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 Glaucoma is an ophthalmic disease which is among the chief causes of visual 

impairment across the globe. The clarity of the optic disc (OD) is crucial for 

recognizing glaucoma. Since existing methods are unable to successfully 
integrate multi-view information derived from shape and appearance to 

precisely explain OD for segmentation, this paper proposes a saliency-based 

level set with an enhanced active contour method (SL-EACM), a modified 

locally statistical active contour model, and entropy-based optical disc 
localization. The significant contributions are that i) the SL-EACM is 

introduced to address the often noticed problem of intensity inhomogeneity 

brought on by defects in imaging equipment or fluctuations in lighting; ii) to 

prevent the integrity of the OD structures from being compromised by 
pathological alterations and artery blockage, local image probability data is 

included from a multi-dimensional feature space around the region of interest 

in the model; and iii) the model incorporates prior shape information into the 

technique, for enhancing the accuracy in identifying the OD structures from 
surrounding regions. Public databases such as CHASE_DB, DRIONS-DB, and 

Drishti-GS are used to evaluate the proposed model. The findings from 

numerous trials demonstrate that the proposed model outperforms state-of-the-

art approaches in terms of qualitative and quantitative outcomes. 
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1. INTRODUCTION  

Glaucoma is a condition that causes blindness in an individual. This eye disease is the third leading 

cause of blindness in India [1]. Due to a restriction in intraocular fluid outflow, glaucoma is characterized by 

an increase in intraocular pressure (IOP) in the eye. Glaucoma is often diagnosed by using ophthalmoscopy 

to study the shape and color of the optic nerve during a manual evaluation of the optic disc (OD). Due to the 

multiple problems connected with the procedure, detecting anomalies in the human eye, in particular, is 

tough. Researchers have been paying more attention to retinal image processing as a result of the demand for 

sickness detection systems [2]. Early detection of glaucoma is crucial for halting the progression of vision 

impairment. Glaucoma increases the optic cup-to-disc ratio (CDR) which causes peripheral vision loss [3]. 

The study work [4] investigates different image processing approaches for OD segmentation based on 

glaucoma assessment of pre-processed fundus images. The outcomes are presented, and the techniques are 

evaluated using publicly available fundus images. Modern algorithms for glaucoma detection are necessary 

to prevent human intrusion [5]. The OD’s main structures are shown in Figure 1. The region between the 
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white line and the black line, which represent the boundaries of the OD and the optic cup, respectively, is 

known as the neuroretinal rim. The peripapillary atrophy (PPA) and the intensity inhomogeneity are depicted 

in Figure 2. In the great majority of cases, the manual examination of the retinal image results in misdetection 

due to human error, which is usually caused by visual fatigue [6]. The accuracy of the retinal image screening 

investigation is improved with the design of a computer-aided diagnosis system (CAD). Certain vascular 

retinal properties, such as branching pattern, breadth, and length, have led to innovative approaches for 

detecting infections [7], [8]. The absence of magnification produces distortions that can be used to defend 

against CDR limitations in accuracy [9]. The CDR value is found to be inconsistent, which helps to explain 

the degree of OD damage induced by glaucoma. This research primarily aims to create an optimization 

strategy that will improve the precision of glaucoma detection. This is why an automated CAD system must 

have OD segmentation and OD center localization [10]. 

 

 

 
 

Figure 1. Components of the optical disc 

 

 

For the purpose of segmenting the OD, several methods have been created to date. They may be 

loosely divided into two groups: model-based techniques and nonmodel-based approaches. For nonmodel-

based algorithms [11], [12] the contours of the OD are recovered using morphological techniques, pixels, 

clustering, and thresholding. However, intensity inhomogeneity-which impairs the contour extraction OD-

often occurs in retinal fundus images, due to image faults in devices or variations in lighting. Shape-based 

template matching [13]–[16], deformable model approaches [17], [18], and model-based deep learning 

approaches [19]–[21] are examples of model-based techniques. Considering that the object is round or 

roughly elliptical, the OD’s form can be inferred to be either a circle [13]–[15] or an ellipse [16]. The 

template-matching techniques based on shape, however, cannot adapt to changes, such as shape irregularity 

in some areas of the OD caused by various pathological changes or alterations. Many deformable model 

techniques, which may be further separated into edge-based active contour models [17], [18] and region-

based active contour models [22]–[25], have been proposed to address it. Active contour models with edges 

may fill in the gaps in the image feature being located. Additionally, as they lack a global template structure, 

they are able to arbitrarily alter the structure of the object. Active contour models based on regions are better 

able to manage local variations in the OD, but they have trouble with images with varying intensities. 

However, the disadvantage of active contour model-based approaches is that they ignore the prior 

information of OD’s spatial correlation. 

Deep learning has recently gained popularity in the fields of computer vision and pattern recognition 

and has demonstrated impressive performance. Few deep network-based approaches for the OD’s 

segmentation have been developed [26]–[28]. These methods have certain shortcomings even though they 

can segment the OD with high performance [29], [30]. The deep network model needs a significant amount 

of training data with pixel-level annotations in order to be trained for testing, and in the absence of sufficient 

labelled training samples, the network struggles to achieve promising segmentation results. These networks, 

however, fail to account for an object’s prior knowledge, which leads to the loss of spatial information 

through max pooling in the encoder and irregular segmentation. By combining the benefits of both types of 

techniques, this research offers a solution to all the issues stated above and presents two unique energy 

optimization frameworks. The major contributions include the following: i) the saliency-based level set with 

an enhanced active contour method (SL-EACM) was created to deal with the harsh inhomogeneity of 

intensity that is widely present within fundus retinal images; ii) the work adds probability data from a multi-

dimensional feature space into the algorithms in order to completely analyze the underlying structure inside 

fundus retinal pictures and to extract greater integrity from OD borders; and iii) it is better to incorporate the 

preceding shape constraint data into segmentation approaches when considering the anatomical framework of 

OD and the ellipse. 
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The research project is structured: section 2 discusses the evaluation of the current techniques in the 

literature. Section 3 contains the part on proposed techniques, whereas section 4 displays the results and 

discussions. Section 5 discusses the study’s results and further steps. 

Figure 1 displays the components of OD appearance in the fundus image. Figure 2(a) shows the 

complicated OD appearance is influenced by intensity inhomogeneities, blood vessel occlusions, ill-defined 

boundaries, irregular form, and certain anomalies such as peripapillary atrophy (PPA). Figure 2(b) shows the 

variation of color intensity in the OD segmentation. 

 

 

  
(a) (b) 

 

Figure 2. OD intensity (a) inhomogeneity in fundus image and (b) intensity variation in fundus image 

 

 

2. METHOD 

In this research, an effective OD segmentation is performed by using the SL-EACM with entropy-

based OD localization. The important process of the proposed method is database acquisition, pre-processing 

stage, OD localization using entropy, and OD segmentation using SL-EACM. Figure 3 displays a block 

diagram illustrating the proposed research. The developed SL-EACM method is used to overcome the issues 

of uneven illumination and enhance the segmentation of OD. The proposed work is evaluated on the Drishti-

GS, CHASE_DB1, and DRIONS-DB datasets, which are being discussed in the upcoming section 2.1. 

 

 

 
 

Figure 3. Block diagram depicting the proposed method 

 

 

2.1.  Dataset description 

2.1.1. Drishti-GS 

Drishti-GS [31] is a dataset for testing OD segmentation, cup detection, and notching detection. 

Aravind Eye Hospital in Madurai, India, gathered and tagged the images that make up the Drishti-GS 

collection. A training set and a testing set of photos are included in the dataset. Ground facts for OD and cup 

segmentation as well as notching information are included in the training photos (50). 

 

2.1.2. CHASE_DB1 

Child Health and Study England’s CHASE_DB1 [32] is a reference database collected as a part of a 

health study done across 200 primary schools in London. The CHASE_DB1 database’s 28 photos are 

separated into two groups: a training set (8 Fundus images) and a testing set (20 Fundus images). This public 
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CHASE_DB1 database consists of 28 retinal fundus images from 14 patients’ left and right eyes, each with a 

30-degree field of vision. This database contains photos with a resolution of 999×960 pixels that were taken 

with a Nidek NM200D camera but suffer from poor contrast and lighting issues. 

 

2.1.3. DRIONS-DB 

The DRIONS dataset [33] was created using images from patients (men 46.2% and women 53.8%) 

of Caucasian ethnicity at the Ophthalmology Service at Miguel Servet Hospital in Saragossa, Spain. Two 

independent experts painstakingly separated the OD. There are 110 color images with a resolution of 

600×400 in the collection. 

 

2.2.  Pre-processing 

Fundus images must be preprocessed using normalization and low light enhancement [34] in order 

to achieve improved accuracy for segmentation and feature extraction for learning models. The developed 

preprocessing is used to overcome the issues of misalignments of retinal and camera focus, lightning 

conditions, and errors in the camera that affect fundus images. The normalization method is more effective at 

removing impulse and machinery noises and also helps to increase image quality significantly. In this 

research study, the conversion of color images into grayscale images is achieved. Normalization of grayscale 

images is performed according to (1). 

 

𝐼𝑁 = (𝐼 − 𝑀𝑖𝑛) ×
𝑛𝑒𝑤𝑀𝑎𝑥−𝑛𝑒𝑤𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
 +  𝑛𝑒𝑤𝑀𝑖𝑛 (1) 

 

An n-dimensional grayscale picture 𝐼 with intensity values between (𝑀𝑖𝑛, 𝑀𝑎𝑥) is transformed via 

normalization into a new image 𝐼𝑁 with intensity values between (𝑛𝑒𝑤𝑀𝑖𝑛, 𝑛𝑒𝑤𝑀𝑎𝑥). 

To reduce all types of aberrations in the frequency levels, the convolution property is used to 

improve the fundus image. This manages the fundus image’s dark level and changes the contrast for better 

pixel density distribution within the specified range, resulting in enhanced images. In the test, all techniques 

for segmenting the OD employ the beginning contours shown in section 2.3 for computing the evolution 

contour. In the vessel-free image, all contrastive segmentation techniques are computed. The proposed 

objective functions are optimized to get the final segmentation results for the OD. 

 

2.3.  Optic disk localization 

The entropy-based localization is performed to locate the exact position according to the contrast of 

the optical disc. Here, the portion with higher contrast has huge entropy which is used to locate the OD 

precisely in the overall image. The optical disc area has more precise data that can be utilized to recognize it. 

Hence, OD’s identification in the landmark fundal is significant to monitor the changes in the OD. 

Information measurement is associated with an information theory, and it has been crucial in a 

variety of application areas, including image analysis. It is possible to interpret the entropy of a probability 

distribution as both a measure of information as well as a measure of uncertainty. Formally, let 𝑋 is the 

discrete random variable and the probability mass function is (𝑥), 𝑥 ∈ 𝑋. The Shannon entropy for the 

discrete random variable 𝑋 is described as (2), 

 

𝐻(𝑋) = ∑ 𝑝(𝑥)𝑙𝑜𝑔 𝑝(𝑥)𝑥∈𝑋  (2) 

 

where 𝑝(𝑥) ∈ [0.0, 1.0], (−𝑙𝑜𝑔 𝑝(𝑥)) is an information association for occurrence 𝑥, and ∑ 𝑝(𝑥)𝑥∈𝑋 = 1. 

In a digital image, the pixel values of the variation are transmitting the information inside the image 

that is being evaluated by the entropy metric. However, the image features a range of scattered brightness 

values; image entropy 𝐻𝐼 can be calculated as (3), 

 

𝐻𝐼 = − ∑ 𝑝(𝑗) 𝑙𝑜𝑔2 𝑝(𝑗)
𝑀𝑔−1

𝑗=0
 (3) 

 

where 𝑝(𝑗) is the brightness value of distribution indexed by 𝑗 inside image 𝐼; 𝑀𝑔 is total of brightness stages 

in an interested image 𝐼. In the processing stages of images, measuring the entropy creates a value that 

develops the novel characteristics that are exploited in image investigation like texture analysis. Entropy of 

the low values is recommended for the texture of smoothing, as texture with more information entails entropy 

of higher values. Hence, its capabilities are utilized to create a novel feature to determine the texture 

smoothing of images. There is additional information, such as nerves and blood vessels going through, in the 

region of the OD in the fundus image. That means it is not smooth in texture. It is expected that its entropy 

value can be higher than the fundus images of regions. 
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This technique has been used to locate objects in images. Regardless of how the image is broken 

into sub images (regions), each one will be evaluated independently using the quality function. As a result, 

the location with the highest score will be considered for the region of interest. Assume X is a region-

partitioned image, divided into subregions (4). 

 

𝑋 = {𝑅1, 𝑅2,......., 𝑅𝑛} (4) 

 

However, 𝑅𝑖 represents the region labeled with (top, bottom, left, and right) coordinates, 𝑓(𝑅𝑖) represents an 

excellence function or a quality function, and 𝑥𝑗 represents the candidate region with 𝑅𝑗=𝑎𝑟𝑔𝑚𝑎𝑥𝑅𝑖∈𝑥𝑓(𝑅𝑖). 

In this study, a sliding window technique with two distinct methods nonoverlap and overlap is 

considered as the proposed methodology. However, each image pixel in the nonoverlap approach cannot be a 

part of more than one region, so it becomes (5). 

 

𝑅𝑖 ∩ 𝑅𝑗 =  0 (5) 

 

Meanwhile, the overlap approach permits an image to be a part of many regions. 

 

𝑅𝑖 ∩ 𝑅𝑗 ≠ 0 ̸ (6) 

 

𝑅𝑖, 𝑅𝑗 are regions in the image. 

 

2.4.  Optic disc segmentation 

In SL-EACM, the saliency map is initially generated according to the image shape, color, and 

textures. Information from the generated saliency map is given as input to level set for detecting the boundary 

of OD. Therefore, an edge indicator of level set with enhanced active contour effectively predicts the OD’s 

boundary by using the saliency map information. Other factors, such as blood vessel coverage, image 

variations, and border smoothing near the OD’s boundary induced by pathological alterations, complicate the 

OD segmentation. In order to solve the aforementioned issues, multi-view data is extracted based on the 

appearance and shape of OD with the goal of achieving accurate OD detection under a variety of scenarios. 

The SL-EACM is augmented by including the local image probability information from a multi-dimensional 

feature space surrounding the site of interest (SLACM-A), which is based on the appearance of OD. In a 

single feature space, for the 𝑗𝑡ℎ object at pixel 𝑥, the Gaussian probability density function (PDF) is described 

based on the transformed domain. 

 

𝑃 (𝐼′ (
𝑥

𝜃𝑗
, 𝐵)) ∝  ∏ 𝑃(𝐼(𝑦|𝜃𝑗, 𝐵, 𝑥))𝑦∈Ω𝑗∩𝑂𝑥

 (7) 

 

where 

 

𝑃 (𝐼(𝑦|𝜃𝑗 , 𝐵, 𝑥)) =
1

√2𝜋𝜎𝑗
exp (−

(𝐼(𝑦)−𝐵(𝑥)𝑐𝑗)
2

2𝜎𝑗
2 )  

 

where, in the transformed domain, the image is represented by 𝐼′. In a single feature space, for the 𝑗𝑡ℎ object 

at the pixel 𝑦 near the pixel 𝑥 the Gaussian PDF is given by 𝑃(𝐼(𝑦|𝜃𝑗, 𝐵, 𝑥)). Π is indicated as multiplication. 

𝜃𝑗 indicates the group of estimated parameters {𝑐𝑗, 𝜎𝑗}. Now the functioning mechanism is combined with 

probability data from multidimensional feature space. At the pixel 𝑥 for the 𝑗𝑡ℎ object based on the 

transformed domain; the proposed probability function based on the mentioned Gaussian PDF for the 

transformed domain is depicted in (8). It integrates a more detailed version of the local image probability data 

collected at the point of interest over a multi-dimensional feature space. 

 

∏ 𝑃𝑖(𝐼𝑖
′(𝑥/𝜃𝑗𝑖 , 𝐵𝑖

𝑑
𝑖=1 )) ∝ ∏ ∏ 𝑃 (𝐼(𝑦|𝜃𝑗 , 𝐵, 𝑥))𝑦∈Ω𝑗∩𝑂𝑥

𝑑
𝑖=1  (8) 

 

where 

 

𝑃𝑖(𝐼𝑖(𝑦|𝜃𝑗𝑖 , 𝐵𝑖, 𝑥))) =
1

√2𝜋𝜎𝑗𝑖
exp (−

(𝐼𝑖(𝑦)−𝐵𝑖(𝑥)𝑐𝑗𝑖)
2

2𝜎𝑗𝑖
2 ))   
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where the total of feature spaces is indicated by 𝑑. 𝜃𝑗𝑖 indicates the group of estimated parameters {𝑐𝑗𝑖 , 𝜎𝑗𝑖}. In 

the 𝑖𝑡ℎ feature space, the input image is referred to as 𝐼𝑖. For the 𝑖𝑡ℎ feature space, the image in the 

transformed domain is referred to as 𝐼𝑖
′. In the 𝑖𝑡ℎ feature space, at pixel 𝑥 for the 𝑗𝑡ℎ object the Gaussian 

PDF based on the transformed domain is 𝑃𝑖(𝐼𝑖
′ (

𝑥

𝜃𝑗𝑖
, 𝐵𝑖)).  

In the 𝑖𝑡ℎ feature space, at the local region Ω𝑗 ∩ 𝑂𝑥 centered at each location 𝑥, the spatial varying 

mean that is estimated is denoted by 𝐵𝑖(𝑥)𝑐𝑗𝑖. In 𝑖𝑡ℎ feature space, the bias field function is denoted by 𝐵𝑖. In 

the 𝑖𝑡ℎ feature space the true signal of the 𝑗𝑡ℎ object is assumed to be 𝑐𝑗𝑖. In the 𝑖𝑡ℎ feature space, for the 𝑗𝑡ℎ 

object, the standard deviation of the Gaussian distribution is denoted by 𝜎𝑗𝑖. Assuming that 

 

𝐷 = {𝐼′(𝑥/𝜃𝑗𝑖 , 𝐵𝑖), 𝑥 ∈ Ω, 𝑗 = 1, … . , 𝑛; 𝑖 = 1, … , 𝑑}, 

 

the proposed probability function, which combines probability data with multidimensional attributes, can be 

used to represent the joint likelihood function as (9), 

 

𝑃(
𝐷

𝜃
, 𝐵) = ∏ ∏ ∏ 𝑃𝑖 (𝐼𝑖

′(𝑥 ⁄ 𝜃𝑗𝑖  , 𝐵𝑖)) ∝ ∏ ∏ ∏ 𝑃𝑖(𝐼𝑖
′(𝑦/𝜃𝑗𝑖 , 𝐵𝑖, 𝑥)𝑑

𝑖=1𝑥∈Ω
𝑛
𝑗=1

𝑑
𝑖=1𝑥∈Ω

𝑛
𝑗=1  (9) 

 

where 𝜃 = {𝜃𝑗𝑖 , 𝑗 = 1, … . . , 𝑛; 𝑖 = 1, … . . , 𝑑}, 𝐵 = {𝐵𝑖, 𝑖 = 1, … . , 𝑑}, 𝑛 describes the total of objects. The 

inverse log-likelihood function of 𝑃(
𝐷

𝜃
, 𝐵) is defined in order to evaluate the parameter set 𝜃˜ and 𝐵˜. In the 

meantime, the constant weight coefficient is added and the trivial constant term is eliminated. 

To obtain the new method based on appearance, use (10), 

 

𝐸𝑆𝐿𝐸𝐴𝐶𝑀−𝐴 =
1

𝑑
∑ ∑ ∫ 𝐹𝑗𝑖(𝑦)𝑀𝑗(𝜙(𝑦)𝑑𝑦

Ω
𝑛
𝑗=1

𝑑
𝑖=1  (10) 

 

where 
 

𝐹𝑗𝑖(𝑦) ≜  ∫ 𝐾𝜌(𝑥, 𝑦)(log(𝜎𝑗𝑖) + ((𝐼𝑖(𝑦) − 𝐵𝑖(𝑥)𝑐𝑗𝑖)
2

/2𝜎𝑗𝑖
2))𝑑𝑥

Ω
  

𝑀1 = 𝐻(𝜙(𝑦));     𝑀2 = 1 − 𝐻(𝜙(𝑦))  

 

In the retinal color fundus images, because the area of optic disc (OD) is brighter in comparison 

with other areas, the number of objects 𝑛 is taken as 2; 𝑐1𝑖 = (𝑐11, 𝑐12, . . . , 𝑐1𝑑),  𝑐2𝑖 = (𝑐21, 𝑐22, . . . , 𝑐2𝑑),  

 𝐵1 = (𝐵1, 𝐵2, . . . , 𝐵𝑑),  𝜎1𝑖 = (𝜎11, 𝜎12, . . . , 𝜎1𝑑) and  𝜎1𝑖 = (𝜎21, 𝜎22, . . . , 𝜎2𝑑) are five steady vectors. In 𝑖𝑡ℎ 

feature space, the true signal of the OD and the background is assumed to be the values of the two vectors 

namely 𝑐1𝑖 and 𝑐2𝑖, respectively. 𝐻 indicates the Heaviside function. In the 𝑖𝑡ℎ feature space, the values of the 

two vectors 𝜎1𝑖 and 𝜎2𝑖 respectively, represents the standard deviation of the Gaussian distribution of the OD 

and the background. For segmenting the OD, the level set function is represented by 𝜙. The energy function 

in (5) is minimized, so the values of  𝑐1𝑖,  𝑐2𝑖, 𝐵𝑖 𝜎1𝑖 and 𝜎2𝑖 are optimally chosen.  

Because of the complicated OD appearance (e.g., illumination changes, anomalous effects, and 

interlaced blood arteries), a single feature space cannot adequately describe the entire OD. As a result, the 

multi-feature spaces must be merged in order to complement each other’s advantages for effectively 

representing the OD. The red color plane offers a subtle contrast for blood vessels and provides better 

contrast for the OD region, and the hue-saturation-value (HSV) color space can easily separate the intensity 

information from the color information and extract additional information. The expanded SL-EACM then 

uses a multi-dimensional feature space (𝑑 = 5) to describe an image point 𝑥, with each vector element drawn 

from the red color plane, vessel-free red color plane, and each channel from vessel-free HSV color space. 

Given that the OD has a circular or elliptical shape, the SL-EACM incorporates OD shape priori 

information while keeping the fundamental anatomical structure. Initially, the OD’s elliptic parameterized 

level set function which consists of a five-tuple ( 𝑥𝑑, 𝑦𝑑 , 𝜃𝑑 , 𝑎𝑑, 𝑏𝑑) is introduced. It can be described as (11), 

 

𝜙0 = 1 − √(
𝐴2

𝑎𝑑
2) + (

𝐵2

𝑏𝑑
2) (11) 

 

where 
 

𝐴 =  (𝑥 −  𝑥𝑑)𝑑𝑥 𝑐𝑜𝑠 𝜃𝑑  +  (𝑦 −  𝑦𝑑)𝑠 𝜃𝑑  

𝐵 =  −(𝑥 – 𝑥𝑑) sin 𝜃𝑑 + (𝑦 – 𝑦𝑑) cos 𝜃𝑑  
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where the scaling factor of the semi-major axis length is defined as 𝑎𝑑 and the semi-minor axis length is 

denoted by 𝑏𝑑. Furthermore, 𝑥𝑑 and 𝑦𝑑 are oval center coordinates, and the angle of rotation is 𝜃𝑑 . Then, 

using the elliptic parameterized level set function 𝜙0 for the OD, an ellipse constraint term is created. It can 

be shown as (12), 
 

𝐸𝑆ℎ𝑎𝑝𝑒𝑃𝑟𝑖𝑜𝑟  = ∫
Ω

 𝜈 (𝐻(𝜙(𝑦)) −  𝐻(𝜙0(𝑦)))
2

𝑑𝑦 (12) 

 

where 
 

𝜙0 = 1 − √(
𝐴2

𝑎𝑑
2) + (

𝐵2

𝑏𝑑
2)  

 

where 𝐴 = (𝑥 − 𝑥𝑑)𝑑𝑥 𝑐𝑜𝑠 𝜃𝑑 + (𝑦 − 𝑦𝑑)𝑠𝑖𝑛 𝜃𝑑, 𝐵 = −(𝑥 – 𝑥𝑑) sin 𝜃𝑑 + (𝑦 – 𝑦𝑑) cos 𝜃𝑑 and the weight of 

elliptic constraint is determined using the constraint coefficients for ellipse 𝜈. The expression (12) 

simultaneously drives 𝜑 and 𝜑𝑜, and it is symmetric to 𝜑 and 𝜑𝑜 to constrain the zero-level set of 𝜑 as an 

ellipse. It is possible to write the extended SL-EACM by integrating the ellipse constraint term (13), 

 

𝐸 = ∑ ∫ 𝐹𝑗(𝑦)𝑀𝑗(𝜙(𝑦))𝑑𝑦
Ω

+  ∫ 𝑣 (𝐻( 𝜙(𝑦)) − 𝐻(𝜙𝑜(𝑦)))
2

𝑑𝑦
Ω

𝑛
𝑗=1  (13) 

 

where 
 

𝐹𝑗(𝑦)  ≜ ∫
Ω

𝐾𝜌(𝑥, 𝑦)(log(𝜎𝑗) + ((𝑡(𝑦) − 𝐵(𝑥)𝑐𝑗)
2
/2𝜎𝑗

2)), 𝑀1 = 𝐻(𝜙(𝑦)), 𝑀2 = 1 − 𝐻(𝜙(𝑦)) 

 

where, as in the previous section, the number of objects 𝑛 is also set as 2.  

Both of them constantly change with the curve evolution. Furthermore, the penalized length item is 

utilized to regularize the level set function (LSF) 𝜑 zero level contour in order to extract a smoother contour 

with less error and concavity. In addition, with (14) the entire energy function can be described as: 

 

𝐸𝐿𝑆𝐴𝐶𝑀−𝑆 = ∑ ∫ 𝐹𝑗(𝑦)𝑀𝑗𝑑𝑦
Ω

+  ∫ 𝜆 |∇𝐻(𝜙𝑜(𝑦)))
2

𝑑𝑦 + ∫ 𝑣 (𝐻(𝜙𝑜(𝑦)))
2

𝑑𝑦
ΩΩ

𝑛
𝑗=1   (14) 

 

where 𝜆 is referred to as the length-weight of the zero-stage curve of 𝜙. 

As a result, the initialization of level set function LSF can be done in a variety of ways. Using a 

checkerboard form, the level set function is initialized as opposed to the traditional method of drawing a box 

inside or outside the object. Checkerboard is described as: 

 

𝜙(𝑥, 𝑦) = 𝑐 × 𝑠𝑖𝑛 (
𝜋×𝑅×𝑥

1500
) ×  𝑠𝑖𝑛 (

𝜋×𝐶×𝑦

1500
)  (15) 

 

where 𝐶 represents the input image’s width, and R represents the input image’s height, 𝑐 defines the 

amplitude of the initial LSF representing a positive number, and 0 < 𝑐 < 1 is set in the application. 

 

 

3. RESULTS AND DISCUSSION 

The detected area is initially evaluated based on the area overlap between the generated 

segmentation region and expert-marked ground truth. In order to evaluate the detected area, the following 

pixel-wise precision and recall values must be calculated and defined as (16) and (17), 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (16) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (17) 

 

where 𝑇𝑁 is referred to as the worth of the true negative, 𝑇𝑃 is referred to as the worth of the true positive, 

𝐹𝑃 denotes the worth of the false positive, and 𝐹𝑁 denotes the worth of the false negative. The OD 

segmentation results are obtained using a calculation based on i) the original retinal color fundus images,  

ii) the ground truth-based OD segmentation result, and iii) the result of the proposed method’s OD 

segmentation. Then, a metric that represents the harmonic mean of precision and recall, known as the 

standard F-score, is calculated using (18). 
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F − score (F)  =  2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (18) 

 

The F-score value is always between 0 and 1. A high F-score may be a sign of effective 

segmentation performance. Second, the distance between the boundary obtained by the algorithm and the 

actual situation is used to evaluate the border. The results of CHASE_DB, DRIONS-DB, and Drishti-GS 

database images have been shown in Table 1, as well as the suggested method’s output pictures with regard 

to input images from the CHASE_DB, DRIONS-DB, and Drishti-GS databases, respectively. The table is 

displayed, starting with the row of input images, one from each dataset that underwent preprocessing. The 

preprocessed image’s calculated entropy value is displayed in the next row. A cropped disc is given for the 

original set of photographs after the disc localization procedure has been completed. In the last two rows, you 

can see the produced segmented disc picture and the ground truth. 

 

 

Table 1. Segmented images using different datasets 

Dataset CHASE_DB DRIONS-DB Drishti-GS 

Input Image 

   
Preprocessed Image 

   
Entropy calculation 

   
Disk Localization 

   
Cropped Disk in Original Image 

   
Ground truth 

   
Segmented Disk Image 
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The comparison between the level set, the saliency-based level set with an enhanced active contour 

method (SL-ACM) [35], and the SL-EACM is shown in Table 2. From the analysis, it is known that the  

SL-EACM provided better accuracy than the level set and SL-ACM for all the datasets of CHASE_DB, 

DRIONS-DB, and Dristhi-DS. The enhanced active contour along with the saliency map used in the  

SL-EACM has information on color, shape, and textures which helps to enhance OD segmentation. More 

specifically, the enhanced contour function used in the level set of SL-EACM is used to overcome the issues 

of illumination. 

Table 3 shows the comparison of the SL-ACM and SL-EACM with and without preprocessing 

methods. The table proves that both SL-ACM and SL-EACM have better performances when operated with 

the preprocessing method. The normalization and low light enhancement-based preprocessing is used to 

overcome the issues of misalignments of retinal and camera focus, lightning condition, and errors in the 

camera that affects fundus images. Further, the SL-EACM outperforms well when compared to the SL-ACM. 

The edge indicator along with saliency map information used in the SL-EACM enhances the performances of 

OD segmentation. 

 

 

Table 2. Comparison of various methods 
Dataset Methods Jaccard Dice Accuracy Sensitivity 

CHASE_DB Level set 0.2989 0.8242667 0.9334 0.788 

SL-ACM (Existing) 0.0791 0.9588204 0.98897879 1 

SL-EACM (Proposed) 0.039517 0.9798433 0.99445950 1 

DRIONS-DB Level set 0.15756220 0.9144816 0.8865 0.8424 

SL-ACM (Existing) 0.07331628 0.9619469 0.98457429 1 

SL-EACM (Proposed) 0.03358908 0.9829185 0.99214764 0.96641091 

Drishti-DS Level set 0.33545715 0.798468 0.7573 0.9443 

SL-ACM (Existing) 0.06087685 0.9686059 0.99131058 0.94559257 

SL-EACM (Proposed) 0.05810867 0.9700762 0.99170918 0.94798256 

 

 

Table 3. Effect of pre-processing techniques for existing and proposed model 
Dataset Methods Jaccard Dice Accuracy Sensitivity Precision F-Measure 

CHASE_DB SL-ACM Without Pre-processing 0.0842 0.9415 0.9759 1 0.925766 0.961452 

With Pre-processing 0.0791 0.9588 0.989 1 0.920898 0.95882 

SL-EACM Without Pre-processing 0.1079 0.943 0.9849 0.8704 0.892111 0.881122 

With Pre-processing 0.0395 0.9798 0.9945 1 0.960483 0.979843 

DRIONS-DB SL-ACM Without Pre-processing 0.0816 0.9575 0.9862 1 0.918398 0.957464 

With Pre-processing 0.0733 0.9619 0.9846 1 0.926684 0.961947 

SL-EACM Without Pre-processing 0.0906 0.9525 0.9781 0.9094 1 0.952551 

With Pre-processing 0.0336 0.9829 0.9921 0.9664 1 0.982913 

Drishti-GS1 SL-ACM Without Pre-processing 0.0837 0.9563 0.9889 0.9169 0.999345 0.956349 

With Pre-processing 0.0609 0.9686 0.9913 0.9456 0.992768 0.96861 

SL-EACM Without Pre-processing 0.0888 0.9535 0.9837 0.9129 0.997353 0.95326 

With Pre-processing 0.0581 0.9701 0.9917 0.948 0.993224 0.970085 

 

 

4. CONCLUSION 

Since glaucomatous damage cannot be reversed, automated glaucoma evaluation is important for 

both early identification and therapy. This research presents a unique model for segmenting the OD for 

glaucoma diagnosis. A brand-new segmentation model is proposed for accurately retrieving the OD border. 

To address the often-recurring intensity inhomogeneity problem, SL-EACM is first introduced. The 

preprocessing method is used to alter SL-EACM in order to steer the evolution of the OD contour in a useful 

region and reduce the detrimental influence of non-objects. It can go beyond the standard active contour 

method (ACM)’s inability to directly segment the OD. The SL-EACM model is improved by including the 

local image probability data from the multi-dimensional feature space surrounding the point of interest in 

order to overcome the lack of data for the single-feature space. The shape priori constraint information is 

incorporated into the model, which helps to further strengthen the robustness of the changes found in and 

around object areas since the segmentation objects share an elliptical shape structure. The results of the 

experiments on the above-mentioned datasets demonstrated that the suggested strategy outperforms other 

cutting-edge methods such as level set and SL-ACM. The accuracy of the SL-EACM is 0.9917 for the 

Drishti-DS dataset which is higher than the level set and SL-ACM. Even while the recommended method can 

successfully segment most typical fundus pictures with reduced OD diameters, occasionally it might not 

work. Moving the priors to the location of the OD will help us avoid this issue in the future. 
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