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 Defective bearings in four-stroke engines can compromise performance and 

efficiency. Early detection of bearing difficulties in 4-stroke engines is 

critical. Four-stroke gasoline engines that vibrate or make noise can be used 

to diagnose issues. Using time, frequency, and time-frequency domain 

approaches, the vibrational features of healthy and diseased tissues are 

examined. Problems are only detectable by vibration or sound. The fault is 

identified through statistical analysis of seismic and audio data using 

frequency and time-frequency analysis. Vibration must be minimized prior to 

examination. Adaptive noise cancellation removes unwanted noise from 

recorded vibration signals, boosting the signal-to-noise ratio (SNR). In the 

first of the experiment's three phases, vibrational data are collected. To reduce 

noise and boost SNR, adaptive noise cancellation (ANC) is applied to 

vibration data from the first stage. In the second stage, ANC-filtered vibration 

data is subjected to three studies to detect bearing failure using J48 and 

random forest classifiers for online, real-time monitoring. In this experiment, 

one healthy and two faulty bearings are used. According to a current study, 

the internet of things (IoT) is a promising alternative for online monitoring of 

remote body health. 
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1. INTRODUCTION 

One of the essential machine parts in mechanical parts such as centrifugal pumps, turbines, and engine 

gearboxes. is the ball bearing. Bearings in internal combustion (IC) engine gearboxes play an important role in 

carrying the shaft and spinning at different speeds depending on the engine's operating conditions. The 

gearbox's vibration signals reveal features of the bearing's state. Many researchers rely extensively on vibration 

analysis while trying to diagnose problems with IC engines and other machinery. With the increased use of 

computing technology and its upcoming advancement in conjunction with the internet of things (IoT), as well 

as data science algorithms to online monitor and predict the health of mechanical equipment, in recent years, 

several sensors, such as those relating to vibration, acceleration, temperature, and air pressure, have been 

employed, or multiple sensors of the same type have been combined, to collect real-time operational status data 

pertaining to various mechanical equipment components.  

The research in the area of IC engine and rotating machine condition monitoring is described in the 

following publications. The literature has a great deal of work on failure detection and diagnostics in rolling 

element bearings. Nithin et al. [1] illustrate the applicability of the continuous wavelet transform (CWT) for 

https://creativecommons.org/licenses/by-sa/4.0/
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detecting bearing defects and a machine learning approach with vibrational loads [2]. Joshuva and Sugumaran 

[3] use it in a separate publication. Use the vibration signal as a measurement parameter for diagnosing a failure 

in rolling element bearings. Saini et al. [4] proposed methodologies for wind turbine monitoring and fault 

detection systems.  

According to Neto et al. [5], wavelet decomposition is used to assess bearing health. The literature 

indicates that wavelet transformations have also been applied to machine condition monitoring. An artificial 

neural network (ANN)-based model to classify the machine faults was developed using statistical data and 

speed, which yields better results [6], and Tiboni et al. [7] used the current signature to determine the error. 

Bastami and Vahid [8] the statistical data is very important to differentiate between vibrations and faults, and 

for accurate data extraction, it has been discovered that an adaptive Morlet wavelet can be utilized [9]. 

Gligorijevic et al. [10] decomposes the signal and optimally analyses it with the help of scatter matrices and 

quadratic classifiers. A large-scale wind turbine state-of-the-art monitoring model was presented [11]. Wang 

et al. [12] commented on the need for monitoring devices in wind turbine generator sets and also presented a 

detailed review of the classification procedure and various techniques in different stages that are associated 

with it. Nithin et al. [13] demonstrates the analysis of vibration signals from IC engines by carrying out feature 

extraction. An efficiency of 100% is achieved by Brkovic et al. [14] in early fault detection of rotating machines 

using quadratic classifiers. Hou et al. [15] presented a novel optimized technique for detecting faults early, as 

well as a technique known as the chirp Z-transform, which is used to improve resolution and obtain accurate 

results. Amini et al. [16] details the peculiarities of wavelet analysis for feature extraction in defect diagnostics. 

This research also involves filtering the noise from the acquired noisy signal to increase its signal to noise ratio 

(SNR) before analyzing it to identify the issue [17]. For noise filtration, an adaptive noise cancellation (ANC) 

strategy is used [18]. Ghemari et al. [19] utilized a finite impulse responsive-based adaptive algorithm and 

enhanced the ANN approach [20] to address early fault detection and control. The least mean square method 

is used for error convergence in adaptive filters [21]. As a result, the ANC technique was used to reduce noise 

during the preprocessing phase of this investigation. The filtered (noise-free) acoustic and vibration signals are 

then utilized to identify the bearing problem.  

In the experiment [22], one healthy and two defective bearings were used. Using wireless devices, the 

measured parameters of machine elements located in a remote location can be monitored. For this reason, the 

IoT is utilized. Along with Wi-Fi devices, IoT-compatible sensors are used to collect and transmit measured 

data from machine elements to the cloud. The measured data is collected from the cloud and used to identify 

machine component failures. Huang et al. [23] multi source sensing data fusion model using IoT and big data 

processing technology to diagnose and predict the mechanical fault in two steps, and the proposed technique 

is compared with other popular techniques found in the literature. The machine learning (ML) technique is also 

extended to diagnose and prognose mechanical faults in the manufacturing industry, the Fernandes et al. [24] 

also highlighted the need for these technologies and its advancement in predicting the mechanical faults. 

Ravikumar et al. [25], the classification of IC engine faults based on vibration data using the ML algorithm is 

proposed and for loading eddy current dynamometer is used and achieved 97.5% accuracy. 

The proposed work describes the experimental setup that was conceived and constructed to diagnose 

bearing faults. The system for collecting vibrational data is described. The performance of adaptive filtering 

techniques used in the preprocessing phase to reduce background noise is then evaluated and chosen. Then, 

various signal processing techniques, such as frequency and time-frequency analysis, are utilized to determine 

bearing faults. Each rotating element bearing in good condition has its own unique vibration characteristic. 

Nonetheless, if it develops a defect, the vibrational properties will alter. Using time and frequency analysis, 

this shift is discernible. However, noise generated by other machinery components may have an effect on the 

diagnostic operation. Before analyzing the gathered, measured signal, it is necessary to eliminate the noise. 

Due to the non-stationary nature of noise, an adaptive noise cancellation approach is employed to reduce it. 

The following is the organization of the manuscript: section 1 introduces details and emphasizes the 

significance of the problem statement. Section 2 explains the recommended approach to the problem, followed 

by section 3's description of the experimental setup and data gathering system. Section 4 includes a graphical 

representation of the results and discussion, while section 5 concludes. 

 

 

2. PROPOSED METHOD 

The proposed method involves three different stages: the first stage is to collect the graphical engine 

data from the vibration sensor. The acquired waveforms are subjected to wavelet analysis in the second stage 

to extract their features. In the next stage, the extracted data is stored in the cloud, and the same is used to train 

the machine learning model to classify the faulty and healthy bearings of a 4-stroke engine. Utilizing effective 

and cutting-edge signal processing techniques, the current work's goal is to identify and classify problems in 

rotating machine components (bearings and gears), as mentioned in Figure 1. Furthermore, when ThingSpeak 
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is used as an IoT platform to visualize and analyze data, the observed data is saved in the cloud and can be 

retrieved on demand. 

A vibration sensor (accelerometer) and an appropriate data collection system for the acquisition of 

vibration data make up the experimental bearing fault diagnostic setup used for fault diagnosis in bearings. 

Using a portable sound analyzer that consists of a sound sensor (microphone) and an appropriate data collection 

device, the acoustic data from this experimental setup for bearing failure diagnosis is collected. Both healthy 

and damaged (faulty) spinning machine elements are collected as measurement signals from the experimental 

setup. The captured signal is then pre-processed to eliminate the background noise. At this point, the de-noising 

approach is used with the obtained signals to use an adaptive filter to filter out the noise. In the following stage, 

the analysis procedure uses the filtered measuring signals (vibration and acoustics) to find problems in rotating 

machine components. A comparison between the healthy element signal (signal obtained from healthy 

elements) and the defective element signal is done to find problems in the machine elements (signal acquired 

from defective elements). On acquired signals, time, frequency, and time-frequency analyses are performed 

for this purpose. Different classifiers are then employed to categorize bearing defects. Algorithms for machine 

learning classifiers are employed for this purpose. The classifiers are fed with statistical information from the 

measured vibration signals, which is used as a training component to hone the system's ability to identify 

bearing defects. 

 

 

 
 

Figure 1. Data acquisition and ML classifier working model 

 

 

2.1.  Feature extraction using CWT 

The statistical parameter data is fed into the classifiers for training. Table 1 lists the five statistical 

parameters that were used for this purpose. The crest factor, kurtosis, root mean square (RMS), variance, and 

mean are the five features chosen. The signals are split into 0.1-second windows with 1,000 samples for each 

data point. Each set of samples has six features that are retrieved and used in the categorization process. 

 

 

Table 1. Statistical parameter data used for classification 
Static Parameters Healthy bearings Defect bearing type I Defect bearing type II 

Root mean square 0.0124 0.0264 0.0204 

Mean 0.6632 1.625 1.04 

Crest factor 5.741 6.628 7.0231 

Kurtosis 3.854 9.0123 5.741 

Variance 0.0743 6.825 4.213 
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2.2.  Machine learning model as classifier 

In this study, a method for identifying faults in rotating machine bearings using machine learning 

classifiers was presented. The statistical characteristics used in the defect categorization technique are feature 

vectors. Kurtosis, mean, variance, RMS, and crest factor are all studied in all 17 samples using a 1-s window 

with 167 training samples and 56 healthy bearings with type I and type II defects, respectively. The algorithms 

are trained on the testing sample using 9-fold cross-validation. The statistical data is computed and retrieved from 

the observed vibration signal and provided as an input to the classifiers in the first stage. The classifier algorithms 

are trained using the statistical parameters provided and then use the training data to classify bearing faults.  

Here J48 Classifier is preferred to analyze the extracted features, which split the data into subsets to 

make the analysis easy and also helps in filling the missing attributes with a very low error rate, which improves 

the overall performance of the model. Because the data is so large, the random forest technique is also used to 

classify the bearing faults, and the expected accuracy is higher than that of other techniques found in the literature. 

The steps for fault categorization in bearings are as follows: i) the vibration measurement signal is provided by 

the bearings; ii) from the detected vibration signal, statistical statistics (transient parameters) are computed 

(feature extraction); iii) the training data for the classifiers is limited to a few statistical factors; iv) these 

statistical parameters are used to teach the system or algorithm how to use the machine learning classifiers; and 

v) the training data are used to classify faults, and the confusion matrix is used to figure out how well the faults 

were classified. 

 

2.3.  Interface to ThingSpeak 

The Arduino IDE is used to accept sensor data from a variety of sensors. The ESP8266 Wi-Fi module 

is designed to store data via ThingSpeak in the cloud. The data is retrieved from the sensors every 15 seconds. 

In addition, the ThinkTweet application is used to link a Twitter account to the ThingSpeak so that an alarm 

message can be sent to the user if the vibration level increases. 
 

 

3. EXPERIMENTAL SET-UP AND DATA ACQUISTION SYSTEM 

The constructed experimental setup as well as the instrumentation system are presented in this part. 

The designed instrumentation system is used to measure the vibration signatures of healthy and faulty bearings. 

A 4-stroke petrol engine is mounted over the experimental table to attach the bearings under test, and the rolling 

shaft of the bearing is stretched. The test bearings are attached to the engine shaft, reducing undesired 

vibrations. The accelerometer is attached to the top of the gearbox to prevent undesirable jerky movement 

during the high-speed rotation. An accelerometer (PCB 325C03), as well as an NI data acquisition (DAQ) card 

(Ni9234), and a computer interface are used to collect the signals from the sensors. A data acquisition card 

with signal conversion and amplification capabilities is known as a DAQ card. LabVIEW and MATLAB are 

installed on the computer. 

The signals that are being measured are captured and recorded, and the signals that have been recorded 

are then used in LabVIEW and MATLAB to analyze and diagnose problems. The bearings from the 6203-ZZ 

series were utilized in the experiment for testing and analysis. The bearing specifications can be found in Table 2. 

To facilitate understanding, each tested bearing has been assigned a bearing number, as shown in Table 3.  
 

 

Table 2. Specification of ball bearing 
Contact angle (α)  00 

Ball diameter (d) 6 mm 

No. of balls (Nb) 8 
Pitch dia (D) 30 mm 

 

Table 3. Type of bearings and defects 
Bearing No Type of Fault Type of Defect 

B1 Healthy Bearing No defect 

B2 Outer race fault Cut 
B3 Inner race fault Hole 

 

 

 

3.1.  Adaptive noise cancellation algorithm selection and performance comparison 

In this section, the experimental setup's noisy vibration signal is treated with three ANC techniques. 

SNR and mean square error (MSE) are used to compare the three ANC methods. The best ANC algorithm is 

used to preprocess experimental vibration data. Least mean square (LMS), wavelet, and EMD were tested as 

ANC techniques. Using good bearing vibration signals as a reference, damaged bearing noise is minimized. 

Figure 2 shows the filtered vibration signal before and after using the three ANC techniques. Table 4 

compares the results. For ANC, 150 filters and 0.01 steps were used. ANC approaches are evaluated using the 

vibration signal from a Type-1 defective bearing. The graph shows the vibration signal before and after ANC 

installation. SNR and MSE compare performance. Calculating SNR and MSE uses MATLAB. EMD is the 

best of the three ANC algorithms in the table. EMD de-noises experimentally recorded vibration information 

for more accurate problem diagnosis. Noise is removed before signal processing begins. 
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Table 4. Performance comparison of de-noising techniques 
ANC SNR MSE 

Wavelet 11.084 0.0241 
learning management system 13.145 0.0364 

Empirical mode decomposition 14.896 0.0164 

 

 

 
 

Figure 2. A judgement of advance noise cancellation performance 

 

 

4. RESULTS AND DISCUSSION 

The vibration signal of an IC engine is analyzed in this part so that problems with the bearings may 

be diagnosed and the various types of problems are classified. In this section, the vibration signal of an IC 

engine with type-I and type-II flaws is isolated from the vibration signal of the healthy bearing so that it can 

be analyzed in both the time and frequency domains, as shown in Figures 3 to 5, respectively. The statistical 

data that is produced is then saved in the cloud so that it can be analyzed in the future. 

 

4.1.  Time analysis using vibration signal 

Figure 3 depicts one of the vibration signal samples that were recorded in the time domain for each of 

the different conditions of the bearing. It has been determined, by analysis of signals in the time-domain, that 

the level of acceleration rises as the fault becomes more severe. A time-domain technique for vibration signal 

analysis gives the overall vibration level but does not provide any diagnostic information. 
 

 

  
 

 
 

Figure 3. Vibration filtered signal from healthy bearing, type 1 defect and type-2 defect condition 
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Figure 4. Frequency of vibration signal condition from healthy, type I defect and type II defect bearing 

 

 

  
 

Figure 5. FFT comparison of vibration signal from healthy bearing (B1), type-1 and  

type-2 defect bearing (B2) 

 

 

4.2.  Statistical analysis using vibration signal 

The statistical parameters are calculated using mathematical methods using filtered vibration and 

acoustic signals from good and defective bearings. According to the comparison in Table 5, in defective 

bearings, vibration signal data statistical parameter values differ from those in healthy bearings. This tool 

detects irregularities in faulty bearings. 

 

 

Table 5. Statistical parameter comparison for vibration signal 
Sl No Statistical parameter Good Bearing Condition Type 1 Fault bearing condition Type 2 Fault bearing condition 

1 RMS 0.0135 0.0262 0.0235 
2 Peak Value 0.0774 0.1745 0.2658 

3 Mean 0.6614 1.6258 1.038 
4 Skewness 0.0054 0.8524 0.1278 

5 Crest Factor 5.7485 6.6259 7.149 

6 Variance 0.0788 6.8451 4.2784 
7 Kurtosis 3.8546 9.0234 5.893 

8 Clearance Factor 716.323 665.23 624.35 

9 Standard Deviation 0.0125 0.0265 0.0287 
10 Shape factor 1.326 1.7895 7.458 

11 Impulse Factor 7.4522 10.235 9.5687 
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4.3 Frequency analysis using vibration signal 

Another method for detecting bearing faults is to use a frequency analysis methodology that uses 

vibration signals. The fast Fourier transform (FFT) is used to analyze faults in this method. The FFT is used to 

convert a time-domain vibration signal technique to a frequency-domain vibration signal technique. As a result, 

the frequency spectrum of collected vibration signals is compared using FFT. Figures 4 illustrate the FFT of 

good, type I, and type II faulty bearings, respectively. Figure 5 shows a comparison of the vibration signal from 

a good bearing (B1) and a type-1 defective bearing (B2) in terms of frequency range (B2) and also compares 

the frequency spectra of a good bearing (B1) and a type-2 defective bearing (B3). 

At the bearing characteristic frequency (BCF), the difference in the frequency spectrum between 

healthy and problematic bearings can be detected. The BCF is also known as the outer race defects frequency 

(ORDF). The BCF is calculated using the formula: 

 

𝑂𝑅𝐷𝐹 =
𝑁𝑏

2
(
𝑁

60
) (1 −

𝑑

𝐷
𝑐𝑜𝑠𝛼)  

 

where 𝑁𝑏 is total number of balls, N is speed of rotational in rpm, d is bearing ball dia, D is Pitch dia of bearing 

and α is contact angle of the bearing. 74.67 Hz is the calculated BCF. As a result, the FFT of vibration signals 

is compared at a frequency of 74.67 Hz. At BCF, Figure 6 compares the frequency spectrum of good and a 

Type 1 faulty bearing. 

In Figure 6, the presence of a defect is indicated by the presence of an amplitude difference at the 

ORDF. Since the ORDF is calculated based on how the bearings are shaped, any difference in amplitude 

measured at this frequency indicates a problem. 

 

 

  
 

Figure 6. FFT contrast of vibration signals from good bearings (B1), type-1 and type-2 fault bearings (B2) 

 

 

4.4.  The corresponding value of scale with respect to BSF 

The scale value for a 74.66 Hz vibration signal is 277. Consequently, vibration signal scalograms are 

observed in about 277 samples. The difference is clear around this scale value. The scalogram intensities of 

defective and healthy bearings differ. Scalograms around expected scale values change colors and patterns. 

Variations in intensity indicate bearing difficulties, and the details are tabulated in Table 6. FFT analysis of 

vibration waveforms can reveal bearing issues. 

 

 

Table 6. The corresponding value of scale with respect to BCF 
Bearing No Type of fault BCF Calculated frequency in Hz Scale value for acoustics 

B2 
Defect of outer race 

type I bearing 
Defect of outer race frequency 

(ORF) 
74.66 277 

B3 Outer fault type-2 
Outer race defect frequency 

(ORF) 
74.66 277 

 

 

4.5.  FFT analysis of data stored in ThingSpeak cloud server 

The transistor stores the vibration data of a healthy bearing and a defective bearing. The FFT is applied 

to both healthy and defective bearings. The frequency spectra for both bearings are shown in Figure 7. Though 

this work shows the on-line monitoring of measuring parameters from the bearing set-up, the fault analysis and 

diagnosis are done off-line. 
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Figure 7. Comparison of FFT of vibration signal from healthy and defective bearings 

 

 

5. CONCLUSION 

Adaptive noise cancellation is used to improve bearing failure analysis and identification in the current 

experimental study's preprocessing step. This study uses vibrations to detect bearing defects. At first sight, the 

statistical data comparison reveals the time analysis problem. The ORDF FFT comparison in frequency 

analysis shows the problem. Wavelet analysis gives temporal and frequency information. This research 

produced a more effective and reliable bearing fault detection method. Machine learning algorithms classify 

bearing problems using statistical markers. Random Forest outperforms J48 in detecting bearing flaws. The 

experiment shows the necessity for IoT to monitor bearing measurement parameters online. This paper shows 

that spinning machine components can be checked remotely using IoT. This study shows how to use cloud-

based vibration data to discover bearing issues. ThingSpeak is used to alert users when measured data exceeds 

a threshold. Despite showing online monitoring of bearing parameters, fault investigation and diagnosis were 

done offline using ThingSpeak data. In order to make this system capable of online fault diagnosis, the work 

can be upgraded. 
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