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 The fast emerging of internet of things (IoTs) has introduced fog computing 
as an intermediate layer between end-users and the cloud datacenters. Fog 

computing layer characterized by its closeness to end users for service 
provisioning than the cloud. However, security challenges are still a big 
concern in fog and cloud computing paradigms as well. In fog computing, one 
of the most destructive attacks is man-in-the-middle (MitM). Moreover, MitM 
attacks are hard to be detected since they performed passively on the network 
level. This paper proposes a MitM mitigation scheme in fog computing 
architecture. The proposal mapped the fog layer on software-defined network 
(SDN) architecture. The proposal integrated multi-path transmission control 

protocol (MPTCP), moving target defense (MTD) technique, and 
reinforcement learning agent (RL) in one framework that contributed 
significantly to improving the fog layer resources utilization and security. The 
proposed schema hardens the network reconnaissance and discovery, thus 
improved the network security against MitM attack. The evaluation 
framework was tested using a simulation environment on mininet, with the 
utilization of MPTCP kernel and Ryu SDN controller. The experimental 
results shows that the proposed schema maintained the network resiliency, 

improves resource utilization without adding significant overheads compared 
to the traditional transmission control protocol (TCP). 
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1. INTRODUCTION  

Cloud computing has emerged as a significant trend in the field of information technology (IT) over 
the last twenty years. It encompasses various concepts, including the internet of content (IoC), internet of 

services (IoS), and internet of things (IoT), as part of its vision for the future development of IT, and supported 

by an expanding network infrastructure, where content, services, and things have become the main orientation 

of the new vision. The emergent growth in wearable devices, mobile devices, and sensors, have impacted end-

user prospects, such that they are no longer satisfied with a traditional service provisioning paradigm. Custom 

quality of service (QoS) expectations for provisioned services are increasing and there is a rising expectation 

of the potential capability of cloud systems as an IT infrastructure to help create new value. 

Recently, the IoT has gained significant attention and interest in recent years and is considered one of 

the most intriguing and rapidly growing areas in the current century. It converts trivial items into intelligent 

ones and enables communication and interaction among them [1]. This rapid development of IoTs has spawned 

many applications in numerous industries [2]. Many useful applications have been developed based on IoT 
include automotive, home automation, healthcare, and industry, among others [3]. In addition, communication 
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between IoT sensors/devices imposed new restrictions on the entire system's architecture, like privacy, traffic 

load, latency, and security [4]. Thus, fog computing and edge computing have been evolved to minimize the 

restrictions and limitations of cloud computing as well as to maintain the customers’ high expectations. Fog 

computing is a novel computing paradigm that got considerable interest in recent years. It was firstly offered 

by Cisco in 2013 [5]. Figure 1 illustrates the fog computing paradigm layered hierarchy, the lowest layer 

represents the edge devices, e.g., mobile devices, sensors, wearable devices. The middle layer comprises fog 
nodes (network nodes) that provide storage, network connection, and computing functions. The top layer 

represents the cloud data center (CDC). Fog computing layer was primarily identified by its proximity to the 

edge devices and the processing capabilities it have that matched the restricted resources of the edge devices 

[6]. As a result, fog nodes is beneficial in time-sensitive services and real-time applications, in the sense that, 

fog nodes can perform analysis on data supplied by the edge devices (such as mobile devices) and then send 

back a real-time result to the edge devices [7]. 

 

 

 
 

Figure 1. Fog computing hierarchy 

 

 

The existence of direct connections between fog nodes had a significant impact on the data 

transmission efficiency in the fog layer network as well as between the edge devices [8]. Thus, it is urgently 
needed to implement flexible network traffic management that enhance the network efficiency and improve 

the network resources utilization in this layer. The successful implementation of software-defined network 

(SDN) in data centers prompted the usage of SDN in fog computing since they share similar goals of achieving 

both network resilience and high throughput [9]. SDN emerged as a promising technique compatible with fog 

computing networks for managing network traffic [10]. Moreover, SDN introduced additional capabilities, like 

its able to operate the network programmatically, management and centralized network control. SDN 

fundamental design divided both of the control plane and the data plane, allowing the SDN controller to 

automatically operate the whole network in a dynamic and adaptable manner. The SDN controller receives 

packets from the data plane in a continuous manner and sends the corresponding forwarding rules to the data 

plane. OpenFlow is a well-known protocol for SDN that enables remote management of network devices 

routing tables [11]. 

Since both SDN network topologies and fog computing share the same architecture characteristics, 
both are susceptible to the same risk. There are different types of attacks that can compromise SDN-based 

networks, including denial of service (DoS) and man-in-the-middle (MitM) attacks. These security threats can 

potentially disrupt the normal functioning of SDN networks and cause significant damage to the overall 

infrastructure [12]. It is worth mentioning that MitM attack is recognized as the most popular threat in fog 

computing [13], since the fog computing architecture is intrinsically similar to the MitM attack technique as 

shown in Figure 2, i.e., fog nodes reside between CDC’s servers and edge devices [14]. Moreover, it is clear 

that fog nodes are closer to the attacker and have less computational power than cloud servers [15]. 

The static nature in traditional networks architecture makes attacks easily compromise the network 

and allows the attacker collect knowledge about the network states before delivering the attack effectively. 

Moreover, traditional intrusion detection systems (IDSs) and firewalls may be circumvented using malwares 

that are commonly available on the internet. Thus, moving target defense (MTD) [16] emerged as a novel 
security approach that tries to create asymmetric uncertainty on the attacker side. This increased the complexity 

and expense of conducting attacks and reduced the network vulnerability exposure as well. MTD approach 

seeks to change the target attack surface continually and randomly (by changing the flows routes, IP addresses, 

and port numbers).  
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Multipath routing [17], [18] is an existing technique that permits the simultaneous use of many routes 

in a network. It is worth mentioning that recent edge devices (e.g., mobile devices) had various network 

interfaces, including Wi-Fi and cellular that allowed the adoption of this multipath routing. Accordingly, 

multipath transmission control protocol (MPTCP) has been evolved as a modification to the traditional 

transmission control protocol (TCP) that enabled two hosts to interact simultaneously through several TCP 

connections created on various interfaces [19]. It is worth mentioning that recent applications and operating 

systems kernels have enabled MPTCP implementation. In addition, it works well in current existing networks, 
because of MPTCP backward compatibility, such as the internet, where regular TCP is used. 

 

 

 
 

Figure 2. Fog computing threat model 

 

 
In the last decades, numerous research studies have been conducted on fog computing implementation, 

particularly for IoT networks. The following related works highlighted some research proposals covering the 

adoption of SDN in fog computing and its associated security solutions. Li et al. [20], described MitM attacks 

against SDN networks that mainly depend on TLS protocol to protect the control channels between SDN 

controllers and SDN switches. In addition, they recommend a small countermeasure exploiting Bloom filters 

to identify this attack. However, if an OpenFlow connection between a switch and a controller in one path has 

been intercepted and an attacker updated fields that are not recorded in the Bloom Filter, their approach will 

not be effective. 

Aliyu et al. [21] described a strategy for identifying and preventing intrusions, or MitM attacks. Each 

node in the IDS looked for fog nodes and calculated their arrival time to determine their response. MitM attacks, 

e.g., eavesdropping and packet alteration, were avoided by the intrusion prevention system's (IPSs) using 
lightweight encryption and decryption. However, their method was unsuccessful in a busy environment where 

packet delivery periods might differ widely. 

Liu et al. [22] created a public-key cryptography-based cloud computing security framework; 

traditional public key infrastructure (PKI) based encryption. However, this approach not suited for fog 

computing [23] due to its high computational and communication overheads. To ensure the security of its nodes 

and data transmission, fog computing cannot rely solely on cryptographic techniques due to their demanding 

calculations and the limited resources available. 

Chliah et al. [24] presented a method for defending SDN networks against MitM attacks. In their 

solution, both SDN and MPTCP have been implemented. In addition, the MPTCP sub-flow routing was 

controlled by pathfinder and secure load sharing (SLS) algorithms. However, while their solution employed 

MPTCP to split traffic across different pathways, it did not provide automated network modifications to prevent 

network scans by attackers. In addition, if an attacker captured both MPTCP sub-flows, the whole 
communication could be successfully intercepted. 

To enhance the mutation efficiency and increase the complexity of scanning and poisoning attacks, 

Zkik et al. [25] modeled SDN topologies, to determine acceptable routes automatically two new modules were 

built automatically using a pathfinder method. However, due to the deterministic nature of these multipath 

mutation algorithms, an attacker can determine the mutation path, placing at risk any packets transported along 

this path. In addition, not all accessible routes between source and destination were utilized. 
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Babar et al. [26] created an authentication system for IoTs that is resistant to eavesdropping and MitM 

attacks. Due to the limited computational power of IoT devices, it has been proposed to shift the required 

calculations to registration authority (RA) devices with higher computational capabilities. A suitable RA device 

in a fog computing environment is the fog node. However, if the attacker was able to abuse the fog node, the 

complete network is now vulnerable. 

Several studies [27] have been done in the framework of protecting IoTs against MitM attacks. The 
most typical countermeasures for MitM risks were mutual authentication, encryption, and ensuring infected 

servers have been separated. As there are no relevant standard security standards for fog computing, these 

methods have not been modified for fog computing. In addition to authentication and encryption, other 

established security methods such as secure socket layer (SSL) and transport layer security (TLS) have been 

employed to safeguard data flow between fog nodes. Despite being one of the most widely used encryption 

systems, TLS still has flaws in both its cipher suites and the protocol. 

MTD was developed in [28] to prevent inside and outside attacks on the SDN. In this case, the MTD 

method reduces threats by integrating MTD with the SDN environment and employing the hosts' virtual IP 

addresses. However, moving between multiple pathways causes a delay, and not all paths are being used. 

This paper proposes a framework for mitigating MitM attacks in fog computing networks. As 

demonstrated in Figure 3, the proposed solution integrates SDN and MPTCP to harden the attack surface to 

MitM attacks. Moreover, the proposed framework incorporates MTD in two distinct ways. First, random host 
mutation (RHM) is accomplished by constantly switching the IP addresses of hosts. Second, random route 

mutation (RRM) [29] is achieved by constantly switching the routes between destination and source hosts. In 

addition, the suggested framework utilizes a reinforcement learning (RL) algorithm to determine the most 

efficient routes between source and destination hosts, hence minimize the latency and improve network 

throughput. This work's major objective is to avoid MitM attacks without incurring additional overheads on 

the network i.e., optimize the resource utilization. The rest of the paper is structured as follows: section 2 

presents the proposed framework schema, including security considerations. Section 3 discusses the attack 

scenario, performance evaluation, and framework security schema implementation. Finally, section 4 

concludes the paper. 

 

 

 
 

Figure 3. Fog-to-cloud architecture 

 

 

2. METHOD 

This study suggests a MitM reduction strategy that combines dispersed fog nodes in the fog computing 

layer with MPTCP, SDN, MTD, and RL-based routing agents. This deployment is made to handle various 

network configurations and apps. The working setting and the suggested remedy will be covered in more detail 
in the following subsections. 

 

2.1.  Working environment 

The working environment used in the study is depicted in Figure 3, comprising three levels: “the cloud 

layer” as the first level, “the fog layer” as the second level, and “the edge devices layer” as the third level. The 
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edge devices, which include smartphones, IoT devices, sensors, and other gadgets, are present in the bottom 

layer. The data that is gathered and sent to the CDC servers by the fog nodes through the edge devices is 

thought to be of exceptional quality. The fog layer, which serves as a bridge between the cloud and edge 

devices, is the intermediate layer. Networking fog computing devices that handle data offloading, network 

connection, and fog computing services make up this layer. The CDC servers were represented by the top layer. 

A collection of edge devices covering a certain region and services may be offered by each fog node put at the 

network's edge. 
The primary focus of this research is on the fog layer, which is the second layer of the working 

environment. Within the fog layer, the distributed architecture of fog nodes has made it possible to develop a 

distributed computing model. This computing model enabled the adoption of the SDN paradigm, MTD 

approach and applied RL-based routing algorithm in the network. 

In the working scenario, the edge devices collect and upload data to the fog layer. Consequently, the 

fog layer performs analytics, classification capabilities, and data processing at the fog nodes (network's edge). 

In certain cases, the computations are transferred to the cloud layer for processing, while the results are 

transferred back to the third layer. Thus, fog nodes offer computational capabilities close to the edge devices, 

hence lowering end-to-end latency. Moreover, the cloud servers have the highest processing and computational 

capabilities that fog nodes and edge devices may require. 

End-to-end service was intended to be provided via the proposed framework. Figure 4 shows the 

suggested framework applications' design. Fog nodes are used, which are positioned between edge devices and 
the cloud. A central SDN controller manages and regulates network traffic between the dispersed fog nodes, 

as well as between the fog nodes and edge devices. Fog nodes represented the scattered OpenFlow switches 

with limited processing power in the SDN network. These OpenFlow switches may provide specific limited 

services in addition to switching. 

 

 

 
 

Figure 4. Proposed framework SDN-based applications 

 

 

Using the OpenFlow protocol, the SDN controller manages all the installed OpenFlow switches (i.e., 

fog nodes) and orchestrates network traffic between them. Moreover, SDN-based applications that built up the 

proposed framework has been implemented on the top of the SDN controller. The proposed system uses of all 

available bandwidth and the redundant paths by employing MPTCP protocol to distribute traffic between fog 

nodes across various paths. It is worth noting that, MPTCP implementation ensured the network's resiliency 

against MitM attacks. 

Figure 5 is a schematic representation of an attacker scenario in which the attacker attempted to 
conduct a MitM attack in the second layer. In addition, the attacker attempted to interrupt packets sent among 

fog nodes and edge devices. Since the proposed system employs MPTCP between the fog nodes and edge 

devices, and both host and route mutation have been used, it will be hard for an attacker to capture traffic. And 

even if the attacker succeeded in intercepting one of the sub-flows from the connection, it will be hard to 

capture the whole traffic because of the adoption of MPTCP. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Learning agent-based security schema mitigating man-in-the-middle attacks … (Hossam Elmansy) 

5913 

 
 

Figure 5. Fog nodes layer attack scenario 

 

 

2.2.  Proposed framework design 

The proposed framework integrated SDN, MTD, MPTCP, and RL routing to mitigate MitM attacks 

in Fog network. Figure 4 illustrated the implemented SDN applications in a typical Fog architecture, as well 

as their interactions with other components. The SDN controller communicates with the Open vSwitches 
through protected OpenFlow channels. SDN applications are software modules that have been implemented 

atop the SDN controller and provide particular network operations. In proposed framework, the following 

modules has been implemented: 

 OpenFlow network discovery application (ONDA): The network topology is discovered in this module 

using the link layer discovery protocol (LLDP) [30]. 

 Path discovery application (PDA): This module discovers all the available paths between source and 

destination nodes. 

 Network monitoring application (NMA): This module collects the essential network information via 

passive and network measures. Network information includes capacity, throughput, link latency, and link 

status. In this proposal, the collected data represented the network states and the computed incentives. 

 Action obfuscator and translator application (AOTA): This module is responsible for converting the 
actions generated by the RL agent into a series of OpenFlow messages, which are then used to update the 

routing tables of the Open vSwitches. The module periodically converts the actual IP addresses of the 

hosts to virtual IP addresses and also adjusts the MPTCP flow routes according to the data generated by 

the NMA application. 

 

2.3.  MPTCP 

The growing number in the connected devices in modern networks, makes it difficult to anticipate the 

flowing traffic dependency since network traffic grows exponentially. Because of this, it may exist an MPTCP 

connection (two TCP sessions) that utilizes the same path, which can result in a successful MitM, if an attacker 

is able to intercept traffic along this way. For enhancing the network's efficiency, throughput, and latency, 

network traffic should be directed through the most optimal pathways. Therefore, RL-based routing algorithm 
has been implemented in SDN controller to find the optimal paths between source and destination nodes. RL 

agent will select the best n paths between the source and the destination based on throughput and latency 

metrics, then the best two paths will be selected for MPTCP connection. 

 

2.4.  MTD 

The proposed architecture employed MTD to improve network unpredictability and prevent 

reconnaissance attacks, as well as prevent attackers from scanning the network and identifying the network's 

services. In this research, two distinct types of MTD have been implemented. The first technique used is RHM, 

which involves periodically modifying the IP addresses of nodes. With the help of the SDN controller, the 

actual IP address of each node is randomly replaced with a virtual IP address. Second, random route mutation 

(RRM), which continually altering the network traffic flow paths between the source and destination nodes. 
As MPTCP was the chosen protocol for communication, each MPTCP connection between two nodes will 

establish two TCP sessions. It is worth mentioning that, using RRM, RHM, and MPTCP harden the attacker trials 
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to conduct MitM attack. This will introduce a great deal of uncertainty into the network discovery. Adoption of 

MTD promoted security, complexity, and the expense of attacks while minimizing exposure to weaknesses. 

 

2.5.  Reinforcement learning routing  

With the fast evolution of connected devices (smartphones, wearable devices, and IoTs) and network 

technology, network traffic increases tremendously. Therefore, it is challenging to understand and anticipate 

communication networks traffic, since they become increasingly complex and dynamic. Instead of constructing 
a precise mathematical model of the underlying network, intelligent agents were deployed in the network. The 

deployed agents represent RL agents that collect extensive network statistics like throughput, bandwidth, 

latency, and connection status. 

In contrast to supervised learning and unsupervised learning, where the dataset contains the labels for the 

trained model, RL is constrained to learn from experience, i.e., learning from the collected data on the network status 

from the hosted environment. Thus, RL was selected, aiming to maximize the available network resources. 

The conducted network in this research as shown in Figure 5 is represented by the directed graph 

𝐺(𝑁, 𝜀). 𝑁 = {𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, … , 𝑛𝑜𝑑𝑒𝑛} is the set of nodes in the network, i.e., 9 Open vSwitches, whereas 𝜀 

is the set of links. It is assumed that the network connectivity is full duplex. A path 𝑝𝑠𝑟𝑐,𝑑𝑒𝑠𝑡 is a graph walk 

that connects 𝑛𝑜𝑑𝑒𝑠𝑟𝑐  and 𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡 via a series of nodes. Also, 𝑏𝑤𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) represents the bandwidth of 

the link 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡  that connects 𝑛𝑜𝑑𝑒𝑠𝑟𝑐  and 𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡  at time interval ∆𝑡 and 𝑡ℎ𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) represents the 

throughput of the link 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡 that connects 𝑛𝑜𝑑𝑒𝑠𝑟𝑐  and 𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡 at time interval ∆𝑡. Table 1 provides a 

summary of the key notations used in this research. 

 

 
Table 1. Notation definition 

Notation Definition 

𝑁 The set of nodes, 𝑛𝑜𝑑𝑒𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 

𝑅 The set of real IP addresses, 𝑅𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑟 

𝑉 The set of virtual IP addresses, 𝑉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑣 

𝜀 The set of links in the network 

𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡 The link that connects 𝑛𝑜𝑑𝑒𝑠𝑟𝑐  𝑎𝑛𝑑 𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡  

∆𝑡 The time interval 

𝑛𝑜𝑑𝑒𝑠𝑟𝑐  The source node 

𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡  The destination node 

𝑝𝑠𝑟𝑐,𝑑𝑒𝑠𝑡 The path that connects 𝑛𝑜𝑑𝑒𝑠𝑟𝑐  and 𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡  

𝑏𝑤𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) The bandwidth of link 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 ∆𝑡 

𝑡ℎ𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) The throughput of link 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 ∆𝑡 

𝑑𝑒𝑙𝑎𝑦𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) The delay of link 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 ∆𝑡 

𝑠𝑡𝑎𝑡𝑢𝑠𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) The link status of link 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 ∆𝑡 

𝑓1 Bandwidth measurement for the 𝑆𝑡 

𝑓2  Throughput measurement for the 𝑆𝑡 

𝑓3  Latency measurement for the 𝑆𝑡 

𝑓4 Connection Status measurement for the 𝑆𝑡 

 

 

In a typical RL working environment, in which an agent that has been deployed on an Open Vswitch 

interacts with an environment 𝐸 as shown in Figure 5 across discrete time intervals ∆𝑡 , 𝑡 ≥ 0. Each time 

interval ∆𝑡, the agent watches the current state 𝑆𝑡  and selects an action 𝐴𝑡 ∈ 𝐴(𝑆𝑡) where 𝐴(𝑆𝑡) is the set of all 

available actions. In exchange, the agent obtains a reward 𝑅𝑡+1 and advances to the subsequent state 𝑆𝑡+1. The 

procedure is repeated until the agent reaches a terminal condition. The agent's objective is to learn a policy 𝜋 ∶
𝑆 → 𝐴 that maximizes the expected future reward R =  ∑ 𝛾𝑡𝑅𝑡+1

∞
𝑡=0 , where 𝛾 ∈ [0,1] is the discounting factor. 

As actions use pathways, identifying the optimal policy is similar to determining the best routes in different 
network states. The first step of RL is to define the states, actions, and a scalar reward for the ultimate objective. 

The primary goal is to maximize throughput and minimize latency. 
 

R =  ∑ 𝛾𝑡𝑅𝑡+1
∞
𝑡=0  (1) 

 

First, a description for RL-routing will be introduced. Then, a Q learning technique will be provided 

to address the routing issue. The RL-routing model is depicted by M = {𝑆, 𝐴, 𝑅, 𝛾}, where: 

 𝑆 ∈  ℝ is the state space. 

 A is the action space. 

 R ∶ 𝑆 ×  𝐴 →  ℝ is a reward function. 

 𝛾 ∈ [0,1] is a discounting factor. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Learning agent-based security schema mitigating man-in-the-middle attacks … (Hossam Elmansy) 

5915 

A state S at time interval ∆𝑡 is represented by (2): 

 

S = [𝑓1, 𝑓2 , 𝑓3, 𝑓4] (2) 

 

At intervals of time ∆𝑡  , S profuces a summary of network information. The features are calculated in 

following manner. 𝑓1 = {𝑏𝑤𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡)} is the link bandwidth at time interval ∆𝑡. 𝑓2 = {𝑡ℎ𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡)} is 

the link throughput at time interval ∆𝑡, where the throughput for a link 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡 is: 

 

𝑡ℎ𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) =  
𝑡𝑥𝑡(𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡)

𝑏𝑤𝑡(𝑠𝑟𝑐,𝑑𝑒𝑠𝑡) ∙ |∆𝑡|
 (3) 

 

where 𝑡𝑥𝑡(𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡) is the amount of data that is transmitted via 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡  at time interval ∆𝑡. |∆𝑡| is the duration 

of the time interval ∆𝑡 . 𝑓3 = {𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡)} is the link latency at time interval ∆𝑡. 𝑓4 =
{𝑠𝑡𝑎𝑡𝑢𝑠𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡)} is the link status at time interval ∆𝑡, where the status for the link 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡  is: 

 

𝑠𝑡𝑎𝑡𝑢𝑠𝑡(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) =  {
 1    𝑖𝑓 𝑒𝑠𝑟𝑐,𝑑𝑒𝑠𝑡  𝑖𝑠 𝑢𝑝 𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡  

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              
 (4) 

 

The action space is represented as (5) 

 

A = {𝑎1, 𝑎2, . . . . . , 𝑎𝑛} (5) 

 

where an action, 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖(𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) is a collection of routes that connect 𝑛𝑜𝑑𝑒𝑠𝑟𝑐  to 𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡. The 

controller's scalability issue has been taken into consideration in the action definition when determining the 

number of agents required for data forwarding. It gives the agent the ability to configure a one-to-many network 

all at once. Therefore, each Open vSwitch just requires only one agent deployed to it. 

The reward function receives state 𝑠 and an action 𝑎 as inputs and produces a reward that represents 
the quality of the selected action. The reward function is defined as (6), 

 

r =  𝑟1 + 𝑟2  ∈ [0,2]  (6) 

 

where 𝑟1 and 𝑟2  are the selected action’s 𝑎 throughput and latency, respectively as (7) and (8). 

 

𝑟1 = 𝐴𝑉𝐺𝐼𝐹(∑
𝑡𝑥𝑡(𝑝𝑠𝑟𝑐,𝑑𝑒𝑠𝑡)

𝑏𝑤𝑡(𝑝𝑠𝑟𝑐,𝑑𝑒𝑠𝑡) .  |∆𝑡|𝑝𝑠𝑟𝑐,𝑑𝑒𝑠𝑡∈𝑎 )  (7) 

 

𝑟2 = ∑ 𝑑𝑒𝑙𝑎𝑦𝑡(𝑝𝑠𝑟𝑐,𝑑𝑒𝑠𝑡)𝑝𝑠𝑟𝑐,𝑑𝑒𝑠𝑡∈𝑎   (8) 

 

Overall, the agent has two main objectives which are reflected in the reward function detailed in (6). 

A higher reward indicates that a greater number of packets are successfully transferred between 𝑛𝑜𝑑𝑒𝑠𝑟𝑐  to 

𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡 with minimal delay. This applies in both directions of data transmission. 
To implement the RL routing algorithm, we used the dueling double deep Q-learning (dueling DDQN) 

architecture with prioritized experience replay [31] and the ε-greedy policy to address the reinforcement learning 

problem. This design addresses the issue of inflated Q-values and improves the stability of learning. 

Algorithm 1 represented the implemented module exploiting MTD and RL. In step 1, the RL agent 

realizes the network topology 𝐺(𝑁, 𝜀) found by the OpenFlow network discovery application (ONDA). Step 2 

involves using the path discovery application (PDA) to create an action space A, following (5), for the topology 

𝐺(𝑁, 𝜀). This process generates a set of routes for all pairs of nodes in the topology. In steps 3 and 4, the SDN 

controller initializes the set of real and virtual IP addresses assigned to network nodes. The agent then initializes 

the network’s current state, as in (2), by utilizing the NMA, the network current state is represented by the 

bandwidth, throughput, latency, and link status. 

At every time interval ∆𝑡 (step 7), a random number is generated and used for RHM while the IP 

addresses of all network nodes are changed arbitrarily. In step 11, the agent chooses an action 𝐴𝑡 that maximizes 

the reward 𝑅𝑡, as in (6). The agent executes 𝐴𝑡 by calling the AOTA to update the Open vSwitches routing 

tables and change the IP addresses. It permits the network to operate for ∆𝑡. The NMM is then invoked to 

collect updated network information 𝑆𝑡+1, as in (2). The collected network data used to compute the reward 

𝑅𝑡+1, as in (6), for the selected action 𝐴𝑡. This process is repeated until the RL agent achieves the intended 

reward for final goal. 
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Algorithm 1. Proposed system algorithm with MTD & RL 
1: 𝐺(𝑁, 𝜀) ← 𝑂𝑝𝑒𝑛𝐹𝑙𝑜𝑤 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦  
2: 𝐴 = 𝑃𝐷𝐴(𝐺(𝑁, 𝜀), 𝑛𝑜𝑑𝑒𝑠𝑟𝑐 , 𝑛𝑜𝑑𝑒𝑑𝑒𝑠𝑡 , ℎ)  
3: 𝑅 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠  
4: 𝑉 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑒𝑎𝑙 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠  
5: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆 = [𝑓1 , 𝑓2 , 𝑓3 , 𝑓4] 𝑏𝑦 𝑖𝑛𝑣𝑜𝑘𝑖𝑛𝑔 𝑁𝑀𝐴  
6: 𝑟𝑒𝑝𝑒𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑡:   
7:         𝑥 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟  
8:         𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑒𝑎𝑙 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑅𝑖  𝑖𝑛 𝑅:  
9:                 𝑀𝑎𝑝 𝑒𝑎𝑐ℎ 𝑅𝑖  𝑡𝑜 𝑉𝑖  

10:       𝑒𝑛𝑑 𝑓𝑜𝑟   
11:       𝑐ℎ𝑜𝑜𝑠𝑒 𝑅𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝐴, 𝑜𝑟 𝐴𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑞𝜋(𝑆𝑡, 𝐴)  
12:       𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝐴𝑡 𝑏𝑦 𝑖𝑛𝑣𝑜𝑘𝑖𝑛𝑔 𝐴𝑂𝑇𝐴  
13:       𝑆𝑡+1 = [𝑓1, 𝑓2 , 𝑓3 , 𝑓4] 𝑏𝑦 𝑖𝑛𝑣𝑜𝑘𝑖𝑛𝑔 𝑁𝑀𝐴  
14:       𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑅𝑡+1 𝑓𝑜𝑟 𝑎𝑐𝑡𝑖𝑜𝑛 𝐴𝑡  

15: 𝑒𝑛𝑑 𝑟𝑒𝑝𝑒𝑎𝑡  

 

 

3. RESULTS AND DISCUSSION 

To evaluate the suggested framework and assess its performance, simulations were conducted on a 

virtual machine that featured an Intel(R) Xeon(R) CPU E5-2676 v3 @2.40 GHz processor and 4.00 GB of 

memory. The virtual machine was running the Linux Ubuntu 18.04 LTS operating system. We built the fog 

nodes layer network, or SDN network, in mininet, which included nine Open vSwitches and five hosts, as 

shown in Figure 5. For the hosts used for the tests, the MPTCP Linux kernel implementation was installed. For 
the fog nodes layer, we used the Ryu SDN controller. Both H1 and H4 hosts had two network interfaces and 

utilized the MPTCP protocol. The three hosts, Host-2 (H2), Host-3 (H3), and Host-5 (H5) utilized the TCP 

protocol and shared a single network interface. Attacker Host-5 (H5) uses Ettercap to launch a MitM attack 

against Host-1 (H1) (H2). The default speed for each open vSwitch port is 10 Gb. The network's performance 

was evaluated using iPerf in four distinct conditions: standard TCP traffic flow, TCP traffic flow with a MitM 

attack simulated using an RL agent developed in Python, MPTCP traffic flow, and MPTCP traffic flow with a 

MitM attack also simulated using the RL agent. 

RL agent has been trained to determine the optimal network paths connecting two parties. By setting 

ℎ = 8, PDA has been executed to generate an action space with eight paths between a source and a destination. 

Then, the best two paths have been selected for the sub-flows to establish the source-to-destination MPTCP 

connection. Source-destination host combination has been created to generate random traffic for RL agent 
training purposes. Additionally, the data transmission patterns between hosts are produced randomly. 

Different values for the duration of a time interval |∆𝑡| have been tested. It was observed that when 

|∆𝑡| = 1𝑠, for all metrics, RL-routing offers the best performance. The agent has been trained in an episodic 

fashion. Each episode consists of 100 steps, where the duration of each step is |∆𝑡| seconds. 

The proposal was tested with various traffic compositions, including traffic that is created randomly, 

for training purpose. It was discovered that orchestrating hosts to provide the same amount of traffic throughout 

each episode is an efficient method of training the agent. This technique forced the agent to return to each stage 

frequently enough to test out various options. We plan for each host pair to create traffic on a regular basis in 

a set of predetermined steps. We allowed each pair of hosts to randomly generate traffic with a duration 

obtained from a normal distribution with 𝜇 = 5 seconds and 𝜎 = 1. Data transfer patterns between each host 

pair are left up to the generator. The duration of the burst and the packet interval time are not specified. 

Figure 6 depicts the agent's training while using RL-routing. The figure illustrated the performance of 

the RL agent in terms of total rewards, using a window size of 50 episodes. On average, 25 k distinct states 

were produced, some of which are quite similar and others which are completely different. Figure 6 illustrates 

the number of training episodes on the x-axis and the total incentives earned during each episode on the y-axis. 

Initially, the RL agent does not comprehend the underlying network well enough. Thus, the agent largely 

engaged in environmental exploration and reaps little benefit. Following a few episodes, the awards rise until 

they reach their maximum levels. 

The bottom layers of the dueling network in the chosen dueling DDQN are convolutional, just like in 

the original DQNs (3 convolutional layers followed by 2 fully connected layers). Two sequences (or streams) 
of fully connected layers have been employed in this architecture as opposed to one series of fully connected 

layers after the convolutional layers. Because of how the streams are built, different estimates of the value and 

advantage functions were produced. According to [31], the output of the network is a set of Q values, with one 

for each action, and the two streams are merged to create a unified output Q function. It is worth mentioning 

that the adopted dueling DDQN architecture and hyper-parameters as mentioned in [32], [33] have been fine 

tuned to fit the network state input vector that maintained the RL-routing operation.  
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Figure 6. RL agent performance 

 
 

The objective is to understand what and how to discover an effective solution to the routing issue 

given the state representation, reward function, and action description. It is worth mentioning that any routing 

algorithm uses a policy to determine its route without losing generality. A stochastic policy 𝜋 determines the 

routing algorithm's behavior and is represented as a distribution over actions for a specific state, defined (9). 

 

π(𝑎|𝑠) = 𝑃[𝑎|𝑠] (9) 

 

For an agent behaving according to a stochastic policy 𝜋, the values of the state-action pair (𝑠, 𝑎) and the state 

𝑠 (i.e., Q, V functions) are defined as (10). 

 

                Q𝜋(𝑠, 𝑎) =  𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋],   𝑎𝑛𝑑 
                𝑉𝜋(𝑠) =  𝔼𝑎~𝜋(𝑠)[𝑄𝜋(𝑠, 𝑎)] (10) 

 

The preceding Q function value can be computed recursively with dynamic programming: 

 

𝑄𝜋(𝑠, 𝑎) =  𝔼𝑠` [𝑟 + 𝔼𝑎`~𝜋(𝑠`)[𝑄𝜋(𝑠`, 𝑎`)]| 𝑠, 𝑎, 𝜋]  (11) 

 

We define the optimal 𝑄∗(𝑠, 𝑎) =  𝑚𝑎𝑥𝜋𝑄𝜋(𝑠, 𝑎). 

Under the deterministic policy 𝑎 = arg 𝑚𝑎𝑥𝑎`∈𝐴𝑄∗(𝑠, 𝑎`), it follows that 𝑉∗(𝑠) =  𝑚𝑎𝑥𝑎𝑄∗(𝑠, 𝑎). From this, 

it also follows that the optimal 𝑄 function satisfies the Bellman (12) 
 

𝑄∗(𝑠, 𝑎) =  𝔼𝑠`[𝑟 + 𝛾 𝑚𝑎𝑥𝑎`𝑄∗(𝑠`, 𝑎`)|𝑠, 𝑎]  (12) 

 

We define another important quantity, the advantage function, relating the value and 𝑄 functions as (13). 

 

𝐴𝜋(𝑠, 𝑎) =  𝑄𝜋(𝑠, 𝑎) −  𝑉𝜋(𝑠)  (13) 

 

Note that 𝔼𝑎~𝜋(𝑠)[𝐴𝜋(𝑠, 𝑎)] = 0. The value function 𝑉 intuitively measures how favorable it is to be 

in a particular state 𝑠, while the 𝑄 function measures the value of selecting a particular action when in that 

state. The advantage function is obtained by subtracting the state value from the 𝑄 function, providing a relative 

measure of the significance of each action. 

RL-Routing algorithm begins with an initial policy 𝜋𝑅𝐿 and utilizes policy iteration to enhance its 

performance. In each step, the agent updates 𝑄𝜋𝑅𝐿
 by computing states using (2), selecting actions using its 

policy 𝜋𝑅𝐿, and calculating rewards using (6). By repeating these steps for a large number of iterations, the 

agent identifies an optimal 𝑄𝜋𝑅𝐿
∗ . Once an optimal policy 𝜋∗ is obtained, the agent selects the best possible 

action in each state 𝑠 ∈ 𝑆 by: 

 

A = arg max 𝑄𝜋∗(𝑠, 𝑎) ,          𝑎 ∈ 𝐴(𝑠) (14) 
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Finding the optimal policy 𝜋∗ is therefore comparable to finding the best effective solution (i.e., best 

routing path). RL-routing has the potential to discover an improved policy, as it depends on the traffic patterns 

observed during the training phase and the chosen exploration mechanism that manage the trade-off between 

exploration and exploitation. At the start of the training phase, the agent largely explores to gather information, 

i.e., exploration, as depicted in Figure 6. After some time, it begins to gain by leveraging its understanding of 

the underlying network to inform better decisions, i.e., exploitation. 
Network throughput and delay overhead have been chosen as the assessment measures to measure 

how well the suggested architecture performs. Figures 7 and 8 compare the delay overhead between TCP and 

MPTCP with and without the MitM attack, while Figures 9 and 10 compare TCP and MPTCP in the presence 

and absence of MitM attacks. The tests were run repeatedly, and the average of the results was calculated. 

 

 

  
  

Figure 7. Delay overhead comparison for  

TCP vs. MPTCP 

Figure 8. Delay overhead comparison for  

TCP vs. MPTCP 

 

 

  
  

Figure 9. Throughput comparison for  

TCP vs. MPTCP 

Figure 10. Throughput comparison for  

TCP vs. MPTCP 

 

 

Figure 7 showed the overhead delay comparison between TCP and MPTCP without using MTD and 

RL. It showed that the delay overhead added by MPTCP is almost double of TCP as it uses two TCP sub flows 
for each MPTCP connection. Additionally, Figure 8 showed the overhead delay comparison between TCP and 
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MPTCP using MTD and RL routing with different configurations for the changing (mutation-turn around) time 

between new routes and IP addresses. It showed that when decreasing the changing time, the more delay 

overhead occurred. It is worth mentioning that, the degradation in performance ensure that it will be hard to 

the attacker to discover the network and reconnaissance it, it is a tradeoff between security and performance. 

Moreover, it showed that the proposed framework did not add much delay overhead to the network if the 

changing period configured to be 60 seconds. 
The performance difference between TCP and MPTCP with/without MTD and RL routing was shown 

in Figures 9 and 10. The results collected demonstrated that the MPTCP network throughput was higher than 

that of conventional TCP. This is as a result of MPTCP using various paths between hosts. Also, the network 

throughput has been increased using our proposed framework as MPTCP sub flows since RL routing selected 

the best routes between source and destination. Exploiting RL routing helped in finding the best routes between 

two parties in terms of throughput and delay. This guaranteed MPTCP's involvement in preserving the fog 

nodes layer network's resilience and end-users' quality of hope (QoE). 

A comparative study has been carried out among similar related work. Table 2 summarized this 

comparative study in terms of the defense methodology and the evaluation metrics. It was shown that, the 

proposed system has better security as it incorporates several techniques to mitigate MitM attacks in fog 

computing without adding a lot of overhead and delay to the network. As well as the overhead added by the 

complexity of the security solution have been controlled by using RL agent. Adoption of RL agent in routing 
optimization and selecting the best routing paths between nodes decreased the additional overheads incurred 

by the security solution. 

 

 

Table 2. Comparison against related work 
Authors/Publication Defense methodology Metrics 

Aliyu et al. [21] SDN, MITM Time cost to detect attack and delay 

Liu et al. [22] IDS, IPS, MITM Time cost to detect attack and delay 

and Energy Consumption 

Zkik et al. [25] SDN, MPTCP, MITM Application execution time 

Babar et al. [26] SDN, MTD, MITM --- 

Duan et al. [29] SDN, MTD, MITM --- 

Proposed Solution SDN, MPTCP, MTD, Reinforcement 

learning, MITM 

Throughput and delay 

 

 

4. CONCLUSION 

This study proposed a MitM mitigation solution for fog computing that integrated SDN, MTD, 

MPTCP, and RL routing. The SDN controller has been configured for managing and controlling fog nodes. In 

addition, MPTCP has been implemented to make use of the various connection interfaces in fog computing 

Open vSwitches and edge devices, which enabled redundancy path for traffic between all fog nodes and edge 

devices. The system employed MTD in two ways, RHM and RRM, to enhance network uncertainty and harden 
the network scanning for attackers, hence decreasing the likelihood of a successful MitM attack. In addition, a 

RL routing algorithm has been employed to assist the SDN in determining the optimal network path between 

source and destination nodes. The simulation findings demonstrated that the proposed framework improved 

network throughput, robustness, and security with minimal delay overhead. In the future, we plan to enhance 

the security of the fog layer by leveraging additional SDN and MPTCP capabilities. 
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