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 The next generation of wireless cellular communication networks must be 

energy efficient, extremely reliable, and have low latency, leading to the 

necessity of using algorithms based on deep neural networks (DNN) which 

have better bit error rate (BER) or symbol error rate (SER) performance than 

traditional complex multi-antenna or multi-input multi-output (MIMO) 

detectors. This paper examines deep neural networks and deep iterative 

detectors such as OAMP-Net based on information theory criteria such as 

maximum correntropy criterion (MCC) for the implementation of MIMO 

detectors in non-Gaussian environments, and the results illustrate that the 

proposed method has better BER or SER performance. 
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1. INTRODUCTION  

The fifth generation (5G) mobile communication system has several advantages, especially with the 

use of multi-output multi-input (MIMO) receiver-transmitter, leading to lower error probability and or 

increased information throughput, however with orthogonal frequency division multiplexing (OFDM). MIMO 

systems face two challenges at the link layer: channel estimation and signal detection. The signal detection 

problem in the MIMO system involves retrieving the original messages sent by the sender on the receiver side 

when the received message is a noisy signal. The optimal technique for solving signal detection is called 

maximum likelihood estimation (MLE), but it is not scalable and therefore cannot be used for MIMO systems. 

In recent years, approximate message passing (AMP) techniques have yielded interesting results.  

MIMO technology [1]–[3] is critical to modern wireless communication systems to assist the 

developing need for operational power [4]–[6]. In general, a maximum a posteriori detector (MAP) offers 

optimal detection performance but has exponential computational complexity that is impossible for large 

MIMO systems. Linear detectors [7], such as matched filter (MF), zero forcing (ZF) and linear minimum mean 

squared error (LMMSE), have low complexity but perform poorly compared to MAP detectors. On the other 

hand, iterative detection algorithms, for example, AMP [8], the sphere decoder (SD) [9], soft interference 

cancellation (SIC) [10], can achieve good results. They need complete knowledge of channel state information 

(CSI), which is prone to error if the system model does not conform to the actual transmission model or 

provides a flawed CSI and suffers from serious performance deterioration. Over the past decade, deep learning 

(DL) has revolutionized technology in many areas, such as computer vision and speech recognition. 

https://creativecommons.org/licenses/by-sa/4.0/
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Inspired by these successes, deep learning (DL) has recently been used in the design of communication 

systems, In [11]–[20] an overview is presented on various aspects of using deep learning in MIMO 

communications, for example, channel estimation and signal detection, resource management, power control, and 

end-to-end systems. Of all the DL-based applications, MIMO detection is one of the most fundamental.  

DL-based detectors can map the acquired signals into symbols sent from coaching records and operate better than 

common detection algorithms. In general, DL-based detectors can be divided into two categories: deep neural 

network (DNN) data-based DL detectors and model-based detectors based on a model of iterative detection 

algorithms.  

Data-based DL detectors use deep neural network architectures to put in force signal detection 

[21]–[23]. These DNN architectures are model-independent and can retrieve sent symbols in a range of 

eventualities with excessive accuracy. However, such features can be realized at the cost of a giant variety of 

coaching parameters and examples. Model-based DL detectors are primarily based on a model of normal 

iterative detection algorithms, in which each layer of the network adds a single generation with some trainable 

variables [24]–[28]. The ensuing detectors perform better and converge faster than the original iterative 

detection algorithms [26]. However, contemporary model-based DL detectors are built on the assumption that 

the channel mannequin is linear, and CSI is available, which limits their use in complex environments. 

Despite their great success, data-based DL detectors are considered a black box for receiving signals, 

and only experimental evaluation is available to demonstrate their performance. Understanding the internal 

mechanism of model-based MIMO detection and providing an overall design guide is essential. In fact, there 

is a lot of literature on the analysis of internal DNN mechanisms. Pioneering work in [29], [30] has shown that 

any continuous function in a compact set can be approximated with any accuracy by a DNN with a sigmoid 

activation function. Recently, studies [31], [32] proved that DNNs with rectified linear units (ReLU) can also 

be used as a large family of approximation functions. In addition, model-based channel estimation has been 

proven to converge to the least squares error estimator (MMSE) through growing the size of the coaching set 

at [33]. However, MIMO detection is a classification problem, and the model-based channel estimation 

evaluation in Hu et al. [33] cannot be generalized directly to model-based MIMO detection. In this paper, we 

analyze the performance of model-based MIMO detection. Our contributions are as follows: This paper 

describes signal detection and its problems by choosing non-Gaussian noise models, focusing on the signal 

detection algorithm in the MIMO system based on deep learning, and using criteria based on information 

theory. The purpose of this paper is to investigate the techniques of detection in the presence of additive  

non-Gaussian noise on different models of non-Gaussian noise and quadrature amplitude modulation (QAM) 

modulation that can be used to solve the problem of MIMO detection in the presence of non-Gaussian noise. 

We show that model-based DL detectors perform better in non-Gaussian environments and based on 

the use of loss functions based on information theory criteria in different scenarios but require sufficient 

training examples to converge. Therefore, we seek to create a reliable diagnostic method with a small set of 

educational data. Due to the specificity of the noise model, the performance of the DL detector is largely 

determined by the basic iterative detection algorithm, which is usually better than the DL detectors based on 

the MSE criterion in non-Gaussian noise environments. The simulation results confirm our analytical results 

and show the effectiveness of model-based MIMO detection for non-Gaussian noises. 

 

 

2. PRELIMINARIES 

In the following, we briefly survey the MIMO system, QAM Modulation, signal detection in MIMO 

system and maximum correntropy criterion (MCC). What we are stating in this section is a brief description of 

the above definitions and non-Gaussian noise models, which are useful for expressing the problem of signal 

detection in a signal detection and the proposed algorithm. 

 

2.1. Impulse noise model 

Although noise is commonly modeled as Gaussian noise for classical wireless communication 

channels, in this paper, we use the Gaussian mixture model to model impulse noise. Impulse noise is very 

different from Gaussian noise because it is correlated and the samples are based on a distribution of the 

Gaussian mixture. As a non-Gaussian model, the stable distribution of alpha has attracted much attention due 

to its generality for modeling heavy tail and impact noise, which is widely observed in many communication 

channels. function density for statistical analysis no unfortunately, there is no probability density function 

(PDF) for the stable symmetric alpha (SαS) to approximate the PDF of the SαS distribution, we use the 

Gaussian mixed model, and in order to obtain a suitable approximation, we use the kernel density  

estimation (KDE) method based on the Gaussian kernel. in the form of an impulse noise and its approximation 

Figure 1.  
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Figure 1. approximate impulse noise 

  

 

2.2. MIMO system 

As an advantage, MIMO technology improves link reliability and spectral performance. Because these 

advantages are necessary, we need efficient channel estimation methods and signal detection algorithms that 

balance performance and complexity. Demonstrated through a mathematical approach. Each transmitter 

antenna 𝑖 sends a message 𝑠𝑖 that follows different paths with different channel characteristics to reach the 

receiver antennas. In this article, we use the linear model of the MIMO system as (1). 

 

𝑦 = 𝐻𝑥 + 𝑛  (1) 

 

where 𝐻 ∈ 𝒞𝑁𝑟 ×𝑁𝑡  and  𝑦 ∈ 𝒞𝑁𝑟   and  𝑐 ∈ 𝒞𝑁𝑟  and  𝑥 ∈ 𝒜𝑁𝑡  and  𝒜 ∈ 𝒞 are a discrete alphabet. The 𝑦 is the 

received vector and 𝑥 is transmitted signal vector, whereas 𝑛 represents the additive noise. values that 𝑥 can 

be assumed are defined by an alphabet called constellation. The channel matrix 𝐻 can consider different structures 

called channel models. this paper focuses on the independent and distributed Gaussian channel model (IID). 

 

2.3. QAM modulation 

One of the techniques used in communication systems to transmit signals is modulation. Modulation 

is an operation that is applied to a periodic waveform called a carrier signal to change its phase and/or amplitude 

and/or frequency to transmit information. The modulation technique used in this paper is QA), which changes 

the amplitude and phase of the carrier signal. This involves generating a signal in which two carriers with the 

same frequency are shifted in the 90° phase (they are square or orthogonal modulated and combined). On the 

receiver side, the signal can be split thanks to the orthogonal property. A base signal can only send 0 or 1 

because it can show only two positions. Thanks to QAM, different points that are different in phase and 

amplitude can be increased. QAM points in a square grid with distance horizontal and vertical are equal, which 

is called a constellation diagram. Since digital communications use binary data, the number of points that make 

up a constellation is usually 2. The most common forms of QAM are QAM-4, QAM-16, QAM-64, QAM-256. 

In QAM-M, the points along each axis have values equal to: 

 

±(√𝑀 − 1)𝑑/2  

 

where 𝑀 is the power of two and 𝑑 is the minimum distance between two different points in It is a constellation. 

In this paper, we evaluate the performance of different detector models in the presence of non-Gaussian noise 

and QAM modulation of the transmitted signal. 

 

2.4. MIMO detection 

Consider a MIMO system. The detection problem can be defined as retrieving the transmitted signal 

𝑥 ∈ ℛ𝑁𝑡  from a noise system known by the following relation, in which the channel matrix 𝐻 ∈  ℛ𝑁𝑟 × 𝑁𝑡  and 

the noise vector  𝑛 ∈ ℛ𝑁𝑟 are unknown. 

 

𝑦 = 𝐻𝑥 + 𝑛 ∈  ℛ𝑁𝑟 (3) 

 

This is known as "standard linear regression" or "the linear inverse problem" in signal processing 

literature. Multiple symbols can be identified separately or together. In the joint recognition to distinguish a 

symbol, the characteristics of other symbols must also be considered, while in a separate recognition, each 

 

0.25 
 
 

0.20 
 
 

0.15 
 
 

0.10 
  
 

0.05 

 
 

0.00 
D

en
si

ty
 

-30              -20             -10                 0                10               20 
Sample data 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 4, August 2023: 4169-4183 

4172 

symbol is recognized independently. Typically, shared diagnostics perform better than separate diagnostics 

despite their higher complexity. 

The performance-optimized MIMO detector is the maximum probability (ML) detector, but its 

complexity increases exponentially with the number of transmitters. This includes a comprehensive search of 

all symbols for each user equipment (UE). Therefore, it is necessary to find algorithms with the best 

performance/complexity exchange, such as ZF and LMMSE, which have less computational complexity but 

worse performance. Promising detectors with excellent performance and reduced complexity detective 

detectors are based on AMP algorithms. The AMP-based detector approximates the Prior distribution using 

Taylor expansion and the central limit theorem on a dense operational graph and can achieve optimal Bayes 

performance in massive MIMO systems with channel matrices with independent elements. The same Gaussian 

distributions work well. In the following, the detection methods studied in this article are briefly discussed. 

 

2.4.1. Iterative framework   

One of the methods that can be followed to solve the MIMO detection problem is to repeat the 

transmitted signal. These algorithms are based on the number of T iterations. They include two stages of linear 

estimator and non-linear estimator as (4). 

 

𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 {
𝑧𝑡 = �̂�𝑡 + 𝐴𝑡  (𝑦 − 𝐻�̂�𝑡  ) + 𝑏𝑡

�̂�𝑡+1 = 𝜂𝑡(𝑧𝑡)
} (4) 

 

The first step is as input �̂�𝑡 it calculates the current estimate of the transmitted signal  𝑥, the channel 

matrix 𝐻 and the received signal y     ، 𝑧𝑡 which is a linear conversion. The second step is instead a nonlinear 

delimiter applied to 𝑧𝑡 to generate a new estimate o  �̂�𝑡+1  from 𝑥, which is used for the first step of the next 

iteration. The denoiser 𝜂𝑡(·) can be any non-linear function, but usually it applies the same thresholding 

function to each element, a common choice for the denoising function is the minimizer of 𝔼[∥ �̂� − 𝑥 ∥2 |𝑧𝑡] 
that is given by 𝜂𝑡(𝑧𝑡) = 𝔼[𝑥|𝑧𝑡]. The purpose of each iteration is to improve the estimate �̂�𝑡 from 𝑥 over the 

previous iterations Figure 2. 

 

 

LINEAR DENOISER

 
 

Figure 1. A block of the iterative detector that consists of a linear transformation and a denoising section in 

each block 

 

 

2.4.2. Approximate message passing  

a.  AMP 

Another way to almost solve the problem is to detect MIMO through belief propagation (BP). BP 

requires a few update messages, which is 𝒪(𝑁𝑟𝑁𝑡) for each iteration, which is not possible for large MIMO 

systems. To meet this limitation, Tan et al. [34] provided an AMP to solve the MIMO detection problem in the 

Gaussian scenario with less complexity. In fact, AMP uses 𝒪(𝑁𝑟+𝑁𝑡) messages for each iteration. The AMP 

algorithm performs the following steps: 

 

𝐴𝑀𝑃 {

𝑧𝑡 = �̂�𝑡 + 𝐻
𝐻 (𝑦 − 𝐻�̂�𝑡 ) + 𝑏𝑡

𝑏𝑡 = 𝛼𝑡 (𝐻
𝐻(𝑦 − 𝐻�̂�𝑡−1) ) + 𝑏𝑡−1

�̂�𝑡+1 = 𝜂𝑡(𝑧𝑡  ; 𝜎𝑡)

} (5) 

 

AMP is an iterative algorithm that uses 𝐴𝑡 = 𝐻
𝐻  and a 𝑏𝑡 term that is called Onsanger correction term. Both 

𝜎𝑡 and 𝛼𝑡  can be computed using signal to noise ratio (SNR) and system parameters such as the dimension of 

the system or the constellation. 

 

b.  OAMP 

A type of AMP that alleviates the Gaussian channel assumption. The orthogonal AMP (OAMP) works 

for single fixed channel matrices. OAMP is an optimal estimator in terms of MSE with excellent convergence 

properties. In [27], [35], the principle of OAMP is to divide the probability 𝑝(𝑥|𝑦; �̂�) into a series of 

probabilities 𝑝(𝑥𝑖|𝑦; �̂�) repeatedly. The OAMP detector can be written as the following algorithm: 
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𝑂𝐴𝑀𝑃 { 
𝑧𝑡 = �̂�𝑡 + 𝛾𝑡 𝐻

𝐻(𝑣𝑡
2 𝐻𝐻𝐻 + 𝜎2𝐼)−1(𝑦 − 𝐻�̂�𝑡) 

�̂�𝑡+1 = 𝜂𝑡  (𝑧𝑡 ; 𝜎𝑡
2)

} (6) 

 

where it 𝛾𝑡 normalizes coefficient and 𝑣𝑡
2 can be derived from system dimensions and SNR and it is 

proportional to the average noise power at the output of the denoiser at iteration 𝑡. 
 

2.4.3. Deep learning 

Deep learning is a subset of machine learning that tries to use a set of data consisting of pairs of 

attributes, tags {(𝑦(𝑑)، 𝑥(𝑑)) }𝑑=1
𝐷  where 𝐷 represents the number of pairs. Slowly learn some parameters: An 

artificial neural network (ANN) recognizes an unknown �̂� tag associated with new data 𝑦 recognizes the 

network and uses it in many processing layers, where each layer is converted by one It is composed of linear 

and non-linear components. 

There are several benefits to using deep learning in MIMO diagnostics. First, deep learning can 

significantly increase the convergence rate compared to traditional iterative algorithms. Second, DL methods 

can reduce the average recovery error compared to duplicate because they do not require problem modeling 

but learn a mapping directly from input to output. The following DL methods are briefly reviewed in this paper. 

 

a.  DetNet 

Recently, research on MIMO detection has been conducted on machine learning and deep learning 

approaches. Samuel et al. [25], [36] proposed detection network (DetNet), a deep learning network that 

performs well in the Gaussian scenario for small MIMO systems. it is a multi-layer neural network and its 

architecture follows the following steps: 

 

𝐷𝐸𝑇𝑁𝐸𝑇

{
 
 

 
 

 

𝑞𝑡 = �̂�𝑡−1 − 𝜃𝑡
(1) 𝐻𝐻 𝑦 + 𝜃2

(2) 𝐻𝐻 𝐻�̂�𝑡−1

𝑢𝑡 = [𝜃𝑡
(3)𝑞𝑡 + 𝜃𝑡

(4)𝑣𝑡−1 + 𝜃𝑡
(5)]+

𝑣𝑡 = 𝜃𝑡
(6)𝑢𝑡 + 𝜃𝑡

(7)

�̂�𝑡+1 = 𝜃𝑡
(8)𝑢𝑡 + 𝜃𝑡

(9) }
 
 

 
 

 (7) 

 

where [𝑥]+ = 𝑚𝑎𝑥(𝑥،0) is an elemental function called the ReLU activation function. DetNet performance 

can be promising, but architecture has two main issues [37]. First, it is difficult to adapt the network to spatially 

correlated channels or higher modulation schemes. Second, it does not use the known features of duplicate 

methods and therefore leads to unnecessary complexity. At the receiver of a wireless channel, a method known 

as successive interference cancellation (SIC) is utilized to decode two or more packets that are received 

simultaneously (in a normal system, packets arriving at the same time cause an interference). By first decoding 

the stronger signal, taking it out of the combined signal, and then decoding the difference into a lesser signal, 

the SIC is produced [38]. Therefore, with the combination of SIC and DetNet detectors, we can have better 

detection, and the results presented in this article show that good results have been obtained by using criteria 

based on information theory in the DetNet detector and combining it with SIC in non-Gaussian noises. 

 

b.  OAMP-Net 

OAMP-Net, an orthogonal AMP-based deep learning network with good performance in Gaussian 

channel models, was his idea in [26]. uses the best Gaussian denoiser possible as AMP. The network has a strong 

assumption that the system is modelled with unitarily-invariant matrices because it is based on OAMP. For each 

iteration, algorithms only add two parameters to the initial OAMP. The following is a description of OAMP-Net: 
 

𝑂𝐴𝑀𝑃𝑁𝐸𝑇 {

 

𝑧𝑡 = �̂�𝑡 + 𝜃𝑡
(1) 𝐻𝐻(𝑣𝑡

2 𝐻𝐻𝐻 + 𝜎2𝐼)−1(𝑦 − 𝐻�̂�𝑡) 

�̂�𝑡+1 = 𝜂𝑡  (𝑧𝑡 ; 𝜎𝑡
2)

} (8) 

 

c.  OAMP-Net2 

OAMP-Net2, a model-driven deep learning network based on OAMP that is similar to OAMP-Net 

but has more trainable parameters to adapt to various channel environments and take channel estimate error 

into account, was proposed by Zhang et al. in [26]. Unfolding the OAMP detector and adding some trainable 

variables results in the OAMP-Net2. In terms of channel correlation, SNR, modulation symbol, and MIMO 

configuration mismatches, OAMP-Net2 performs noticeably better than OAMP and is more resilient and 

MIMO configuration mismatches.  

 

d.  MMNet 

Over the years, several machine-based or deep-learning detectors have been proposed that have 

yielded promising results in Gaussian channel models, but with reduced performance in real-world channel 
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models with spatial correlation. Khani et al. [35] proposed the MMNet detector, a MIMO detection scheme 

based on deep learning and the theory of iterative soft threshold algorithms. Thanks to a new training algorithm 

that uses time and spectral correlation to accelerate training, MMNet outperforms real-channel approaches with 

the same or less computational complexity. MMNet adds the right degree of freedom to the iterative framework 

and balances the flexibility and complexity of the model. In the Gaussian channel, MMNet achieves the same 

performance as optimal detectors, with twice the complexity of other deep inclination approaches. It is also 

better than a classic linear layout like the MMSE detector. The advantage of MMNet is that the algorithm is 

taught online, and through this, it can be adapted to different channel models. There are two versions of the 

MMNet neural network, one for Gaussian channel matrices and the other for custom channels. For the Gaussian 

channel, the network has the following architecture: 

 

𝑀𝑀𝑁𝐸𝑇 {
𝑧𝑡 = �̂�𝑡 + 𝜃𝑡

(1) 𝐻𝐻(𝑦 − 𝐻�̂�𝑡) 

�̂�𝑡+1 = 𝜂𝑡  (𝑧𝑡  ; 𝜎𝑡
2)

} (9) 

 

2.5. MCC 

The square root of the differences between the corresponding elements of the two vectors is the 

Euclidean distance, or L2 distance. Very helpful: becoming infected [39]–[47]. The best model is found using 

MCC criteria by maximizing the correlation between the model's output and the variable target: 

 

𝑀∗ = 𝑎𝑟𝑔 max
𝑀∈ℳ

𝒱𝜎(𝑇، 𝑌) = 𝔼[𝐺𝜎(𝑒)] (10) 

 

where 𝑀∗  is the optimal model,  𝑌 is the model output and 𝑇 is the target variable, and 𝐺𝜎(𝑒) a Gaussian kernel 

function that is presented as (11): 

 

𝐺𝜎(𝑒) =
1

𝜎√2𝜋
exp (−

𝑒2

2𝜎2
) (11) 

 

𝜎 the kernel function's bandwidth and the error between the target variable and the output model variable are 

both expressed as 𝑒 = 𝑇 − 𝑌. In machine learning and signal processing, the Gaussian kernel is a powerful 

measure since it is a local function of the error variable. In this paper, we are interested in implementing MCC 

and using it in a learning model for signal detection in a MIMO system. Note that the MCC loss function is 

non-convex, so its analysis is fundamentally different from the least squares method. Assume the following is 

the sample set. 

 

𝒟 = {(𝑥𝑖  ،𝑦𝑖)}𝑖=1
𝑁  (12) 

 

In this case, the experimental form 𝕍𝜎(𝑓) is as (13). 

 

𝕍𝜎(𝑓) =
1

𝑁
∑ 𝐺 (

(𝑓(𝑥𝑖)−𝑦𝑖)
2

2𝜎2
  )𝑁

𝑖=1  (13) 

 

In the field of statistical learning, the loss function due to the correntropy criterion is as (14). 

 

𝜓𝜎(𝑒) = 𝜎
2 (1 − 𝔾𝜎  (

𝑒2

2𝜎2
 )) = 𝜎2 (1 − 𝑒𝑥𝑝 (−

𝑒2

2𝜎2
 )) (14) 

 

where 𝜎 > 0 scale parameter. The loss function can be viewed as a variant of the Welsch function, and the 

estimator on the hypothesis space ℋ can be expressed as (15): 

 

min
𝑓∈ℋ

1

𝑁
 ∑ 𝜓𝜎(𝑓(𝑥𝑖  ) − 𝑦𝑖)

𝑁
𝑖=1  (15) 

 

 

3. PROPOSED MODEL 

In this paper, we use the proposed loss function (15) in a detector model based on deep neural 

networks. Our proposed model is based on an OAMP-Net and DetNet network as well as MMNet. With 

powerful learning capabilities, the data-driven DL detector can create a robust and accurate model for achieving 

comparable performance to traditional detectors and be used to detect MIMO. In this section, the performance 

of a data-driven DL detector is analyzed. In general, the main idea of machine learning based signal detectors 
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is based on learning algorithms in which the output of the model �̂�𝑀𝐿  is an estimate transmitted signal vector 

𝑥 with high accuracy and can be formulated as (16). 

 

�̂�𝑀𝐿 = 𝕋(𝑓(𝑥 ، 𝒫)) (16) 

 

This includes 𝑥 information received and CSI, if any, and 𝒫 a set of learnable parameters. The function 

𝕋 was mapped to, 𝑓(∙ ), which is nonlinear. In contrast to classical models, which are quite complex, unfolding 

detectors have been proposed utilizing machine learning techniques. Deep neural networks are used in these 

detectors because they train using nonlinear activation functions. In DetNet and OAMP-Net models, as well as 

MMNet, MSE-based loss function is used in each layer, and as mentioned, in non-Gaussian noise, instead of 

an MSE-based loss function, we use loss theory-based information theory criteria. In this paper, in the above 

detection models, we use the loss function based on MCC criterion, so we examine the loss function in the 

following way (17) and find the following results in the presence of non-Gaussian noise: 

 

𝑙𝑜𝑠𝑠(𝑥، �̂�(𝑙)) =
1

𝑁
∑ 𝜓𝜎(𝑥𝑖 − �̂�𝑖

(𝑙)) =
1

𝑁
 ∑ 𝜎2 (1 − exp (−

(𝑥𝑖−𝑥𝑖
(𝑙)
)
2

2𝜎2
 ))𝑁

𝑖=1
𝑁
𝑖=1  (17) 

 

where �̂�(𝑙) is the output of the network layer (𝑙𝑡ℎ 𝑙𝑎𝑦𝑒𝑟) and 𝑥 is the signal sent and  𝑁 is the number of training 

samples. In this paper, the number of samples is per BATCH. 𝜓𝜎  kernel Gaussian and in this article, based on 

different values of bandwidth, the results are reviewed, and the best bandwidth is selected. The relationships 

in a DetNet network based on the proposed loss function are summarized as (18): 

 

𝑞(𝑙) = �̂�(𝑙−1) − 𝛿1
(𝑙)𝐻𝑇𝑦 + 𝛿2

(𝑙)𝐻𝑇𝐻�̂�(𝑙−1)   

𝑧(𝑙) = 𝑅𝑒𝑙𝑢(𝑊1
(𝑙)𝑞(𝑙) + 𝑏1

(𝑙))  

�̂�(𝑙) = 𝑊2
(𝑙)𝑧(𝑙) + 𝑏2

(𝑙)  (18) 

 

where, 𝛿1 and 𝛿2 are step sizes and �̂�[𝑙] is lst layer output. And the network output is as (19): 

 

�̂�𝑀𝐿
(𝐿) = 𝑠𝑖𝑔𝑛(�̂�(𝐿)) (19) 

 

and the proposed loss function is expressed as (20): 

 

𝑙𝑜𝑠𝑠 =
1

𝑁
 ∑ 𝜎2 (1 − exp (−

(𝑥𝑖−𝑥𝑖
(𝑙))

2

2𝜎2
 ))log (𝑖)𝑁

𝑖=1  (20) 

 

where in 𝑥 is transmitted signal vector and �̂�(𝑙) lst layer output. We now consider a single-layer network and 

assume the channel matrix is fixed. We know the input-output relationship of the wireless channel is as (21). 

 

𝑦 = 𝐻𝑥 + 𝑛 (21) 

 

By placing in the DetNet network relations and assuming that the initial value of the network output is zero: 

 

𝑞(1) = �̂�(0) − 𝛿1
(1)𝐻𝑇𝑦 + 𝛿2

(1)𝐻𝑇𝐻�̂�(0) = 0 − 𝛿1
(1)𝐻𝑇𝑦 + 0  

= −𝛿1
(1)𝐻𝑇𝐻𝑥 − 𝛿1

(1)𝐻𝑇𝑛  

𝑧(1) = 𝑅𝑒𝑙𝑢(𝑊1
(1)(−𝛿1

(1)𝐻𝑇𝐻𝑥 − 𝛿1
(1)𝐻𝑇𝑛) + 𝑏1

(1)) (22) 

 

Assuming 𝑊1
(1)(−𝛿1

(1)𝐻𝑇𝐻𝑥 − 𝛿1
(1)𝐻𝑇𝑛) + 𝑏1

(1)
 is greater than zero, we have (23). 

 

𝑧(1) = 𝑊1

(1)
(−𝛿1

(1)𝐻𝑇𝐻𝑥 − 𝛿1
(1)𝐻𝑇𝑛) + 𝑏1

(1)
 (23) 

 

In this case, the network output is as (24). 

 

�̂�(1) = 𝑊2
(1)𝑧(1) + 𝑏2

(1) = 𝑊2
(1)( 𝑊1

(1)(−𝛿1
(1)𝐻𝑇𝐻𝑥 − 𝛿1

(1)𝐻𝑇𝑛) + 𝑏1
(1)) + 𝑏2

(1)
 (24) 

 

In this case, the network error is as (25): 
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𝑒 = 𝑥 − �̂�(1) = 𝑥 −𝑊2
(1)𝑧(1) − 𝑏2

(1)
  

= 𝑥 −𝑊2
(1)( 𝑊1

(1)(−𝛿1
(1)𝐻𝑇𝐻𝑥 − 𝛿1

(1)𝐻𝑇𝑛) + 𝑏1
(1) ) − 𝑏2

(1)
  

= ( 𝐼 +𝑊2
(1) 𝑊1

(1)𝛿1
(1)𝐻𝑇𝐻 )𝑥 + 𝑊2

(1)𝑊1

(1)
𝛿1
(1)𝐻𝑇𝑛 −𝑊2

(1)𝑊1

(1)
𝑏1
(1) − 𝑏2

(1)
  

= 𝜃1
(1)𝑥 + 𝜃2

(1)𝑛 − 𝜃3
(1)

 (25) 

 

where in (26): 

 

𝜃1
(1) = 𝐼 +𝑊2

(1) 𝑊1
(1)𝛿1

(1)𝐻𝑇𝐻    

𝜃2
(1) = 𝑊2

(1)𝑊1

(1)
𝛿1
(1)𝐻𝑇   

𝜃3
(1) = 𝑊2

(1)𝑊1

(1)
𝑏1
(1) + 𝑏2

(1)
  (26) 

 

we have a proposed loss function as (27). 

 

𝐸 = 𝔼[ 𝜎2(1 − 𝑒𝑥𝑝 (−
‖𝑒‖2

2

2𝜎2
 )] (27) 

 

According to the gradient descent (GD) criterion, to calculate the model parameters, we must calculate the 

derivative of the loss function based on each of the parameters, so we have the direction of the parameter 𝜃2
(1)

. 

 
𝜕𝐸

𝜕𝜃2
(1) =

𝜕𝐸

𝜕𝑒

𝜕𝑒

𝜕𝜃2
(1) = 𝔼[

𝜕

𝜕𝑒
 ( 𝜎2 (1 − 𝑒𝑥𝑝 (−

‖𝑒‖2
2

2𝜎2
 ))] 𝑛 = −𝔼[𝑒𝑥𝑝 (−

‖𝑒‖2
2

2𝜎2
) 𝑒]𝑛 (28) 

 

Now if we do the derivation according to the MSE criterion: 

 

𝐸 = 𝔼[ ‖𝑒‖2
2
] (29) 

 

we have (30). 

 
𝜕𝐸

𝜕𝜃2
(1) =

𝜕𝐸

𝜕𝑒

𝜕𝑒

𝜕𝜃2
(1) = 𝔼[2𝑒]𝑛 (30) 

 

Based on (28) and (30), we see that in (30), the presence of the exponential coefficient of error reduces the 

effect of non-Gaussian noise impact changes, and therefore the effect of impact noise is reduced based on the 

proposed loss function in the DetNet network model. In the same way, the summary of OAMP-Net network 

simplification relations can be expressed as (31). 

 

𝑧(𝑙) = �̂�(𝑙−1) + 𝛾(𝑙)𝑤(𝑙)(𝑦 − 𝐻𝑧(𝑙−1)) (31) 

�̂�(𝑙) = 𝜂(𝑙)(𝑧(𝑙); 𝜃)  
 

where it 𝛾𝑡 normalizes coefficient and 𝑤(𝑙) trainable matrix and denoising function is as follows: 

𝜂 softmax function and the loss function is expressed as (32): 
 

𝑙𝑜𝑠𝑠 =
1

𝑁
 ∑ 𝜎2 (1 − 𝑒𝑥𝑝 (−

(𝑥𝑖−𝑥
(𝑙))

2

2𝜎2
 ))𝑁

𝑖=1  (32) 

 

and for MMNet network we have (33): 

 

𝑧(𝑙) = �̂�(𝑙−1) + 𝜃1
(𝑙)𝐻𝑇(𝑦 − 𝐻�̂�(𝑙−1)) (33) 

 

�̂�(𝑙) = 𝜂(𝑧(𝑙); 𝜎2)  
 

and denoising function is as (34): 

 

𝑙𝑜𝑠𝑠 =
1

𝑁
 ∑ 𝜎2 (1 − 𝑒𝑥𝑝 (−

(𝑥𝑖−𝑥
(𝑙))

2

2𝜎2
 )𝑁

𝑖=1 ) (34) 
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In the following, based on the non-Gaussian noise models and the Gaussian channel model, independent of the 

transmitted signal vector and assuming that the wireless channel is linear, we examine the detector models. 

 

 

4. EXPERIMENTS  

In this section, a computer simulation for testing model-based DL detectors in linear MIMO systems 

is presented. In addition, in the simulation, we assume CSI is known for the model-based DL detector to achieve 

comparable performance. In addition, the simulation results show that the iterative detection algorithm is the 

determining factor that affects the performance of the model-based DL detector. 

 

4.1. Simulation setting 

We know that SNR is expressed in terms of the ratio of signal power to noise power, we assume that 

the signal strength is given by (35). 

 

𝔼[|𝐻|2]𝔼[|𝑥|2] (35) 

 

In which 𝐻 channel matrix and 𝑥 Sent signal are independent of each other. We also assume that the noise 

model based on (36) is in the form of a Gaussian mixture and is presented as (36). 

 

𝑛 = ∑ 𝜆𝑖  𝒩(𝜇𝑖، 𝜎𝑖
2 )𝑁

𝑖=1  (36) 

 

Based on this, and using the calculations related to the variance of the Gaussian mixture of noise power, it can 

be shown as (37):  

 

𝔼[𝑛2] = ∑ 𝜆𝑖𝜎𝑖
2𝑁

𝑖=1 + ∑ 𝜆𝑖  (𝜇𝑖
2) − 𝜇2𝑁

𝑖=1  (37) 

 

where in (38). 

 

𝜇 = ∑ 𝜆𝑖  𝜇𝑖
𝑁
𝑖=1  (38) 

 

Therefore, the SNR can be displayed as (39). 

 

𝑆𝑁𝑅 =
𝔼[|𝐻|2]𝔼[|𝑥|2]

𝔼[𝑛2]
 (39) 

 

To calculate different values of SNR, the values 𝜆𝑖 are assumed to be constant and we also assume that the 

following condition is satisfied: 

 

𝜆1 > 𝜆2 > ⋯ > 𝜆𝑁 (40) 

 

Assuming constant Gaussian distribution variance and modifying the transmitted signal strength, or 

assuming constant Gaussian distribution variance and varying the transmitted signal power, we compute 

various SNR values. In this article, we look at how the second approach is applied. Using KDE, we take into 

account an impulse noise model and produce the noise model based on a Gaussian mixture model KD). 

The performance measures commonly used when working with a MIMO detection problem are BER 

and SER at different SNR values. Both criteria are divisible by the number of errors in the estimated message 

�̂� compared to the original message sent 𝑥 and the number of values sent. BER can be defined as: 

 

𝐵𝐸𝑅 =
𝑛𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑒𝑟𝑟𝑜𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑏𝑖𝑡𝑠
  

 

and SER can be expressed as: 

 

𝑆𝐸𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 𝑖𝑛 𝑒𝑟𝑟𝑜𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑠𝑦𝑚𝑏𝑜𝑙𝑠
  

 

Thus, BER works at the bit level, while SER works in constellation symbols. In the article, only the SER metric 

will be used. 
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4.2. Simulation results 

We use the channel model with Gaussian distribution and independent of the transmitted signal and 

M-QAM modulation and check the results in both 𝑀 = 4 and 𝑀 = 16. We use traditional algorithms based on 

the ZF and AMP models to test against data-driven DL detectors. In Figure 3, we evaluate the SER performance 

of DetNet, OAMP-Net, MMENT detectors and traditional algorithms in the 8×8 Gaussian channel and in the 

presence of non-Gaussian noise with the following model. 

 

𝑙𝑒𝑣𝑦_𝑠𝑡𝑎𝑏𝑙𝑒(𝛼 = 1.2 ، 𝛽 = −0.7) (41) 
 

We assume that a complete CSI is available in the receiver. Figure 3 shows that the SER performance 

of the DetNet detector is significantly better than the other detectors under consideration. Interestingly, Figure 

4 shows that the MMNet detector has the same response at different SNRs because it is implemented based on 

MMSE and in the presence of noise. Non-Gaussian does not converge to an appropriate response, even when 

using the proposed denoise function. Figure 5 shows a comparison between the two loss functions, MSE and 

correntropy in DetNet and OAMP-Net. As shown in Figure 5, the results show that at low SNRs, or in other 

words, at high noise powers, the correntropy loss function has given better results. Figure 5(a) shows the results 

of the comparison of the signal detection of MSE and correntropy loss functions in the DetNet model and 

Figure 5(b) shows the result of the comparison in the OAMP-Net model. 

 

 

 
 

Figure 3. The SER performance of the model-driven DL detector versus SNR compared to other MIMO 

detectors in QAM_16 modulation 

 

 

 
 

Figure 4. The network convergence of the model-driven DL detector versus SNR compared to model 

 

 

We repeat the experiments based on QAM-16 modulation in OAMP-Net, the simulation results of 

which are shown in Figure 6. Next, we perform the simulation based on QAM-64 modulation, which is shown 

in the results in Figure 7. We also compare the results for different modulations in the DetNet network and 

using the MCC loss function Figure 8. Based on Figures 3 and 7, in impulse noise and based on MCC loss 

function, DetNet network offers the best performance, so we conclude that in impulse noise, it is better to use 

DetNet model and MCC loss function. 
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(a) 

 

 
(b) 

 

Figure 5. Compare MCC and MSE loss function for SER performance in (a) DetNet and (b) OAMP-Net 

 

 

 
 

Figure 6. The SER performance of the OAMP-Net detector versus SNR in QAM_64 modulation 

 

 

We continue the results based on the Middleton Class A noise model, which is a Gaussian mixture, as 

follows: equation (8) and examine the performance of the various detector models. We know that the Gaussian 

mixed model is as (42). 

 

𝑓(𝑛) = (1 − 𝜖)𝜂(𝑛) + 𝜖ℎ(𝑛)) (42) 

 

where 𝜖 is small positive constant, 𝜂 is a standard Gaussian function and ℎ is another density function with 

heavier tails. It is clearly visible that, 𝑓 expressed by (42) is a valid density function if 𝜖 in the interval [0,1]. 
The behavior of 𝑓 near the origin is dominated by 𝜂 for suitably small values of 𝜖 and under the assumption 

that ℎ is a bounded function, but for large values of |𝑛| ℎ dominates the behavior of 𝑓 because its tail decays 

more slowly than the tail of 𝜂. The noise model below assumes (43) that: 
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𝑛 = (1 − 𝜖)𝒩(0,1) + 𝜖𝒩(1,10)  
𝜖 = 0.02 (43) 

 

Based on the choice of SNR, we examine the results in non-Gaussian noise distributions and several 

signal detection models primarily based totally at the proposed loss function (14) and compare with the loss 

function based on MSE. Based on Figures 9 to 11, we see that the proposed loss function performs better in 

the OAMP-Net2 network, and in total, the proposed loss function has better results in all three detection models. 

The results of comparing the performance of the two loss functions in the presence of Gaussian mixed noise 

and different detector models are summarized in Table 1. Based on the results of Table 1, we see that it 

performed better in almost all SNR values of the proposed loss function. 

 

 

 
 

Figure 7. The SER performance of the DL detector versus SNR in QAM_64 modulation 

 

 

 
 

Figure 8. The SER performance of the DetNet detector versus SNR in QAM_64-4-8 modulation 

 

 

 
 

Figure 9. Compare MCC and MSE loss function for SER performance in DetNet and Gaussian mixed noise 
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Figure 10. Compare MCC and MSE loss function for SER performance in OAMP-Net and mixed noise 

 

 

 
 

Figure 11. Compare MCC and MSE loss function for SER performance in OAMP-Net2 and mixed noise 

 

 

Table 1. SER Performance for different models of detector in mixed noise 
Detector 

model 

LOSS 

function 

SNR=0 SNR=2 SNR=4 SNR=6 SNR=8 SNR=10 SNR=12 SNR=14 SNR=16 

DetNet MSE 0.39783 0.32740 0.2480 0.16811 0.0983 0.0512 0.0261 0.0149 0.0098 

DetNet MCC 0.3962 0.32604 0.2467 0.16635 0.0971 0.0504 0.0260 0.0152 0.0104 
OAMP-Net MSE 0.3867 0.3436 0.2841 0.2078 0.1273 0.0612 0.0226 0.0076 0.00288 

OAMP-Net MCC 0.3869 0.3373 0.2741 0.1995 0.1189 0.0562 0.0213 0.0074 0.00284 

OAMP-Net2 MSE 0.779 0.6014 0.3740 0.2520 0.1587 0.0711 0.0239 0.0086 0.0034 
OAMP-Net2 MCC 0.434 0.3233 0.2426 0.1635 0.0946 0.0465 0.0213 0.0089 0.0038 

 

 

5. CONCLUSION 

In this article, different detectors based on deep learning when non-Gaussian additive noise is present 

are reviewed, and the results show that the use of cost functions based on information theory criteria has 

provided better performance. We showed that the use of the MCC criterion in detector models based on deep 

learning in non-Gaussian environments and at various signal-to-noise ratios provided better results.  In the 

future, the proposed method can be developed for other channel models with other criteria for Gaussian and 

non-Gaussian noise. 
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