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ABSTRACT

Recent years have seen a great deal of interest in implicit nonlinear systems,
which are used in many different engineering applications. This study is ded-
icated to presenting a new method of fuzzy unknown inputs observer design
to estimate simultaneously both non-measurable states and unknown inputs
of continuous-time nonlinear implicit systems defined by Takagi-Sugeno (T-S)
models with unmeasurable premise variables. The suggested observer is based
on the singular value decomposition approach and rewritten the continuous-time
T-S implicit models into an augmented fuzzy system, which gathers the un-
known inputs and the state vector. The exponential convergence condition of the
observer is established by using the Lyapunov theory and linear matrix inequali-
ties are solved to determine the gains of the observer. Finally, the effectiveness of
the suggested method is then assessed using a numerical application. It demon-
strates that the estimated variables and the unknown input converge to the real
variables accurately and quickly (less than 0.5 s).
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1. INTRODUCTION
It is well-known that equations in descriptor form offer significant flexibility in modelling nonlinear

systems. Indeed, mobile robots, electrical systems, biological processes and several industrial applications are
described by a system of differential and algebraic equations called implicit, singular or descriptor models, see
for example [1], [2] and references therein for some applications. Furthermore, many physical phenomena, like
impulses and hysteresis which are important in circuit theory, cannot be handled properly in ordinary models.
Descriptor representation provides an appropriate way to deal with such problems.

This work focuses on the development of algorithms to estimate the state and unknown inputs (UIs) for
implicit nonlinear models through the application of Takagi-Sugeno (T-S) formalism. In fact, many processes
such as nonlinear auto regressive moving average model with eXogenous inputs (NARMAX), Hammerstein,
Wiener, Hammerstein-Wiener are described by nonlinear systems [3]–[7]. Consequently, the resulting models
are very complex and the analysis and the controller/observer synthesis based on the model becomes more
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dificult to achieve. The standard T-S approach [8], [9] is a powerful and practical modeling tool for these
complex systems. It allows to obtain a model taking into account the non-linearities of the system and offering
a simple and easily exploitable structure from a mathematical point of view which facilitates observer synthesis
and the control design of nonlinear systems, see for example [10]–[14]. Additionally, we distinguish between a
T-S fuzzy model with measurable premise variables (MPVs) and a T-S fuzzy model with unmeasurable premise
variables (UPVs) depending on the nature of the variables involved in the activation functions called premise
variables. Note that in [15], [16] fuzzy implicit model is defined by expanding the standard T-S model [8].

It is well known that industrial processes are often subject to disturbances. They are called UI when
they affect the process input. They can spring from measurement uncertainties, sensor, actuator faults, or noises
due to the environment of the process. Given their harmful effects on the normal operation of the process, their
real-time estimation can be used for the synthesis of a control algorithm which is capable of minimizing these
effects. Due to the increasing demand for reliability and maintainability of automatic control systems, the
synthesis of observers for dynamic models subjected to UIs (called unknown inputs observers (UIO)) is one of
the most important areas of research during the last two decades. Based on different approaches, this theme has
been the subject of numerous theoretical developments. This is especially due to its essential role in the fault
diagnosis and fault tolerant control strategy development. Several research works using different approaches
have been published in [17]–[20]. Many publications have been interested in the design of UIs for the case of
T-S explicit models, we may refer to [21]–[26]. In the case of T-S implicit systems, several UIOs have been
developed. In [27], a design of UIO is proposed for a class of nonlinear implicit systems described by T-S
structure with MPV. The basic idea of the proposed approach is based on the separation between dynamic and
static relations in the T-S implicit model to estimate both the system state and the UIs concurrently. Developing
an UIO for T-S fuzzy systems satisfying Lipschitz conditions is the aim of the work presented in [28]. In
[29] the authors used the result obtained in [27] to develop a new approach making it possible to estimate
simultaneously both non-measurable states and unknown faults in the actuators and sensors for T-S implicit
model with MPV.

Most of the UIOs are synthesized to estimate the state and UI in the case of T-S implicit models with
MPVs. The main contribution of this research is to introduce a novel method of fuzzy unknown inputs observer
(FUIO) design for a class of continuous-time Takagi-Sugeno implicit models (CTSIMs) with UPVs permitting
simultaneous estimation of the unmeasurable states and UIs. Furthermore, as compared to T-S systems with
MPVs, the T-S structure with UPVs can describe a broader variety of non-linear systems. Indeed, one of the
most well-known strategies for converting a nonlinear model to a T-S model is the sector nonlinearity approach
[30]. This transformation usually allows for the creation of a T-S model with UPVs. It should also be noted
that if the output of the system is chosen as a premise variable and this output is affected by disturbances, the
resulting T-S system does not exactly describe the system. T-S models with UPVs are more harder to treat than
those with UPVs. For this reason, few studies are dedicated to this class of models despite of their interest.
The design method in this work is based on the singular value decomposition (SVD) approach and the use of
an augmented system structure. The Lyapunov theory is used to investigate the global exponential stability
of the state estimation error, and the stability conditions are expressed in terms of linear matrix inequalities
(LMIs). Besides, in most works, the authors proposed observers for CTSIMs in descriptor form instead of the
standard TS observer. It is important to keep in mind that designing a descriptor observer is not easy because
the slow dynamic (resulting from the algebraic equations) is directly estimated, which can depend on impulsive
behavior and influence the observer stability. In addition to this, the main drawback of these observers lies in
their implementations. However, the solution we offer in this paper, which is presented in an explicit form,
allows us to avoid this problem.

The paper is organized as: in section 2, the mathematical of the considered CTSIMs subject to UI
to be studied is described. Section 3 presents the suggested method and the main result of this work. More
precisely, the structure of the FUIO is proposed. Besides, the stability analysis, and the convergence conditions
are demonstrated. Finally, a numerical example of this theoretical result and simulation results are given to
show the interests of the proposed design framework.

2. MATHEMATICAL FORMULATION OF THE CONSIDERED MODEL
Let consider nonlinear implicit systems subject to UIs given by (1):
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{
Mζ̇ = A(ζ)ζ +B(ζ)u+ Λ(ζ)d

y = Cζ +Dd
(1)

where ζ ∈ Rn, u ∈ Rm and y ∈ Rp represent, respectively, the state, the input and the output vectors of
the sysytem. The unknown inputs are modeled by d ∈ Rσ . A(ζ) ∈ Rn×n, B(ζ) ∈ Rn×m, Λ ∈ Rn×σ are
nonlinear matrices functions. C ∈ Rp×n, M ∈ Rn×n, D ∈ Rp×σ are real known constant matrices, with
rank(M) = r < n.

By using the nonlinear sector transformation [30], the system (1) can be represented by the CTSIM:Mζ̇ =

q∑
i=1

ρi(β)(Aiζ +Biu+ Λid)

y = Cζ +Dd

(2)

where Ai ∈ Rn×n, Bi ∈ Rn×m, Λi ∈ Rn×σ are real known constant matrices. The activating functions ρi(β)
collect the contribution of all sub-systems.{

Mζ̇ = Aiζ +Biu+ Λid

y = Cζ +Dd
(3)

Along this paper, we assume that the weighing functions ρi(β) depend on unmeasurable premise variables
(state of the system), and satisfy the following constraints:

0 ≤ ρi(β) ≤ 1,

q∑
i=1

ρi(β) = 1 (4)

Assume that d is a constant unknown control input every time interval, as (5):

ḋ = 0 t ∈ [T1, T2], ∀ T1, T2 ∈ R+ (5)

Let’s start by defining the augmented state vector:

z = [ζT dT ]T

As a result, the system (2) can be extended in the augmented form as (6):
Γż =

q∑
i=1

ρi(β)(Ãz + B̃iu)

y = C̃z

(6)

where

Γ =

(
M 0
0 I

)
; Ãi =

(
Ai Λi

0 0

)
; B̃i =

(
Bi

0

)
; C̃ =

(
C D

)
(7)

Let us make the following assumption before giving the main result [1], [31].
Assume that:

H1) (Γ, Ãi) is regular, det(sΓ− Ãi) ̸= 0 ∀s ∈ C
H2) All sub-models (3) are impulse observable and detectable.

H3) rank

(
Γ

C̃

)
= n1 = n+ σ

Unknown input observer for Takagi-Sugeno implicit models with unmeasurable ... (Mohamed Essabre)
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According to hypothesis H3), there is a non-singular matrix
(

Ψ1 Ψ2

Ψ3 Ψ4

)
such that:

{
Ψ1Γ + Ψ2C̃ = I

Ψ3Γ + Ψ4C̃ = 0
(8)

where Ψ1 ∈ Rn1×n1 , Ψ2 ∈ Rn1×p, Ψ3 ∈ Rp×n1 , Ψ4 ∈ Rp×p are constant matrices that may be obtained via

the singular value decomposition of
(
Γ

C̃

)
.

3. THE PROPOSED METHOD AND MAIN RESULT
According to the transformation of CTSIM (2) into the form (6), the suggested FUIO which is not in

implicit form allowing simultaneous estimation of UIs and unmeasurable states of system (2) takes the follow-
ing structure: ẋ =

q∑
i=1

ρi(β̂)(Nix+ L1iy + L2iy +Giu)

ẑ = x+Ψ2y +KΨ4y

(9)

where x represents the estimated vector, the activation functions ρi(β̂) are dependent on the unmeasurable
premise variables and ẑ is the estimated augmented state vector. The unknown matrices Ni, L1i, L2i, Gi and
K must be obtained in the aim of a exponential convergence of ẑ converges to z. The matrices Ψ2 and Ψ4

satisfy (8).
The augmented state estimate error is defined as (10):

e = z − ẑ (10)

by inserting (8) and (9) into (10) we obtain:

e = (Ψ1 +KΨ3)Γz − x (11)

so, error dynamics will be (12):

ė = (Ψ1 +KΨ3)Γż − ẋ (12)

from (6) and (9), we obtain:

ė =

q∑
i=1

ρi(β)(Ψ1 +KΨ3)(Ãiξ + B̃iu)−
q∑

i=1

ρi(β̂)(Nix+ L1iy + L2iy +Giu) (13)

by substituting (11), (13) becomes:

ė =

q∑
i=1

ρi(β)(Ψ1 +KΨ3)(Ãiz + B̃iu) +

q∑
i=1

ρi(β̂)(Nie− Φiz −Giu) (14)

where
Φi = Ni(Ψ1 +KΨ3)Γ + L1iC̃ + L2iC̃ (15)

provided the matrices Ni, L1i, L2i, Gi and K satisfy:

Φi = (Ψ1 +KΨ3)Ãi (16)

and
Gi = (Ψ1 +KΨ3)B̃i (17)

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5035-5046



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 5039

as a result, the system (14) becomes:

ė =

q∑
i=1

(ρi(β)− ρi(β̂))(Ψ1 +KΨ3)(Ãiz + B̃iu) +

q∑
i=1

ρi(β̂)Nie (18)

then, from (8), (16) and (17), we have (19)

Ni = (Ψ1 +KΨ3)Ãi − L2iC̃ + (Ni(Ψ2 +KΨ4)− L1i)C̃ (19)

take

L1i = Ni(Ψ2 +KΨ4) (20)

then
Ni = (Ψ1 +KΨ3)Ãi − L2iC̃ (21)

using the fact that 

q∑
i=1

(ρi(β)− ρi(β̂))Ãi =

q∑
i,j=1

ρi(β)ρj(β̂)∆Ãij

q∑
i=1

(ρi(β)− ρi(β̂))B̃i =

q∑
i,j=1

ρi(β)ρj(β̂)∆B̃ij

(22)

where ∆Ãij = Ãi − Ãj and ∆B̃ij = B̃i − B̃j .
Then, the (18) becomes:

ė =

q∑
i,j=1

ρi(β)ρj(β̂)((Ψ1 +KΨ3)(∆Ãijz +∆B̃iju) +

q∑
i=1

ρi(β̂)Nie (23)

multiplying by
q∑

i=1

ρi(β), (23) can be simplified as (24):

ė =

q∑
i,j=1

ρi(β)ρj(β̂)(Nje+Ωijz +Υiju) (24)

where 
Ωij = (Ψ1 +KΨ3)∆Ãij

Υij = (Ψ1 +KΨ3)∆B̃ij

i, j ∈ {1, ....., q}
(25)

Let ẽ = [eT zT ]T , we have (26) 
Γ̃ ˙̃e =

q∑
i,j=1

ρi(β)ρj(β̂)[Θij ẽ+Πiju]

z = R ẽ

(26)

where

Γ̃ =

(
I 0
0 Γ

)
; Θij =

(
Nj Ωij

0 Ãi

)
; Πij =

(
Υij

B̃i

)
;R =

(
I 0

)
(27)

Thus, the goal is to find the observer gains Ni, L1i, L2i, Gi(i = 1, . . . , q) and K that will ensure the stability
of (26) while attenuating the effect of the input u on z. Therefore, the following theorem can be used to express
the convergence condition of (9).
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5040 ❒ ISSN: 2088-8708

Theorem (Under assumptions 1 and 2): Given λ > 0, the state estimation error between the CTSIM (2) and its

FUIO (9) converges towards zero, if there are matrices P =

(
P1 0
0 P2

)
, Q, Wj , j = 1, . . . , q and a positive

scalar α, such that the following LMIs hold:

Γ̃TP = P Γ̃ ≥ 0 (28)

∆ij =

 σ11 ∗ ∗
σ21 σ22 ∗
σ31 σ32 σ33

 < 0 ∀i, j ∈ 1, ....., q (29)

where 

σ11 = Jj + JT
j + I + 2λP1

σ22 = ÃT
i P2 + P2Ãi + I + 2λΓP2

σ33 = −αI

σ21 = ∆ÃT
ij(P1Ψ1 +QΨ3)

T

σ31 = ∆B̃T
ij(P1Ψ1 +QΨ3)

T

σ32 = B̃T
i P2

(30)

with
Jj = P1Ψ1Ãj +QΨ3Ãj −WjC̃ (31)

The observer gains Nj , L1j , L2j , Gj and K are given by (32)

K = P−1
1 Q

Gj = (Ψ1 +KΨ3)B̃j

L2j = P−1
1 Wj

Nj = (Ψ1 +KΨ3)Ãj − L2jC̃

L1j = Nj(Ψ2 +KΨ4)

(32)

and the attenuation level is
δ =

√
α (33)

where Ψ1, Ψ2, Ψ3 and Ψ4 satisfy (8)
proof: Consider the quadratic Lyapunov function:

V = ẽT Γ̃P ẽ , P = PT > 0 (34)

with
Γ̃TP = P Γ̃ ≥ 0 (35)

and

P =

(
P1 0
0 P2

)
(36)

By using (26), the time derivative of V can be written as (37):

V̇ = ˙̃e
T
Γ̃TP ẽ+ ẽT Γ̃TP ˙̃e (37)

By using (26) and (35), the (37) becomes:

V̇ =

q∑
i,j=1

ρi(β)ρj(β̂)[Θij ẽ+Πiju]
TP ẽ+

q∑
i,j=1

ρi(β)ρj(β̂)ẽ
TP [Θij ẽ+Πiju] (38)

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5035-5046



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 5041

Then

V̇ =

q∑
i,j=1

ρi(β)ρj(β̂)[ẽ
T (ΘT

ijP + PΘij)ẽ+ uTΠT
ijP ẽ+ ẽTPΠiju] (39)

The stability of (26) and the bounded transfer from u to z by α is assured as:

∥z∥2
∥u∥2

< δ, ∥u∥2 ̸= 0, δ > 0 (40)

which leads to:
V̇ + zT z − δ2uTu < 0 (41)

The state estimation error converges exponentially if the following condition holds:

V̇ + zT z − δ2uTu < −2λV, λ > 0 (42)

From (34) and (39), inequality (42) becomes:

q∑
i,j=1

ρi(β)ρj(β̂)(ẽ
TΥij ẽ+ uTΠT

ijP ẽ+ ẽTPΠiju− uT δ2u) < 0 (43)

where
Υij = ΘT

ijP + PΘij +RTR+ 2λΓP. (44)

This implicates
q∑

i,j=1

ρi(β)ρj(β̂)

(
ẽ
u

)T

Jij

(
ẽ
u

)
< 0 (45)

where

∆ij =

 Υij PΠij

PiTijP δ2I

 (46)

Then, from (21), (25), (27), (36) and the use of the following change of variables:
Q = P1K

Wj = P1L2j

α = δ2
(47)

it follows that (46) is equivalent to (29). Finally, according to Lyapunov stability theory, if the LMI conditions
(29) are satisfied, the (24) is exponentially stable.

4. SIMULATION RESULTS
In this section, an academic example is used to show the validness of the proposed method. Consider

a CTSIM defined by (48): 
Mζ̇ =

2∑
i=1

ρi(β)(Aiζ +Bu+ Λd)

y(t) = Cx

(48)
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where ζ = (ζ1, ζ2, ζ3, ζ4)
T ∈ R4, u ∈ R, d ∈ R and y ∈ R2. The matrices numerical values are:

A1 =


0 1 0 0

− 2.50 − 0.75 0 0.03
0 1 − 0.40 0

− 2.50 − 0.75 0 0.08

 ;A2 =


0 1 0 0

− 2.70 − 0.75 0 0.03
0 1.00 − 0.40 0

− 2.70 − 0.75 0 0.08



B =


0
0
0

−0.13

 ; Λ =


0
1
0
0

 ;C =

(
1 0 1 0
0 1 0 1

)
;M =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


The weighting functions are given by: {

ρ1(ζ) = 1− 12.76ζ21

ρ2(ζ) = 12.76ζ21

Under hypothesis H3), the following matrices Ψ1, Ψ2, Ψ3, Ψ4 satisfying (8) were obtained

Ψ1 =


1 0 0 0 0
0 1 0 0 0

−1 0 0 0 0
0 − 1 0 0 0
0 0 0 0 1

 ,Ψ2 =


0 0
0 0
1 0
0 1
0 0

 ; Ψ3 =

(
0 0 0.71 − 0.71 0
0 0 − 0.71 − 0.71 0

)
, Ψ4 =

(
0 0
0 0

)

Using the MATLAB LMI toolbox, The following observer gains result from the resolution of LMIs (29) of
Theorem 1 with λ = 5:

N1 =


−6.084 6.563 − 1.252 − 1.977 0
−130.3 − 132 37.51 30.39 1
−3.172 − 5.628 − 15.55 2.585 0
131.1 123.6 − 39.87 − 48.75 − 1

−1280 − 1196 398.2 320 0

 ;N2 =


−6.734 6.540 − 1.193 −2 0
−138.8 − 132 38.33 29.61 1
−1.968 − 5.628 − 15.73 2.723 0
139.4 123.6 − 40.79 − 47.97 − 1
−1367 − 1196 398.2 312 0



L11 =


−1.253 − 1.977
37.51 30.4

−15.55 2.586
−39.87 − 48.75
389.3 320

 ;L12 =


−1.193 −2
38.33 29.61

−15.73 2.723
−40.79 − 47.97
398.2 312

 ;L21 =


−2.957 2.249
11.46 − 26.88
20.82 − 3.115

−13.20 45.27
51.69 − 283.1



L22 =


−3.017 2.272
10.65 − 26.09
21 − 3.252

−12.28 44.48
42.82 − 275.1

 ;G1 =


−0.452
−5.817
0.883
5.767

−61.41

 ;G2 =


−0.452
−5.817
0.883
5.767

−61.41

 ;K =


5 − 10

−120 54
−4 14
127 − 610

−1127 432


The unknown input d is described as shown in Figure 1, and the following is the definition of the input signal u:

u =

{
t− 2 0 ≤ t ≤ 2
0 otherwise

The initial conditions of the state of the system and FUIO are: ζ0 = [0.1 0.3 0.75 3.03]T , ζ̂0 = [0 0 0 0]T .
The simulation results are given in Figure 1 that shows the unknown input and its estimate and Figures 2(a) to
2(d) which represnte the state variables x1(t), x2(t), x3(t), x4(t) and their estimates. They demonstrate that
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the observer provides a good estimation of unknown states and unknown input. It shows that the estimated
variables catch up rapidly (around 0.5s), and accurately the real variables during the application time of the UI.

Figure 1. Unknown input and its estimate

(a) (b)

(c) (d)

Figure 2. States with their estimates (a) state variable x1(t) and its estimate, (b) state variable x2(t) and its
estimate, (c) state variable x4(t) and its estimate, and (d) state variable x4(t) and its estimate

Unknown input observer for Takagi-Sugeno implicit models with unmeasurable ... (Mohamed Essabre)
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It is obvious from this example that the proposed strategy presents better results than the approaches
given by [27] and [28]. Indeed, the method developed is based on the separation between static and dynamic
relations in the CTSIM. Only systems that ensure the criterion of rank described in the study allow for this
separation. It is also pointed out that, to express the nonlinear system as a CTSIM, the authors took the
weighing functions that are dependent on the measured variables (the output of the system). Due to the use
of the same premise variables by the observer and the model, it is obvious that this class with measurable
premise variables will allow a factorization of the weighting functions ρi(β)) while analyzing the convergence
of the estimate error. Noises affect the output in all practical situations. As a result, the accuracy of the
model describing the system, as well as the results obtained, will be affected. In our situation, we used a
CTSIM with an unmeasurable variable to simulate the rolling disc process. The activation functions used in
our proposed observer are not the same as those employed in CTSIM. Furthermore, the elimination of the
Lipschitz assumption of the weighting functions is another advantage of this method compared to those that
use CTSIM with premise variables satisfying Lipschitz conditions (see [28]) which allowed us to to relax the
LMI conditions.

5. CONCLUSION
This article proposes a new method to design FUIO in explicit structure for a class of CTSIMs with

UPVs. Using an augmented system structure, the suggested FUIO enables to estimate, exponentially , the
UIs and the system states. The Lyapunov theory is used to investigate the convergence of the observer and
the the conditions that ensure the convergence of estimation errors are obtained in the LMIs formulation. A
numerical example is used to verify and confirm the efficiency of the proposed method. As future works, it
would be interesting to extend the present result to the design of a FUIO for a class of discrete-time T-S implicit
models also for a class of time-delay T-S implicit systems and try to relax the LMI conditions and reduce its
conservatism, by using different Lyapunov functions such as poly-quadratic ones.
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