 

 

 
 

Figure 1. Overview of the wind turbine system [7] 

 

 

 
 

Figure 2. 𝐶𝑞 mapping 

 

 

2.2.  Drive train subsystem 

The drive train allows to transfer the aerodynamic torque to the generator to ensure a high speed of 

rotation required by the generator, the model is built of a slow shaft and a fast shaft linked by a multiplier 

(the gearbox). This subsystem is modeled by (4)-(6): 

 

Jg. ω̇g = −(
ηdtBdt

Ng
2 + Bg)ωg +

ηdtBdt

Ng
ωr +

ηdtKdt

Ng
θ − τg, (4) 

 

Jrω̇r =
Bdt

Ng
ωg − (Bdt + Br)ωr − Kdtθ + τr , (5) 

 

θ̇ = ωr − 1

Ng
ωg. (6) 

 

Table 1 gathers the meaning of the parameters evoked in the (4)-(6). 

 

 

Table 1. Drive train parameter description [7] 
𝜔𝑔 

Generator angular speed 

𝜏𝑔 

Generator torque 

𝐽𝑔 

Generator moment of inertia 

𝐵𝑔 

Generator viscous friction 

𝑁𝑔 

Gear ratio 

𝜃 

torsion angle of the drive train 

𝜔𝑟 

Rotor angular speed 

𝜏𝑟 

Rotor torque 

𝐽𝑟 

moment of inertia of the 

low-speed shaft 

𝐵𝑟 

viscous friction of the low-

speed shaft 

𝐾𝑑𝑡 

torsion stiffness of the drive 

train 

𝐵𝑑𝑡 

torsion damping coefficient 

of the drive train 
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2.3.  Generator and converter subsystem 

In this subsystem we have a mechanical to electrical conversion, the converter and the generator are 

modeled by a transfer function of 1st order: 

 
τg

τgref
=

1

1+1
αgc⁄ s

  (7) 

 

where 𝜏𝑔 is the generator torque, 𝜏𝑔𝑟𝑒𝑓  is the reference generator torque, and 1 αgc
⁄  is the first order system’s 

time constant. The power available at the generator output is given by (8): 

 

Pg = ηg. ωg. τg (8) 

 

𝜂𝑔 denotes the generator’s efficiency. 

By integrating the subsystems described above, the wind system is modeled in the state space as (9), 

(10): 

 

ẋ(t) = A x(t) + B u(t), (9) 

 

y(t) = C x(t). (10) 

 

where x = [ωg ωr θ β̇ β τg]
T  is the state vector, u = [τgref τr βr]T  denote the control input 

vector, 

 

B =

[
 
 
 
 
 
 

0 0 0

0
1

Jg
0

0 0 0
0 0 ωn

2

0 0 0
αgc 0 0 ]

 
 
 
 
 
 

,C =

[
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 

,  

 

A =

[
 
 
 
 
 
 
 
 
 a11

ηdtBdt

NgJg

ηdtKdt

NgJg
0 0 −

1

Jg

Bdt

NgJr
−

Bdt + Br

Jr
−

Kdt

Jr
0 0 0

−
1

Ng
1 0 0 0 0

0 0 0 −2ξωn −ωn
2 0

0 0 0 1 0 0
0 0 0 0 0 −αgc]

 
 
 
 
 
 
 
 
 

, 

 

a11 = −

ηdtBdt
Ng

2 +Bg

Jg
. 

 

 

3. FAULT ESTIMATION SCHEME 

3.1.   Sliding mode observer design 

Consider the system of (11) and (12) which describes a nominal linear system vulnerable to sensor 

and actuator faults:  

 

ẋ(t) = A x(t) + B u(t) + D fact(t) ,   (11) 

 

y(t) = C x(t) + fsen(t). (12) 

 

where, A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n, D ∈ ℝn×q, with p≥q and the matrices B, C and D are full rank. The 

functions fact and fsen present respectively an actuator fault and a sensor fault, fact and fsen are bounded. A 

priori, only the u(t) and y(t) signals are provided, and it is assumed that the system’s state is unknown. The 

objective is to synthesize an observer that allows for an estimated state vector x̂ and an estimated output 

vector ŷ, such that the output error: εy(t) = ŷ(t) − y(t) tends to zero in a finite time when the sliding mode 

is attained, even in the presence of faults.  
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It is shown in [14] that a change in coordinates exists x → T.̂ x such that in the new coordinate 

system, the previous system is written as (13)-(15): 

 

ẋ1 = 𝒜11x1 + 𝒜12x2 + B1 u, (13) 

 

ẋ2 = 𝒜21x1 + 𝒜22x2 + B2u + D2 fact , (14) 

 

y = x2 . (15) 

 

where 𝒜11 is stable 

The coordinate system above will be used as a platform for the design of a SMO. The system of (11) 

and (12) in fact undergoes two transformations, the first one with the matrix T and the second one with T∗ so 

T̂ = T∗. T, T and T∗ can be calculated by (16) and (17), more details can be found in [14], [21]. 

 

𝑇 = [
𝐼𝑛−𝑝 𝑇12

0 𝑇0
]    (16) 

 

𝑇∗ = [
𝐼𝑛−𝑝 𝐿∗

0 𝑇0
𝑇]   (17) 

 

Finally, the resulting structure is: 

 

�̇̂� = 𝐴�̂� + 𝐵𝑢 − 𝐺𝑙𝜀𝑦 + 𝐺𝑛𝜈  (18) 

 

where the gains GI and Gn are calculated as (19): 

 

Gl = T̂−1 [
𝒜12

𝒜22 − 𝒜22
s ] , Gn = T̂−1 [

0
Ip

] (19) 

 

𝒜22
s  is a stable design matrix, let P2 ∈ ℝp×p be symmetric positive definite Lyapunov matrix for 𝒜22

s  then 

the discontinuous injection switching vector 𝜈 is defined by (20): 
 

ν = {
−𝜅 ‖𝐷2‖

𝑃2εy

‖𝑃2εy‖
,                    𝑖𝑓 εy ≠ 0

0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (20) 

 

where 𝜅 is a positive scalar greater than the norm of the function that represents the fault. Ultimately, the 

sensorand actuator faults that have been reconstructed can be roughly estimated [16], [29] by (21), (22): 

 

𝑓𝑎𝑐𝑡 ≈ −𝜅‖𝐷2‖(𝐷2
𝑇𝐷2)

−1𝐷2
𝑇 𝑃2εy

‖𝑃2εy‖+𝛿
 (21) 

 

𝑓𝑠𝑒𝑛 ≈ (𝒜22 − 𝒜21𝒜11
−1𝒜12)

−1𝜅‖𝐷2‖
𝑃2εy

‖𝑃2εy‖+𝛿
 (22) 

 

The matrix D is chosen such that: D=B. 

 

3.2.  Modifications for the observer 

The outputs of the wind turbine have very different orders of magnitude 102𝑟𝑎𝑑/𝑠, 1𝑟𝑎𝑑/𝑠 ,
1𝑑𝑒𝑔 , and 104𝑁.𝑚 respectively for 𝜔𝑔, 𝜔𝑟 , 𝛽 𝑎𝑛𝑑 𝜏𝑔, the reconstructed sensor and actuator faults are given 

by (21) and (22). These two relations shows that the reconstructed faults are highly dependent on the scalar 

gain, whose value is roughly equal to the fault magnitude’s maximum value. The choice of κ changes 

according to the considered output and its value must be chosen with precision by the designer. Therefore, in 

the classical SMO structure, the parameter is taken as fixed, which introduces a limitation for the fault 

reconstruction. 

In fact, choosing a fixed κ does not allow for precise reconstruction of the faults of all the outputs; 

thus, it is necessary to redefine κ to adapt to each output, which is impractical and a priori inaccessible in the 

case where multiple faults affect multiple outputs at the same time. To remedy this problem, a modification 

to the parameter κ is proposed to be replaced by: 
𝛼

‖𝐷2‖
‖𝑃2εy‖ and the switching term become: 
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ν = − 𝛼‖𝑃2εy‖
𝑃2εy

‖𝑃2εy‖+𝛿 
 (24) 

 

where α is a scalar is taken equal to 
1

450
 and δ is a small scalar. 

 

3.3.  Observer design 

The main source of the wind system’s energy is the aerodynamic torque, which is obtained from 

relation (1) and represents the 2nd input for (9), the 1st and 3rd inputs are provided by the wind turbine 

controller. The technical specifications and parameter numerical values of the wind turbine simulated in this 

paper are given in Odgaard et al. [7]. The proposed observer has the structure (18), considering the 

modification of the switching term (24) and putting the system of (11) and (12) in the canonical forms (13), 

(14), and (15). Using an algorithm similar to the one described in [21], the obtained state space matrices: 

 

𝒜 =

[
 
 
 
 
 

−4 1.07e−2 −9.99e−1 0 0 −1.45e−7

−7.06e4 3.88 2.03e−2 0 0 −2.56e−3

49.09 −2.77e−3 −1.42e−5 0 0 0
0 0 0 −13.3 −1.23e2 0
0 0 0 1 0 0
0 0 0 0 0 −50 ]

 
 
 
 
 

, 

 

𝒟 = ℬ =

[
 
 
 
 
 
0 0 0
0 0 0
0 1.81e−8 0
0 0 1.234𝑒2

0 0 0
50 0 0 ]

 
 
 
 
 

, 𝒞 =

[
 
 
 
 
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 

. 

 

The design parameters of the observer are taken as: 

 

𝒜22
s =

[
 
 
 
 
−1𝑒−2 0 0 0 0

0 −2𝑒−2 0 0 0
0 0 −1𝑒−2 0 0
0 0 0 −1𝑒−2 0
0 0 0 0 −1𝑒−2]

 
 
 
 

, and 𝛿 = 1𝑒−6 

 

The gains obtained: 

 

𝐺𝑙 =

[
 
 
 
 
 

3.893 2.03𝑒−2 0 0 −2.6𝑒−3

−2.8𝑒−3 2𝑒−2 0 0 0
−1.5𝑒−2 1 0 0 0

0 0 −13.32 −1.23𝑒2 0
0 0 1 1𝑒−2 0
0 0 0 0 −49.99 ]

 
 
 
 
 

 , 𝐺𝑛

[
 
 
 
 
 
1.234𝑒2 0 0 0 0

0 1.234𝑒2 0 0 0
7𝑒−3 0 0 0 0

0 0 1.234𝑒2 0 0
0 0 0 1.234𝑒2 0
0 0 0 0 1.234𝑒2]

 
 
 
 
 

  

 

 

4. SIMULATION RESULTS 

4.1.   Wind input 

The wind speed profile adopted in the simulation shown in Figure 3 is highly random and issued 

from a wind park’s real wind speed measurement [7]. The wind speed considered covers a range of 3-18 m/s, 

which represents a good coverage of the normal operation of a wind turbine. Depending on the wind speed, 

in the interval (3, 12.5 m/s) the power generated by the wind turbine will be optimized, the wind turbine will 

be controlled to maintain a constant energy production in (12.5, 25 m/s), and if the speed exceeds 

25 m/s the wind turbine will be parked in order to avoid any damage. 

 

 

 
 

Figure 3. The random wind speed profile considered in the simulation 
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4.2.  Sensor fault reconstruction 

The objective is to reconstruct sensor faults, fact (t) is considered null in (11), four sensors are 

implemented to measure generator speed (𝜔𝑔), rotor speed (𝜔𝑟), blade pitch angle (𝛽), and generator torque 

(𝜏𝑔), for each sensor, a fault is proposed, in the last case, the faults are considered simultaneously, the 

magnitude of the fault is chosen in a logical way according to the amplitude of the variable considered, and it 

is noted that the fault profile is a priori unknown by the system. The sensor faults simulated in this paper are 

the following: 

Case 1: Figure 4 (fault case 1) shows the real and estimated faults of the generator torque sensor, 

which starts at 100 s and ends at 255 s; this fault realizes a constant amplitude bias, the maximum real fault 

amplitude is 400 N.m, this value represents 10% of the maximum value of the generator torque in the 

considered interval, the obtained result shows that the reconstructed fault follows faithfully and accurately 

the real fault. 

Case 2: The generator speed sensor fault is reconstructed. It runs from 400 to 600 s as shown in 

Figure 4 (fault case 2). It is an intermittent fault that realizes a constant amplitude bias with maximum 

amplitude of 25 rad/s, which represents 32% of the maximum value of the generator speed in the considered 

interval. The results of the simulation show that the fault is reconstructed accurately with a relative gap that 

does not exceed 2.8%. However, At the moment of a sudden change in the real signal, an overflow is 

observed for the reconstructed signal. It is also noted that when a fault occurs for the rotor speed sensor, a 

perturbation appears in the signal reconstructed for the generator speed sensor fault, and vice versa, due to 

the fact that the two quantities are coupled by (5) and (6). 

Case 3: The rotor speed sensor fault is also simulated. It starts at 1,400 s and ends at 1,600 s as 

shown in Figure 4 (fault case 3), and the fault amplitude is 0.2 rad/s, which is 20% of the maximum 

measured rotor speed value. A part from the overshoot at the time of state change, and the disturbance in the 

interval (400, 600 s) due to the fault in the rotor speed sensor which occurs in this interval, the rotor speed 

sensor fault is reconstructed with good accuracy, the relative gap is: 2.5%. 

Case 4: The fault profile of the pitch position sensor is shown in Figure 4 (fault case 4). Starting at 

1,100 s and ending at 1,200 s, with a maximum amplitude of 0.8°. The real signal and their reconstructed 

values are perfectly confused. 

Case 5: In this case, the sensor faults are considered simultaneously. Figure 5 illustrates this 

situation: the generator speed sensor and rotor speed sensor faults are considered between 400 and 600 s, the 

generator torque sensor fault starts at 510 s and ends at 680 s, and the pitch position sensor fault is considered 

between 520 and 650 s. The simulation results show that the generator torque sensor and pitch position 

sensor faults are reconstructed accurately. The overshoot is still observed for the generator speed sensor and 

rotor speed sensor faults; however, the relative gaps for these two faults are respectively evaluated at 0.08% 

and 0.07%, which shows that the reconstruction accuracy is higher compared to the case of the faults 

considered separately. This allows us to conclude that the effect of the modification brought to the observer, 

already evoked in paragraph 3.2, is more significant in the case of simultaneous faults. 

 

 

 
 

Figure 4. Actual and estimated faults, case of separately faults (fault cases 1-4) 
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Figure 5. Actual and estimated faults, case of simultaneous faults (fault case 5) 

 

 

5. CONCLUSION  

The wind turbine faults affecting the generator torque sensor, generator speed sensor, rotor speed 

sensor, and pitch angle sensor result in non-optimal operation of the wind turbine system. In this paper, a 

sliding mode observer with a modified switching term to fit the different magnitudes of the sensor faults is 

implemented in order to reconstruct in real time the aforementioned faults. To validate the proposed 

modification, five sensor fault scenarios are proposed. These scenarios illustrate two situations: in the first 

one, the faults are considered individually, and in the second one, the faults are considered simultaneously. 

Throughout the simulation, the switching term is taken to be of the same value even though the sensor faults 

have quite different magnitudes. The results of the simulation show that the faults are detected, isolated, and 

reconstructed with precision in the situation of the faults considered individually, except for the overshoot 

observed for the generator speed and rotor speed sensor faults, which disappears in a very short time. In the 

case of the simultaneous faults (case 5), the reconstruction is more precise and done without changing the 

parameters of the SMO, which justifies the modification of the switching term proposed for this SMO. 
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