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ABSTRACT

This article presents a new method for land vehicle navigation using global posi-
tioning system (GPS), dead reckoning sensor (DR), and digital road map infor-
mation, particularly in urban environments where GPS failures can occur. The
odometer sensors and map measure can be used to provide continuous naviga-
tion and correct the vehicle location in the presence of GPS masking. To solve
this estimation problem for vehicle navigation, we propose to use particle fil-
tering for GPS/odometer/map integration. The particle filter is a method based
on the Bayesian estimation technique and the Monte Carlo method, which deals
with non-linear models and is not limited to Gaussian statistics. When the GPS
sensor cannot provide a location due to the number of satellites in view, the fil-
ter fuses the limited GPS pseudo-range data to enhance the vehicle positioning.
The developed filter is then tested in a transportation network scenario in the
presence of GPS failures, which shows the advantages of the proposed approach
for vehicle location compared to the extended Kalman filter.
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1. INTRODUCTION
Over the past three decades, the use of positioning and navigation technologies has shown

a remarkable increase in several areas, particularly in transportation applications. Classically, the global
positioning system (GPS) is a key sensor for many navigation systems. However, in some dense urban
environments, GPS positioning might not be accurate or even unavailable due to multi-path problems or poor
satellite visibility. On the other hand, the signal may be also reflected or blocked by high-rise buildings in
deeper urban canyons which is more challenging for GPS positioning [1]. Therefore, different types of sensors
have been used to aid vehicle’s positioning in the urban environment, for example, dead-reckoning (DR) sensors
such as odometers can be used to provide a continuous navigation [1]–[3], which considered as a wheel speed
sensor. This sensor is a wheel encoder device that generates digital pulses for each revolution of the wheel
and allows an estimation of the distance traveled by the vehicle in a period of time. Moreover, in most
transportation applications, the vehicle moves along a road network and a digital road map can be also used
to correct the estimated position. In order to improve the positioning of the vehicle, the best
correspondence between its location and one of the roads of the digital map must be realized, this

Journal homepage: http://ijece.iaescore.com



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 3925

procedure is called map-matching. Many methods have been developed for solving the map-matching
problem [4]–[6].

The aim here is to propose a map-aided positioning GPS-based system that provides an accurate
and continuous location of the vehicle. In this case, one has a network representation of the map.
It consists of a set of 2-D curves, called arcs, each of them being linked by points (nodes) which are also
used as measures. There are several various principles to match the estimated location with an arc in the map.
The most commonly used method is based on a purely geometric technique [7] such as point-to-point match-
ing, point-to-arc matching, and curve-to-curve matching. These methods are based on a distance criterion but
are highly susceptible to positioning and mapping errors, especially when considering maps in areas with a
dense road network [8]–[11].

The extended Kalman filter (EKF) [12], [13] is commonly used to integrate the GPS data, odometer,
and map measurements. However, due to the linearization step of the non-linear model in the EKF, it will
introduce large estimation errors over time. The Kalman filter and EKF filter assume that the measurement
noise can be described using a Gaussian density function. However, this assumption is not valid in the presence
of nonlinear models and measurement noise, not Gaussian. Therefore, several approaches have been developed
to improve the accuracy and efficiency of this filter for applications with non-Gaussian densities of the states,
and/or measurement noise. These modifications include fuzzy correntropy filter CKF with adaptive kernel
size for optimization [14] and Kalman-filter-based sine-cosine algorithm (KFSCA) [15]. These algorithms are
inspired by the Kalman filter. The main difference is that these methods use a cost function to be minimized
instead of computing the conventional Kalman gain.

During the last decades, new filtering techniques have been developed for mobile navigation like
(unscented Kalman filter (UKF) [16], [17] and sequential Monte-Carlo methods [18], [19]). These methods
can account for nonlinear models and non-Gaussian statistics without a linearization stage, like the EKF. Some
works are developed in this case for mobile navigation. One can, for example, cite the GPS and inertial
navigation system (INS) integration [20], the GPS/inertial measurement unit (IMU)/light detection and ranging
(LIDAR) sensor integration [21], and IMU/anti-lock braking system (ABS)/map fusion [22].

This work details, a centralized fusion algorithm for land vehicle navigation in urban areas with a
partial or total GPS outage. In case of a partial GPS outage, which is often the case in urban environments,
our method proposes to use the available pseudo-range data, even if they are not enough to obtain a GPS
position. In case of a total GPS outage, the filter uses also dead-reckoning sensors (differential odometry) and
a road map database to provide continuous localization. This multi-sensor fusion problem is solved by particle
filtering [23], [24] that fuses the measurements of each sensor and sequentially integrates them to estimate the
3-D localization of the vehicle.

2. VEHICLE SYSTEM AND SENSOR MEASUREMENT MODELING
The multi-sensor estimation problem can be modeled by the state vector detailed below. The vehicle

model used for fusion is presented first; secondly, the measurement model which include the respectively the
GPS, partial GPS measurements (computed with limited GPS pseudo-range data), odometer and data map
information are stated. Finally, various fusion strategies are then presented for urban navigation in order to
improve the proposed filter performance.

2.1. Vehicle dynamics modeling
Consider a vehicle whose state vector consists of its position, velocity, and acceleration in the east-

north-up (ENU) frame. They are presented along the x, y, and z-coordinates at time k by (1).

Xk = (γx
k , v

x
k , xk, γ

y
k , v

y
k , yk, γ

z
k , v

z
k, zk)

T (1)

From this consideration, the relation between consecutive states can be written, along the x-component, for
instance: 

γx
k = γx

k−1 + wγx

k

vxt = γx
t−1∆k + vxk−1 + wvx

k

xk = xk−1 + vxk−1∆k + wx
k
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where (wγx

k , wvx

k , wx
k) are unknown independent zero-mean Gaussian process noise and ∆k defines the sam-

pling time.
This system of equation can be written in the matrix format, as: γx

k

vxk
xk

 =

 1 0 0
∆k 1 0
0 ∆k 1

 γx
k−1

vxk−1

xk−1

+

 wγx

k

wvx

k

wx
k


So, the dynamics model, for all components becomes as (2).

Xk = FXk−1 +Wk (2)

where F is the linear dynamics matrix of the system and Wk is the Gaussian process noise with Wk ∼
N (0, Qk) due to the model and Qk covariance matrix.

F =

 Fx 03×3 03×3

03×3 Fy 03×3

03×3 03×3 Fz

 Fu =

 1 0 0
∆k 1 0
0 ∆k 1


∆k represents the sampling period, 03×3 is a null matrix of 3 rows and 3 columns and Fx = Fy = Fz .

2.2. Measurement model
There are four measurement models. The first is the GPS data without outages. The second is the GPS

data with partial outages. The last two models differential odometry, and a road map database. The details of
each model are explained below.

2.2.1. GPS data without outages
GPS data without outages: The GPS observation obtained from the ProPak-G2 NovaAtel receiver is

computed in the WGS84 system and is converted via a projection in the local coordinates system (East, North,
up). The observation equation of GPS positions is expressed as:

ZGPS
k =

 xGPS
k

yGPS
k

zGPS
k

 = hGPS(Xk) + V GPS
k

where hGPS is the evolution function of the GPS measurements and V GPS
k is a Gaussian white noise RGPS

k .

2.2.2. GPS data with partial outage
When the available satellite signals are not sufficient for computing a GPS position (less than 4), the

filter uses the limited GPS pseudo-range measurements to improve the vehicle location, since they contain the
positioning information. For instance, with three satellites, The pseudo-range ρjk for the jth satellite can be
written as (3).  ρjk =

√
(xj

k − xk)2 + (yjk − yk)2 + (zjk − zk)2 + cδt,

j = {1, ..., 3}.
(3)

where c is the speed of light and (xj
k, y

j
k, z

j
k) are the coordinates of the jth satellite j = {1, ..., 3}.

(xk, yk, zk) and δt denotes the receiver position in three dimensions and its clock offset from the system time
respectively.

To compute the partial GPS measures ZPGPS
k , the predicted location parameters of the state vector

by the proposed filter and the non-linear least squares method has been used for solving the GPS navigation
solution. The ZPGPS

k measures are computed in the Cartesian coordinates system (ECEF) and are converted via
a projection in the local coordinates system (UTM). We have:

ZPGPS
k = hPGPS(Xk) + V PGPS

k

where hPGPS is the evolution function of the PGPS measurements and V PGPS
k is a Gaussian white noise of mean

null and covariance RPGPS
k .
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2.2.3. Differential odometry
If the GPS sensor cannot provide any vehicle positions, the differential odometry sensor [25]) is used.

It delivers a quantified measurement ZODO
k of the left and right wheels’ elementary displacements and the head-

ing angle of the vehicle [26] as shown in Figure 1:

ZODO
k =

 ∆DR
k

∆DL
k

θODO
k

 = hODO(Xk) + V ODO
k (4)

where (∆DR
k ,∆DL

k ) indicates the right and left wheel elementary displacements, θODO
k is the orientation of the

vehicle measured with respect to the horizontal axis, hODO is the evolution function of odometer measurements
and V ODO

k is a Gaussian white noise of mean null and covariance matrix RODO
k , i.e.,

∆DR
k =

√
(∆DR,x

k )2 + (∆DR,y
k )2

rR
+ V ODO,R

k

∆DL
k =

√
(∆DL,x

k )2 + (∆DL,y
k )2

rL
+ V ODO,L

k

θODO
k = arctan

(
vyk
vxk

)
+ V ODO,θ

k

where rL is the radius of the left wheel and rR is the radius of the right wheels, respectively, and (∆DL,x
k ,

∆DL,y
k ) and (∆DR,x

k ,∆DR,y
k ) are the vehicle right and left displacement respectively along x and y compo-

nents for the wheel. These displacements are expressed for both wheels according to the state vector.
∆DR,x

k = vxk−1∆k +
e

2
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−
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∥ vk−1 ∥

)
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k = vyk−1∆k − e

2

(
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−

vxk−1

∥ vk−1 ∥

)


∆DL,x
k = vxk−1∆k − e

2

(
vyk

∥ vk ∥
−

vyk−1

∥ vk−1 ∥

)
∆DL,y
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e

2

(
vxk

∥ vk ∥
−

vxk−1

∥ vk−1 ∥

)
where e is the distance between the left and right rear wheels.

Figure 1. Differential odometry model
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2.2.4. Road map database
When the GPS positioning is not available, the estimator also exploits the map measurements. The

map database is composed of a large set of roads and each road consists of a number of segments. Hence,
a segment is described by a finite set of nodes, among which a node represents a start/final node from one
segment to another in the map. Here, the node coordinates are the position information (xMAP

k , yMAP
k ) and the

orientation θMAP
k of the road segment [27].

ZMAP
k =

 xMAP
k

yMAP
k

θMAP
k

 = hMAP(Xk) + V MAP
k (5)

where hMAP is the evolution function of map measurements and V MAP
k is a Gaussian white noise of mean null

and covariance matrix RMAP
k . 

xMAP
k = xk + V MAP,x

k

yMAP
k = yk + V MAP,y

k

θMAP
k = arctan

(
vyk
vxk

)
+ V MAP,θ

k

(6)

3. VEHICLE TRAJECTORY ESTIMATION USING PARTICLE FILTERING
We develop here a method based on particle filtering for localization vehicles in urban areas, with GPS

outages. This method allows estimating the vehicle’s dynamics parameters by fusing GPS, PGPS, odometer
measures, and road map data. It can be summarized into five points, which are initialization, the evolution of
particles, weighting, estimation, and resampling.

3.1. Initialization
In this step, each particle {Xi

0}i={1,...,N} must be first initialized by a set of random state samples
using the initial density P (X0) which represents the initial available information. The weights assigned to each
particle, {wi

0}i={1,...,N}, are taken equal to 1
N ,where N is the number of particles. These weights determine

the importance of each particle in the estimation process.

3.1.1. Evolution of particles
The particles {Xi

k−1}i={1,...,N} of the state space evolve according to the dynamics model (7), through
the generation of N independent noise realizations W i

k with law P (Wk). For each particle, the algorithm uses
this equation to compute an estimate of the future state. The evolution step is then used in the weighting step,
where new sensors measurements is integrated to refine the estimation of the state of the vehicle.

Xi
k = FXi

k−1 +W i
k (7)

3.2. Weighting
The weights wi

k can then be updated by the measures available at time k according to Bayes’ rule as
in (8).

wi
k =

P (Zk|Xi
k)∑N

j=1 P (Zk|Xj
k)

wi
k−1 (8)

This step computes the weight of each particle using the available observation Zk at time k. So, three
main cases, which are the available GPS measures, the partial GPS outage, and the total GPS outage, can
be developed.
a. GPS measures are available

In this case, the estimator uses only the GPS measure (Zk = ZGPS
k ) to estimate the parameters (acceler-

ation, velocity, and position) of the vehicle. Note that a GPS solution is considered available when pseudo-range
measurements are greater than or equal to 4.
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P (Zk|Xi
k) = P (ZGPS

k |Xi
k) (9)

The log-likelihood function V (Zk|Xi
k) is then proportional to:

V (Zk|Xi
k) ∼ ln( P (ZGPS

k |Xi
k))

∼ ∥ZGPS
k −HGPSXi

k∥2RGPS

where ∥ · ∥2R is equal to (·)TR−1(·). Then, we normalized the weights of the particles as (10).

wi
k =

wi
k∑N

j=1 w
i
k

(10)

b. Partial GPS outage
The proposed approach exploits the available GPS pseudo-range measures even if it is less than 4

because they contain positioning information. For this purpose, one develops partial measures of the GPS
sensor from the available pseudo-range measures. The filter uses the predicted parameters of the state vector
and the least squares method to compute a partial GPS measure. For instance, with three satellites in view, the
pseudo-range ρjk for the jth satellite can be written as (11).

ρjk =

√
(xj

k − xk)2 + (yj
k − yk)2 + (zjk − ẑk/k−1)2 + cδt (11)

where j = {1, ..., 3} and ẑk/k−1 is the filter-based prediction of zk, i.e, ẑk/k−1 =

N∑
i=1

wi
k−1z

i
k.

To compute the receiver position, the predicted location ẑk/k−1 of particle filter and the least
squares method can be used if three pseud-orange measures were available. With two satellites in view,
the method requires two components of the predicted state vector ŷk/k−1 and ẑk/k−1 for solving the GPS
navigation.

During partial GPS outages, the filter also fuses the odometer measures and digital road map to
estimate the displacement. The problem fundamental now is to correlate the previous predicted state and
associate it with the map data information. For this purpose, it is fundamental to match the predicted
location of the vehicle with the road network on the map. There are several solutions to this multi-sensor track-
ing problem, such as a probabilistic approach or multi-hypothesis navigation system [28], map
likelihood calculation [29]. Other algorithms use the statistical approach, deterministic model approaches,
fuzzy logic, and belief theory [30]. The chosen solution is the probabilistic approach using the Mahalanobis
distance as coherence metric [31], [32]. This metric is computed between the 2-D predicted map position

ẐMAP
k|k =

N∑
i=1

ω
(i)
k hMAP

(
Xi

k|k

)
and each map attribute (2-D location of the nodes and segment direction), ZMAP

m ,

m = {1, ...,mmax}
We calculate the Mahalanobis distance dm = (ZMAP

m , ẐMAP
k|k) using two directions of the road:

d1,m = min
m

[
(ZMAP,1

m − ẐMAP
k/k)

T (P̃ MAP
k/k)

−1
(
ZMAP,1

m − ẐMAP
k/k)

]
(12)

d2,m = min
m

[
(ZMAP,2

m − ẐMAP
k/k)

T (P̃ MAP
k/k)

−1 (ZMAP,2
m − ẐMAP

k/k)
]

(13)

where

ZMAP,1
m = (xMAP

m , yMAP
m , θMAP

m );

ZMAP,2
m = (xMAP

m , yMAP
m , θMAP

m + π); (14)
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P̃ MAP
k/k indicates the error covariance of the predicted map measure. It is computed as:

P̃ MAP
k/k =

N∑
i=1

ωi
k

(
ZMAP,i

k|k

)2
−

(
N∑
i=1

ωi
kZ

MAP,i
k|k

)2

The measure ZMAP∗
k that minimizes the distance criterion under assumption of a set threshold S is used to cor-

rect the state estimation.

ZMAP∗
k = arg min

ZMAP
[d1m, d2m] ≤ S (15)

After the indication of the measurement ZMAP∗
k , Then, it is used with the partial GPS measures and the

odometer measures in order to correct the weight of th particles ωi
k. Assuming that the measurement noise is

independent, the posterior density function (16):

P (Zk|Xi
k) = P (ZPGPS

k ,ZODO
k , ,ZMAP∗

k |Xi
k) (16)

The log-likelihood function is:

V (Zk|Xi
k) ∼ ∥ZODO

k − hODO(Xi
k)∥2RODO + ∥ZPGPS

k − hPGPS(Xi
k)∥2RPGPS∥ZMAP∗

k − hMAP(Xi
k)∥2RMAP (17)

c. Total GPS outage
During total GPS outage (no pseudo-distance available) the filter fuses only the odometer and road

map measures to estimate the vehicle’s location. In this case the posterior density becomes (18).

P (Zk|Xi
k) = P (Z ODO

k ,ZMAP∗
k |Xi

k) (18)

The log-likelihood function becomes:

V (Zk|Xi
k) ∼ ∥ZODO

k − hODO(Xi
k)∥2RODO + ∥ZMAP∗

k − hMAP(Xi
k)∥2RMAP

3.3. Estimation
This step involves combining the particles selected in the resampling step using a weighted sum to

obtain a state estimate. Particles with high weights contribute more to the final state estimate than particles
with low weights. Therefore, the resulting estimate of the state vector is given by (19).

X̂k|k =

N∑
i=1

ωi
kX

i
k (19)

3.4. Resampling
To avoid the degeneracy problem, a resampling procedure is added to the particle filter, so that the

particles with high weights are duplicated and the lowest weighted particles are deleted. There are multiple
varieties of resampling algorithms to perform this step, and the performance of the particle filter can be also
affected by the algorithm used. In our method, we use multinomial resampling to duplicate each particle and
the rest of the particles are randomly sampled using a uniform law [0; 1] and comparing them to the cumulative
sum of the weights. To avoid the weight degeneracy the number of effective particles Neff is less than a set
threshold Nthresh . The criteria used to estimate Neff is given by (20).

Neff =
1

N∑
i=1

(
ωi
k

)2 < Nthresh (20)

After the multinomial resampling step, the weights are normalized, and the new weight is given by

ωi
k =

1

N
.
Finally, the proposed multi-sensor fusion algorithm is presented in Figure 2. If the GPS measure is

available the filter uses it only to estimate the vehicle characteristics else the filter uses the available
pseudo-range data and fuses it with the odometer measures and a road map database to provide continuous
localization.
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Figure 2. Localization algorithm

4. EXPERIMENTAL RESULTS

We present in this section some experimental results in order to quantify the benefits of the proposed
method. We compare also these results to an EKF-based estimation. For the experimental data set, the vehicle
was driven in an urban area in Calais in France. The experimental vehicle is equipped with a Novatel GPS
receiver which computes the 3-D localization in the WGS84 system with a frequency of 1Hz. The speed of the
vehicle is modified by many accelerations/decelerations due to the traffic lights and pedestrians. The trajectory
lasts about 323 seconds with two GPS outage periods: the first one lasts 38 seconds during which the vehicle is
turning right and another one of 31 seconds which the vehicle is driven in a straight line as shown in Figure 3.

Vehicle positioning in urban environments using particle filtering-based ... (Abdelkabir Lahrech)
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In these cases, the filter fuses the available GPS pseudo-range measure (always computed from three satellites)
with odometer data. The filter also exploits road map information which is delivered at a sampling rate of 1
Hz, as well as the GPS positioning when available. Note that in this work the road map is discretized into a 5
meter grid.

Figure 3. Reference trajectory of the vehicle

In this experimentation the covariance matrix of the GPS measurement noise is
RGPS = [10 0 0; 0 10 0; 0 0 10], therefore, the associated standard deviations are σGPS

x = σGPS
y = σGPS

z = 3.162m.
The tropospheric and ionospheric errors that affect GPS accuracy has been estimated using the Klobuchar
and the Goad and Goodman model, respectively [1], [33]. For the particle filter, the covariance matrix of
the odometer and map measurement noise are respectively RODO = [0.395 0 0; 0 0.395 0; 0 0 0.01 rad] and
RMAP = [25m 0 0; 0 25m 0; 0 0 0.01 rad]. The used particles number is set to N = 40.000 and the chosen

resampling threshold Nthresh is set to
2N

3
.

4.1. Vehicle motion estimation
In this section, we present the results of the proposed estimator applied to experimental data. We focus

our attention on the periods of partial GPS masking. In this case, the filter uses the available partial data from
the GPS, the odometric measures, and the digital road map database to estimate the trajectory of the vehicle. To
evaluate the performance of our algorithm, we need to calculate the error along the travel. It has been computed
using actual data, gathered by the DGPS sensor.

Figures 4 and 5 show respectively the three-dimensional acceleration and velocity errors of the vehicle.
It is compared to the EKF approach that is plotted in the blue curve. We can remark that the particle filter
approaches better bound the kinematics errors than the EKF when the odometers, the partial GPS measure, and
the digital road map are jointly used. This plot shows also that means speed and acceleration error of PF are
respectively about 1, 26 meter/second and 0,71 meter/second2 when the GPS fails.
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Figure 4. Plot of the 3-D acceleration error of the vehicle (PF and EKF)
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Figure 5. Plot of the 3-D speed error of the vehicle (PF and EKF)

4.2. Vehicle positioning estimation
Figure 6 shows the three-dimensional localization error of the vehicle along the travel. There are

two areas where GPS positioning is absent due to an insufficient number of satellites. The first partial GPS
outage lasts for 38 seconds from t = 107 to t = 144 and the second partial GPS outage lasts for 31 seconds
from t = 244 to t = 279. During these periods, the mean positioning error of the particle filter method
is approximately 3.23 meter. Note that the particle filter leads to better estimations accuracies in the 3-D
localization, even if GPS fails.

Figure 7 shows maps of the test travel, the road polylines are plotted with the UTM coordinates (East,
North) in light grey. In this figure, the PF and EKF estimated trajectory of the land vehicle are respectively
plotted in green and red stars. We can remark that the proposed method improves significantly the vehicle
positioning accuracy during GPS fails.

Vehicle positioning in urban environments using particle filtering-based ... (Abdelkabir Lahrech)



3934 ❒ ISSN: 2088-8708

0 50 100 150 200 250 300 350

Time (seconds) 

0

2

4

6

8

10

12

14

  
3
-D

 p
o

s
it
io

n
n
in

g
 e

rr
o
r 

(m
e

te
rs

) 

 PF

EKF

Figure 6. Plot of the 3-D localization error of the vehicle (PF and EKF)

Figure 7. Reference and estimated trajectories of the vehicle

To illustrate the performance of our approach, it will be compared with the standard EKF. During the
GPS outages, the reconstructed partial GPS measures (computed from the available pseudo-range), odometer
sensor, and a road map database are only used for the estimated trajectory of the vehicle. The standard devia-
tions and mean of the positioning errors during the GPS outages are presented in Tables 1 and 2 respectively.
These results show that the proposed filter leads to better estimation of vehicle positioning when the GPS
cannot provide a location for long time.
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Table 1. Standard deviations during GPS outages
GPS Outages ∆t1 = 38 s ∆t2 = 31s

PF EKF PF EKF
3-D Acceleration (m/s2) 0.52 0.62 0.56 0.65

3-D Velocity (m/s) 0.70 1.18 0.87 1.32
3-D Positioning (m) 0.73 2.13 0.52 2.59

Table 2. Mean error during GPS outages
GPS Outages ∆t1 = 38 s ∆t2 = 31 s

PF EKF PF EKF
3-D Acceleration (m/s2) 0.71 0.76 0.65 0.80

3-D Velocity (m/s) 1.26 1.40 1.22 1.73
3-D Positioning (m) 3.23 7.09 3.24 8.25

Figure 8 shows the evolution of the Mahalanobis distances which is our map-matching criterion here.
The chosen map-matching threshold is drawn in bleu, corresponding to S = 3, which defines in which condi-
tions the digital road map data can be used to improve the vehicle location. Note that the map-matching rate
reaches about 92.11% for the first GPS outage and 90.31% for the second one.

Figure 9 shows the satellite availability and geometry along the travel. The satellite geometry can be
quantified here using the notion of dilution of precision (GDOP), which is defined as one of the performance
criteria of GPS measure. During the GPS masking, the GPS location and the GDOP value, cannot be calculated.
This figure also explains that the not-perfect three-dimensional GPS localization estimation from t = 150 to
t = 228 is due to the worst quality of estimated GDOP (i.e. GDOP is higher).
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Figure 8. Time evolution of the map-matching criterion

Figure 9. Time evolution of the GDOP and number of satellites in view
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Finally, Figure 10 shows the road network of Calais city that we used in our experiment. The gray
segments are the available road section and the one in color blue show the map measures used by our estimator
using the UTM coordinates, these measurements are used to correct the estimated vehicle location. It shows
also that we have 92.11% of the data were matched correctly to their concerned road sections for the first GPS
outage and 90.33% for the second one. Finally, the proposed method achieves better vehicle position estimation
accuracy than an EKF-based method, especially during GPS masking.

Figure 10. Estimated path of the vehicle and roadmap data positions

5. CONCLUSION
This paper presents a general method of land vehicle positioning using GPS, differential odometry,

and digital road map information, especially in urban areas where the blockage of GPS satellite signals is very
often. Furthermore, if the GPS measure is available and coherent (i.e. good GDOP value) the particle filter
estimates the location of the vehicle using only this GPS data. Else, when the GPS fails, the available pseudo-
range data, the odometer information, and the road map database, are sequentially used to estimate efficiently
the vehicle pose. This estimation problem is solved by a particle filter which provides an optimal resolution
scheme compared to EKF. The benefits are shown in an urban network scenario carried out in Calais, France,
which demonstrates the stability and robustness of the proposed method compared to conventional EKF filters.
The results show also an improvement in vehicle positioning accuracy in dense urban environments where GPS
failures can occur. The proposed method can be used in several fields to provide accurate positioning. Among
these fields, we can list aided positioning systems, intelligent transport systems, commercial transportation
systems, and vehicle fleet management where the location information must be known accurately and at any
time.
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