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 Noise is an unavoidable aspect of modern camera technology, causing a 

decline in the overall visual quality of the images. Efforts are underway to 

diminish noise without compromising essential image features like edges, 

corners, and other intricate structures. Numerous techniques have already 

been suggested by many researchers for noise reduction, each with its unique 

set of benefits and drawbacks. Denoising images is a basic challenge in 

image processing. We describe a two-phase approach for removing impulse 

noise in this study. The adaptive median filter (AMF) for salt-and-pepper 

noise identifies noise candidates in the first phase. The second step 

minimizes an edge-preserving regularization function using a novel hybrid 

conjugate gradient approach. To generate the new improved search 

direction, the new algorithm takes advantage of two well-known successful 

conjugate gradient techniques. The descent property and global convergence 

are proven for the new methods. The obtained numerical results reveal that, 

when applied to image restoration, the new algorithms are superior to the 

classical fletcher reeves (FR) method in the same domain in terms of 

maintaining image quality and efficiency. 
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1. INTRODUCTION 

The subject of image restoration has been widely researched and applied in numerous fields of science 

and engineering. It requires the reconstruction of an original scene from a deteriorated observation. For 

example, air turbulence degrades star pictures viewed by ground-based telescopes. Images are often exposed to 

noise due to environmental factors, transmission channels, and other related elements during acquisition, 

compression, and transmission. As a result, the image quality is affected, leading to distortion and loss of image 

information. Noise also impacts later image processing tasks, such as the analysis and tracking of images, as 

well as video processing. Thus, image denoising is a crucial aspect of modern image processing systems. 

Image denoising aims to restore the original image quality by minimizing noise from a noise-rich 

image. However, since noise, edge, and texture are high-frequency constituents, it is challenging to 

differentiate between them during denoising. As a result, restored images may lose some important details. 

Overall, the challenge in image processing systems is to recover relevant information from noisy images 

during noise removal to produce high-quality images. 

https://creativecommons.org/licenses/by-sa/4.0/
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There are certain cases where stellar pictures must be recovered even if they have not been observed 

within the atmosphere. The fundamental goal of this research is to create a class of iterative optimization 

algorithms applicable to edge-preserving regularization (EPR) objective functions. To reduce impulse noise, 

a two-phase technique was recently developed in [1]. For salt-and-pepper noise, the adaptive median filter 

(AMF) is used, while for random-valued noise, the adaptive center-weighted median filter (ACWMF) is 

used, which is first improved by applying the variable window technique to increase its detection capabilities 

in severely damaged pictures [2]. We only utilize the salt-and-pepper noise in this study. Let X represent the 

true picture and Α = {1,2,3, . . . . . M} × {1,2,3, . . . . . N} represent the index set of X. Let Ν ⊂ Α denote the set 

of noise pixel indices detected during the first phase. Also, let Pi,j be the set of pixel’s four nearest neighbors 

at position (i, j) ∈ Α, yi,j denote the discovered pixel value of the actual picture at position (i, j), and  

ui,j = [ui,j](i,j)∈Ν
 denote a lexicographically ordered column vector of length c, where c represents the size of 

N. Then, minimizing the following function will recover the noise pixels. 

 

𝑓𝛼(𝑢) = ∑ [|𝑢𝑖,𝑗 − 𝑦𝑖,𝑗| +
𝛽

2
(2 × 𝑆𝑖,𝑗

1 + 𝑆𝑖,𝑗
2 )](𝑖,𝑗)∈𝛮  (1) 

 

where β is the regularization parameter,  

 

𝑆𝑖,𝑗
1 = 2 ∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛)(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮𝑐  and 𝑆𝑖,𝑗

2 = ∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮 ).  

 

Function (1) is a hypothetical function that preserves the edges ϕ
α

= √α + x2, α > 0, that can be 

used to describe impulsive noise in general. Minimizing (1) defines the essence of a slavish AMF introduced 

in [3]. This is a typical method for locating pixels that may be contaminated. In practice, the non-smooth 

data-fitting term might be dropped because it is not needed in the second phase, when only poor-quality 

pixels are recovered after reduction. As a result, a number of optimization strategies for minimizing the 

following smooth EPR functional may be utilized (such as [4]–[7]). 

 

𝑓𝛼(𝑢) = ∑ [(2 × 𝑆𝑖,𝑗
1 + 𝑆𝑖,𝑗

2 )](𝑖,𝑗)∈𝛮  (2) 

 

The conjugate gradient (CG) method for image correction is quite effective for solving unconstrained 

optimization problems of the form (3), 

 

𝑀𝑖𝑛 𝑓(𝑥) , x ∈ 𝑅𝑛 (3) 

 

due to their low memory requirements and simplicity of coding [4]–[7]. To solve (1), an iterative 

computation of a new solution vector is done using (4). 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (4) 

 

The step length 𝛼𝑘 is calculated is traditionally obtained through a one-dimensional line search 

which, in practice, is usually inexact due to cost and impracticality considerations. For quadratic functions, 

αk can be computed exactly using [8]. 

 

𝛼𝑘 =
−𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝑄𝑑𝑘

  (5) 

 

However, for general functions, αk is computed to ensure that the obtained search direction is sufficiently 

downhill through satisfying the strong Wolfe conditions [2]. 

 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 (6a) 

 

and 

 

𝑑𝑘
𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜎 𝑑𝑘

𝑇𝑔𝑘 (6b) 

 

where 0 < δ < σ < 1. CG methods compute search directions using (7), 

 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘 (7) 
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where β
k
 is a normally referred to as a conjugacy parameter and both dk and dk+1 satisfy the conjugacy 

condition 𝑑𝑖
𝑇Qd𝑗 = 0,∀𝑖 ≠ j, for a symmetric matrix Q ∈ 𝑅𝑛×𝑛. A variety of equations have been published 

to compute the scalar β
k
. Two well-known conjugate gradient approaches are Fletcher [9] and Dai and Yuan 

[10], with 

 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

 and 𝛽𝑘
𝐷𝑌 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑑𝑘
𝑇𝑦𝑘

 (8) 

 

respectively. The two methods have been the focus of many studies, not just because of their historical 

significance, but also because of their proven global convergence. Many other variants have been examined 

in an attempt to improve the numerical behavior of the CG methods, given their attractive storage 

requirements; see, for example, [11]–[14]. CG methods can be utilized in solving problems related to 

machine learning, fluid mechanics, solution of nonlinear equations and differential equations, deep learning, 

in addition to other applications. Another possible area of application is human performance technology 

(HPT). HPT is largely based on computer systems’ numerical performance improvement (PI) characteristics, 

which rely on logical judgements enabled by specialized algorithms [15]. PI also helps to widen the scope of 

instructional design by using a systems perspective to address performance opportunities and obstacles. CG 

methods have proven valuable in solving issues in the adoption of mobile electronic performance support 

systems (EPSS) improved the job performance and efficiency of mobile users, according to a cross-sectional 

qualitative research [16].  

In order to improve the computational efficiency of the standard CG method, a special type of 

conjugate gradient methods have recently been extensively investigated [17]–[20]. The approaches in [9], 

[18] propose a conjugacy condition of the form. 

 

𝛽𝑘
𝐻𝑌 =

‖𝑔𝑘+1‖2

2/𝛼𝑘(𝑓𝑘−𝑓𝑘+1)
, 𝛽𝑘

𝐵 =
‖𝑔𝑘+1‖2

(𝑓𝑘−𝑓𝑘+1)/𝛼𝑘−𝑔𝑘
𝑇𝑑𝑘/2

 (9) 

 

Unlike the traditional CG algorithms, the aforementioned approach has the unique characteristic of 

consistently constructing better descent directions while satisfying the conjugacy conditions, as evidenced by 

the reported results. In the following section, a quadratic model will be exploited to derive new conjugacy 

parameters βk, giving rise to new CG algorithms. 

 

 

2. NEW CONJUGATE GRADIENT COEFFICIENTS 

The formulation of the new CG method presented here exploits a classical quadratic model 

characterized by its simplicity. Iiduka and Narushima [21] propose the following choice for βk.  

 

𝛽𝑘 =
𝑔𝑘+1

𝑇 𝑄𝑠𝑘

𝑑𝑘
𝑇𝑄𝑠𝑘

 (10) 

 

where Q is the constant Hessian of some quadratic function. The parameter βk satisfies a conjugacy condition 

of the form: 

 

𝑑𝑘+1
𝑇 𝑄𝑑𝑘 = 0 (11) 

 

In our derivation we will introduce an appropriate approximation to the quantity dk
TQsk, essential to our 

proposed method. Assume f is a quadratic function of the form: 
 

𝑓𝑘+1 = 𝑓𝑘 + 𝑠𝑘
𝑇𝑔𝑘 +

1

2
𝑠𝑘

𝑇𝑄(𝑥𝑘)𝑠𝑘. (12) 

 

This quadratic function’s gradient is explicitly given by (13). 

 

𝑔𝑘+1 = 𝑔𝑘 + 𝑄(𝑥𝑘+1)𝑠𝑘 (13) 

 

As a result, curvature information may be expressed as (14). 
 

𝑠𝑘
𝑇𝑄(𝑥𝑘)𝑠𝑘 = 2𝑠𝑘

𝑇𝑦𝑘 + 2(𝑓𝑘+1 − 𝑓𝑘) (14) 
 

From (14), we obtain: 
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𝑑𝑘
𝑇𝑄(𝑥𝑘)𝑠𝑘 = 2

𝛼𝑘(𝑔𝑘
𝑇𝑑𝑘)2

(𝑠𝑘
𝑇𝑦𝑘+2(𝑓𝑘−𝑓𝑘+1))

 (15) 

 

plugging (15) into (11), we get 

 

𝛽𝑘 =
𝑔𝑘+1

𝑇 𝑦𝑘

2𝛼𝑘(𝑔𝑘
𝑇𝑑𝑘)2/(𝑠𝑘

𝑇𝑦𝑘+2(𝑓𝑘−𝑓𝑘+1))
 (16) 

 

given that conjugacy holds and exact line search, (16) becomes 

 

𝛽𝑘
𝐵𝐿1 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

2𝛼𝑘(𝑔𝑘
𝑇𝑑𝑘)2/(𝑠𝑘

𝑇𝑦𝑘+2(𝑓𝑘−𝑓𝑘+1))
 (17) 

 

or, alternatively,  

 

𝛽𝑘
𝐵𝐿2 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

2𝛼𝑘(𝑔𝑘
𝑇𝑑𝑘)2/(−𝑠𝑘

𝑇𝑔𝑘+2(𝑓𝑘−𝑓𝑘+1))
 (18) 

 

and 

 

𝛽𝑘
𝐵𝐿3 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

2𝛼𝑘(𝑔𝑘
𝑇𝑑𝑘)2/(𝛼𝑘𝑔𝑘

𝑇𝑔𝑘+2(𝑓𝑘−𝑓𝑘+1))
 (19) 

 

The new expressions for βk are collectively referred to here as BL algorithms. The algorithmic framework is 

given next. BL algorithm: 

Stage 1. Given 𝑥1 ∈ 𝑅𝑛. Initialize 𝑘 = 1 and 𝑑1 = −𝑔1. If ‖𝑔1‖ ≤ 10−6, then stop. 

Stage 2. Compute 𝛼𝑘 > 0 satisfying conditions (6). 

Stage 3. Compute 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 and 𝑔𝑘+1 = 𝑔(𝑥𝑘+1). If ‖𝑔𝑘+1‖ ≤ 10−6, then terminate.  

Stage 4. Evaluate 𝛽𝑘 using (17 − 19), then construct 𝑑𝑘+1 by (7). 

Stage 5. Set 𝑘 = 𝑘 + 1 and continue with step 2. 

Theorem 1. The quantities {xk} and {dk}, computed by the new methods satisfy. 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 < 0 and 𝑑𝑘+1

𝑇 𝑔𝑘+1 = 𝛽𝑘𝑑𝑘
𝑇𝑔𝑘 (20) 

 

Proof: If 𝑑𝑘 = −𝑔𝑘 then 𝑑1
𝑇𝑔1 < 0. Suppose that 𝑑𝑘

𝑇𝑔𝑘 < 0 for any k. From (8) and (19), it is easy to show that 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −𝑔𝑘+1

𝑇 𝑔𝑘+1 + 𝛽𝑘𝑑𝑘
𝑇𝑔𝑘+1 

= −𝛽𝑘(2𝛼𝑘(𝑔𝑘
𝑇𝑑𝑘)2/(𝑠𝑘

𝑇𝑦𝑘 + 2(𝑓𝑘 − 𝑓𝑘+1))) + 𝛽𝑘𝑑𝑘
𝑇𝑔𝑘+1 (21) 

 

The following is the outcome of using the (22). 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = 𝛽𝑘[𝑑𝑘

𝑇𝑔𝑘+1 − (2𝛼𝑘(𝑔𝑘
𝑇𝑑𝑘)2/(𝑠𝑘

𝑇𝑦𝑘 + 2(𝑓𝑘 − 𝑓𝑘+1)))] (22) 

 

We obtain, using (16) and (21), 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = 𝛽𝑘𝑑𝑘

𝑇𝑔𝑘 (23) 

 

From the downhill property of the search direction, it is obvious that dk
Tgk < 0, thus we get 

 

𝑑𝑘+1
𝑇 𝑔𝑘+1 < 0 (24) 

 

The proof is thus complete. 

 

 

3. CONVERGENCE ANALYSIS 

In order to establish the global convergence of the BL algorithms, the following assumptions are needed: 

− The level set 𝛺 = {𝑥 ∈ 𝑅𝑛/𝑓(𝑥) ≤ 𝑓(𝑥1)} is bounded.  

− In some neighborhood 𝛬 of 𝛺, the gradient g of the objective function is Lipschitz continuous, namely, 

there exists some constant L > 0 such that 
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‖𝑔(𝜊) − 𝑔(𝜏)‖ ≤ 𝐿‖𝑜 − 𝜏‖, ∀𝜏, 𝜊 ∈ 𝛬 (25) 

 

(see [22] for more details). The theorems in [23] have proven to be useful in proving global convergence. We 

adopt some of those here and prove them for our methods and some of the results in [24], [25]. 

Lemma 1. Assume that assumptions 1 and 2 above hold. Then for any iteration a method that produces αk by 

doing the Wolfe line search, the (26) holds. 
 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
∞
𝑘=1 < ∞ (26) 

 

Theorem 2. Assume that Assumptions 1 and 2 above hold. If formula βk satisfies (20), then we have: 

 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0  (27) 

 

Proof: By induction, assume that (27) does not hold. The (8) may be expressed as dk+1 + gk+1 = β
k

dk. Upon 

squaring both sides, we get 

 

‖𝑑𝑘+1‖2 + ‖𝑔𝑘+1‖2 + 2𝑑𝑘+1
𝑇 𝑔𝑘+1 = (𝛽𝑘)2‖𝑑𝑘‖2 (28) 

 

Using (23), the following results hold: 
 

‖𝑑𝑘+1‖2 =
(𝑑𝑘+1

𝑇 𝑔𝑘+1)2

(𝑑𝑘
𝑇𝑔𝑘)2

‖𝑑𝑘‖2 − 2𝑑𝑘+1
𝑇 𝑔𝑘+1 − ‖𝑔𝑘+1‖2 (29) 

 

Upon dividing both sides of (29) by (dk+1
T gk+1)2, we get 

 
‖𝑑𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 =

‖𝑑𝑘‖2

(𝑑𝑘
𝑇𝑔𝑘)2 −

‖𝑔𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 −

2

𝑑𝑘+1
𝑇 𝑔𝑘+1

 (30) 

 

This yield 
 

‖𝑑𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 ≤

‖𝑑𝑘‖2

(𝑑𝑘
𝑇𝑔𝑘)2 − (

‖𝑔𝑘+1‖

(𝑑𝑘+1
𝑇 𝑔𝑘+1)

+
1

‖𝑔𝑘+1‖2) +
1

‖𝑔𝑘+1‖2 ≤
‖𝑑𝑘‖2

(𝑑𝑘
𝑇𝑔𝑘)2 +

1

‖𝑔𝑘+1‖2 (31) 

 

Hence, 
 

‖𝑑𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 ≤ ∑

1

‖𝑔𝑖‖2
𝑘+1
𝑖=1  (32) 

 

Assume that 𝑐1 > 0 exists such that ‖𝑔𝑘‖ > 𝑐1 for every nk . Then 

 
‖𝑑𝑘+1‖2

(𝑑𝑘+1
𝑇 𝑔𝑘+1)2 <

𝑘+1

𝑐1
2  (33) 

 

We can see that, using the assumption and (33) as a guide, 

 

∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
∞
𝑘=1 = ∞ (34) 

 

By Lemma 1, we may conclude that  lim
k→∞

inf‖gk‖ = 0  holds.  

 

 

4. NUMERICAL RESULTS  

The BL1, BL2, and BL3 algorithms performance is examined in the domain of minimizing  

salt-and-pepper impulse noise (3). The test images are listed in Table 1. Table 1 also reports the numerical 

results for comparing the classical fletcher reeves (FR) method to the newly derived ones in terms of the 

number of iterations, function/gradient evaluation count in addition to peak signal-to-noise ratio (PSNR). All 

simulations are run using MATLAB 2015a. It is worth emphasizing that the major focus of the study is on 

how fast the problem of reducing carbon emissions in (3) can be tackled efficiently. The pixel quality of the 

corrected pictures is assessed using PSNR value given by (35), 
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𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
2552

1

𝑀𝑁
∑ (𝑢𝑖,𝑗

𝑟 −𝑢𝑖,𝑗
∗ )2

𝑖,𝑗
 (35) 

 

where 𝑢𝑖,𝑗
𝑟  and 𝑢𝑖,𝑗

∗  denote the pixel values of the corrected and the original image, respectively. For both 

procedures, the following are the termination conditions (36). 

 
|𝑓(𝑢𝑘)−𝑓(𝑢𝑘−1)|

|𝑓(𝑢𝑘)|
≤ 10−4 and ‖𝑓(𝑢𝑘)‖ ≤ 10−4(1 + |𝑓(𝑢𝑘)|) (36) 

 

Figures 1 to 4, show the obtained results by applying the algorithms to the noisy pictures.  

Figures 1(a), 2(a), 3(a) and 4(a) are the images corrupted with 70% salt-and-pepper noise; Figures 1(b), 2(b), 

3(b) and 4(b) are results of the FR method; Figures 1(c), 2(c), 3(c) and 4(c) are results of the BL1 method;  

Figures 1(d), 2(d), 3(d) and 4(d) are results of the BL2 method; Figures 1(e), 2(e), 3(e) and 4(e) are results of 

the BL3 method. These results show that the suggested image correction methods BL1, BL2, and BL3 are 

both effective and efficient. 

 

 

Table 1. Numerical results of FR and new algorithms 
Image Noise 

level r 
(%) 

FR-Method BL1-Method BL2-Method BL3-Method 
NI NF PSNR 

(dB) 
NI NF PSNR 

(dB) 
NI NF PSNR 

(dB) 
NI NF PSNR 

(dB) 
Le 50 

70 
90 

82 

81 
108 

153 

155 
211 

30.5529 

27.4824 
22.8583 

41.0 

47.0 
47.0 

89.0 

98.0 
95.0 

30.7909 

27.454 
22.6477 

41.0 

47.0 
52.0 

87.0 

96.0 
102.0 
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Figure 1. The noisy image and the corresponding corrected images results for each algorithm with 70%  

salt-and-pepper noise applied to 256*256 Lena image (a) original image, (b) FR output, (c) BL1 output,  

(d) BL12 output, and (e) BL3 output 
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Figure 2. The noisy image and the corresponding corrected images results for each algorithm with 70%  

salt-and-pepper noise applied to 256×256 house image; (a) original image, (b) FR output, (c) BL1 output,  

(d) BL2 output, and (e) BL3 output 
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Figure 3. The noisy image and the corresponding corrected images results for each algorithm with 70%  

salt-and-pepper noise applied to 256×256 Elaine image (a) original image, (b) FR output, (c) BL1 output,  

(d) BL2 output, and (e) BL3 output 
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Figure 4. The noisy image and the corresponding corrected images results for each algorithm with 70%  

salt-and-pepper noise applied to 256×256 cameraman image (a) original image, (b) FR output,  

(c) BL1 output, (d) BL2 output, and (e) BL3 output 

 

 

5. CONCLUSION 

The focus of this research has been on the creation of novel, modified conjugate gradient formulae 

that outperform the traditional FR CG approach for picture restoration. The results confirm to the 

effectiveness of the strategy used in this research to derive variations of the traditional CG technique. The 

novel techniques have demonstrated global convergence under the rigorous Wolfe line search conditions. The 

testing simulations have demonstrated that, in the majority of instances, the novel approaches, BL1, BL2, and 

BL3, significantly reduce iteration counts and function evaluations while maintaining the same picture 

restoration quality. 
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