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 Text mining is a powerful modern technique used to obtain interesting 

information from huge datasets. Text clustering is used to distinguish between 

documents that have the same themes or topics. The absence of the datasets 
ground truth enforces the use of clustering (unsupervised learning) rather than 

others, such as classification (supervised learning). The “no free lunch” (NFL) 

theorem supposed that no algorithm outperformed the other in a variety of 

conditions (several datasets). This study aims to analyze the k-means cluster 
algorithm variations (three algorithms (k-means, mini-batch k-means, and  

k-medoids) at the clustering process stage. Six datasets were used/analyzed in 

chapter Al-Baqarah English translation (text) of 286 verses at the preprocessing 

stage. Moreover, feature selection used the term frequency–inverse document 
frequency (TF-IDF) to get the weighting term. At the final stage, five internal 

cluster validations metrics were implemented silhouette coefficient (SC), 

Calinski-Harabasz index (CHI), C-index (CI), Dunn’s indices (DI) and Davies 

Bouldin index (DBI) and regarding execution time (ET). The experiments 
proved that k-medoids outperformed the other two algorithms in terms of ET 

only. In contrast, no algorithm is superior to the other in terms of the clustering 

process for the six datasets, which confirms the NFL theorem assumption. 
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1. INTRODUCTION 

Text mining is a popular approach for obtaining relevant information from documents; it may be 

applied with clustering, classification, regression, association rule, and frequent mining pattern tools. The 

unavailability of ground truths in experimental tests necessitates the use of clustering (unsupervised learning) 

rather than classification (supervised learning). Because this study’s datasets lacked ground truths (labels), 

clustering or text clustering approaches were employed. Cluster analysis is a way to organize a collection of 

data elements into manageable groups (observations). Each subset is a cluster, with members in the same cluster 

being similar to one another but different to those in other clusters. Cluster analysis is utilized in several 

disciplines, such as image pattern recognition, database management, online search, biology, and security using 

clustering algorithms [1]. However, according to Wolpert and Macready [2], the “no free lunch” (NFL) theorem 

demonstrated that there is no way to ensure that a particular algorithm and a clustering algorithm can operate 

better than the others in a variety of conditions. 

The English translation (text) of Tafseer documents chapter Al-Baqarah is the input dataset for the 

experiments conducted in this study. The translator used the (Tafseer) for guidance in interpreting the verses. 

https://creativecommons.org/licenses/by-sa/4.0/
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Several Quran Tafseer books have been produced in numerous languages by classical to modern academics. 

Every Tafseer book has its unique style, topic matter, phrase context, and judgment. Some contend that the text 

of the Holy Quran cannot be formed in another language or format. In fact, the interpretation of the Holy Quran 

has always been complicated and difficult. Moreover, the words in the Holy Quran have contextual 

significance, making an exact translation much more challenging [3]. Figure 1 depicts the difficulties 

encountered by the reader in picking the best Tafseer for a certain Quran chapter. Consequently, it is essential 

to analyze many Qur’anic Tafseer translations for certain topics, such as. chapter Al-Baqarah in this study. 

 

 

 
 

Figure 1. The research motivations 

 

 

The following study aims to analyze the variations of the k-means cluster algorithm (mini batch  

k-means and k-medoids) plus the k-means algorithm in terms of five internal cluster validations metrics plus 

the execution time (ET) for six different translators of 286 verses chapter Al-Baqarah English Tafseer text 

regarding the NFL theorem. The remaining article is organised as follows: section 2 outlines some of the 

research related to this work. Section 3 demonstrated the methodology. In Section 4, findings and outcomes 

are addressed. Section 5 concludes with the report’s findings. 

 

 

2. RELATED WORK 

The clustering experiment of [4] employs a mixture of k-means clustering variations, bisecting  

k-means and k-medoid, in addition to Jaccard and cosine similarity and correlation coefficients, to provide a 

variety of validation results. However, in the chapter Al-Baqarah clustering process experiments, the best 

cluster consists of 286 verses formed using cosine similarity with k-medoid. Pratama et al. [5] classified the 

Indonesian translations of Hadith text and compared the performance of the fuzzy c-means and k-means 

algorithms using a number of predetermined parameters and term frequency-inverse document frequency  

(TF-IDF). Silhouette coefficient (SC) and F-measure computations are utilized for clustering validation. 

Ahmed et al. [6] determined which of the three cluster algorithms (k-means, density-based spatial 

clustering of applications with noise (DBSCAN), and ordering points to identify the clustering structure 

(OPTICS)) has outperformed others for clustering of chapter Al-Baqarah in terms of the SC and 

implementation time. DBSCAN has the optimal SC value but gets noise, whereas k-means has the fastest 

implementation time. Moreover, Ahmed et al. [6] also analyzed the 286 verses chapter Al-Baqarah clustering 

process using k-means and Mini Batch k-means cluster algorithms with TF-IDF. Mini Batch k-means algorithm 

has the highest execution time than the k-means algorithm.  

Finally, Jansson et al. [7] used the k-means cluster algorithm and the principle component analysis 

(PCA) to a group and reduce the huge data of whole-rock, multivariate lithogeochemical. They examined an 

unsupervised, data-driven methodology for subdividing calcareous marble samples based on evaluating (64) 

distinct geochemical parameters in whole-rock lithogeochemical data and bright spectrometric data on (181) 

pieces of dolomitic marble from Sala inlier. PCA is employed to reduce the amount of data, and then k-means 

clustering is used to group samples. The results are then evaluated based on where the groups are located 

concerning mineral deposits and how well they can be understood using the knowledge of the geological 

domain. 
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3. METHOD 

Figure 2 shows the sequence procedural for the research that consisted of three main stages 

(preprocessing, clustering process, and clustering validation). Figure 3 illustrates these stages in detail. The 

methodology sections consisted of the following. 

 

 

 
 

Figure 2. The research sequence operations 

 

 

 
 

Figure 3. The research methodology 

 

 

3.1. Dataset identification  

The purpose of the study is to cluster the 286 verses in chapter Al-Baqarah English Tafseer text. The 

webpage (Tanzil) [8] was chosen for this reason. Generally, the following articles collected Qur’anic 

information text (Tafseer) from Tanzil independent of the languages (e.g., English, Malay, Arabic, and 

Indonesian) [6], [9]–[13]. Table 1 shows the translator’s name and the Tafseer number prepared to use in the 

research experiments. 

 

3.2. Dataset checking 

Figure 4 illustrates the direction of our datasets (T1-T6) corresponding to the research experiments 

operations. The research datasets contained text data, which is not a standard dataset (the ground truth is 

unavailable). Therefore, the preprocessing and feature selection must be implemented before the clustering 

process. The external validation metrics cannot be used (only internal validation metrics can be used) [14]. 
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Table 1. The translator’s name, according to Tafseer’s number 
Tafseer No. Translator name 

T1 A. J. Arberry 

T2 Abdul Majid Daryabadi 

T3 Abul Ala Maududi 

T4 Ali Quli Qarai 

T5 Mohammad Habib Shakir 

T6 Wahiduddin Khan 

 

 

 
 

Figure 4. The dataset conditions flowchart 

 

 

3.3. Preprocessing stage 

Text preprocessing, sometimes referred to as text cleansing, is the most important principle in text 

analysis. Usually, unprocessed text datasets comprise noisy and missing data (incomplete characteristics, 

inconsistent data, random mistakes, and unstructured information. It is essential to do repeated text cleaning 

since errors are usually detected on the initial attempt. Text data may lead to low data quality, decreasing the 

mining findings’ precision [15]. Hence, text cleansing is a crucial stage since it improves the performance of 

the feature selection process (the following section) and yields more precise results. The five most popular text 

preprocessing are tokenization, normalization, stop word removal, part of speech (POS), and stemming [16]. 

 

3.3.1. Feature selection 

Feature selection aims to transform textual input into a numeric value. The feature selection strategy 

(term weighting) seeks to omit a group of information that lowers redundancy and enhances target relevance 

(i.e., the label of the class). Numerous strategies for word weighting are reported in the literature. The vector 

space model (VSM) remains the most popular model for representing texts (corpus) and is used for these 

research experiments [5], [14], [15]. 

VSM calculates TF-IDF. Each document is seen as a vector, and the cell values are given weights 

based on (1), 

 

𝑑𝑖 = {𝐹𝑖,1, 𝐹𝑖,2, … , 𝐹𝑖,𝑗, … , 𝐹𝑖,𝑡} (1) 

 

where t is the number of features and 𝐹𝑖𝑗 denotes the weight of feature j in document i. The next weighting 

scheme has been used to determine the weight of the feature, 

 

𝐹𝑖,𝑗 = 𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗) = 𝑇𝐹(𝑖, 𝑗) × (𝑙𝑜𝑔
𝑑

𝐷𝐹(𝑗)
) (2) 

 

where 𝑇𝐹(𝑖,𝑗) denotes the occurrence of feature j in document i, and DF(j) denotes all documents containing 

feature j. The VSM (corpus) is identified as a matrix of size m×n as (3). 
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𝑉𝑆𝑀 = 

(

 
 

𝐹1,1 𝐹1,2 𝐹1,(𝑡−1) 𝐹1,𝑡
⋮ ⋮ ⋱ ⋮
⋯

𝐹(𝑚−1),1
𝐹𝑚,1

⋯
⋯
𝐹𝑚,2

⋯
⋯
⋯

⋯
𝐹(𝑚−1),𝑡
𝐹𝑚,𝑡 )

 
 

 (3) 

 

3.4. Clustering process stage 

After the six corpora are created in the previous steps. These corpora are ready as input for the 

clustering process. The study experiments implemented the three cluster algorithms (partitioned based). 

 

3.4.1. k-means 

The most common method for partitional clustering is k-means clustering [16], [17]. k-means 

clustering is a greedy method and is also called NP-Hard [18]–[20]. It starts by picking K’s initial center from 

a set of representative points. Then, using the chosen proximity metric, each point is given to the closest 

centroid. After clusters are made, the centers of each cluster are changed and kept updated. The technique then 

keeps repeating these two steps until the centers cannot expand or until some other relaxed convergence 

condition is met. The simple structure of the k-means algorithm makes it easy to change and construct more 

efficient strategies on top of it. Numerous ideas have been put forward for changing the k-means algorithm. 

These variations include i) choosing different reflective prototypes for the clusters (k-medoids), ii) choosing 

more precise centroid assumptions (mini-batch k-means), and iii) using some kind of feature transformation 

technique (weighted k-means). 

The ideal number of clusters used to cluster chapter Al-Baqarah English Tafseer text is seven [4]–[6], 

[21]. Therefore, (K=7) is used for the three algorithms of the research experiments. The following two sub-

sections describe two k-means variations used in this research experiment to achieve the research objectives. 

 

3.4.2. Mini batch k-means 

It is a better version of how the k-mean algorithm is used. Mini batches are often used to decrease the 

time it takes to process huge databases. It also tries to improve the results of clustering. In k-means 

optimization, the task is to find the set E of cluster centers 𝑒 ∈ 𝑅𝑚 that minimizes this objective function using 

|𝐸| = 𝑘 over a set XD of samples 𝑥𝑑 ∈ 𝑅𝑚. 

 

𝑀𝑖𝑛∑ ‖𝑓(𝐸, 𝑥𝑑) − 𝑥𝑑‖𝑥𝑑 ∈ 𝑋𝐷 ) (4) 

 

The Euclidean distance between 𝑒 ∈ 𝐸, the centre of the cluster, and xd is given by 𝑓(𝐸, 𝑥𝑑). 
 

3.4.3. k-medoid 

k-medoid is a more reliable method for clustering analysis than k-means [22]. Like k-means,  

k-medoids try to find a way to cluster items together to reduce a certain objective function. Since the k-medoid 

technique employs the actual data points themselves as prototypes, it is more resistant to the noise in the data 

as well as any outliers. The k-medoids algorithm does not try to reduce the sum of squared errors (SSE) as 

much as it tries to reduce the absolute error criteria. Like the k-means algorithm, the k-medoids algorithm goes 

through a series of steps until the medoid of each cluster is discovered. 

In literature, more k-means variations algorithms existed and were not implemented in this research. 

Such of these clustering algorithms are x-means [23], bisecting k-means [24], kernel k-means [25], and genetic 

k-means [26]. These algorithms can be considered for future work. 

 

3.5.  Clustering validation stage 

Cluster evaluation often examines the feasibility and effectiveness of applying a clustering algorithm 

to a dataset and the accuracy of the clustering returns generated by the algorithm. Since the research datasets 

have no ground truth (labels), only internal validation metrics [27] could be applied. The execution time and 

five internal validation metrics used for the research experiments are as follows. 

 

3.5.1. Execution time  

The execution time of the clustering algorithms is related to the computer hardware. The hardware 

used for the experiment was an Intel Core i7-8550U CPU running at 1.80 GHz with 8 GB of RAM. The 

software used was Microsoft Windows 10 operating system and Python (3.7.7) platform. 

 

3.5.2. Internal validation metrics 

Since some datasets have no ground truth, researchers must rely on an internal validation approach to 

evaluate the clustering quality. Usually, intrinsic techniques assess clustering by analyzing the clusters’ 
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compactness and separation. Many validation metrics utilize a similarity metric to evaluate the similarity 

between objects and datasets. Internal validation contrasts the clustering assessment with the real outcome, 

which is the structure of the found clusters and their relationships to each other. Table 2 shows the five internal 

validation metrics used in this research. The benefit criterion type is referred to (the greater the value, the better) 

and the costly criterion type (the less the value, the better). 

 

3.5.3. PCA of feature extraction 

Using the PCA, the data from the original space is transformed into a lower-dimensional space 

unrelated to the original space’s properties by using the PCA [17]. Thus, the research experiments utilized the 

TF-IDF through the preprocessing stage, whilst the PCA was only employed for clustering visualization (2D) 

purposes [28], [29]. 

 

 

Table 2. The five internal validation metrics used 
Metrics Criterion Type Definition 

Silhouette index (SC) [30] Benefit 
1

𝑁𝐶
∑ 

𝑖

{
1

𝑛𝑖
∑  

𝑥∈𝐶𝑖

𝑏(𝑥) − 𝑎(𝑥)

𝑚𝑎𝑥[𝑏(𝑥), 𝑎(𝑥)]
} 

(4) 

Calinski-Harabasz index (CHI) 

[31] 

Benefit ∑  𝑖 𝑛𝑖𝑑
2(𝑐𝑖 , 𝑐)/(𝑁𝐶 − 1)

∑  𝑖 ∑  𝑥∈𝐶𝑖 𝑑
2(𝑥, 𝑐𝑖)/(𝑛 − 𝑁𝐶)

 
(5) 

Dunn’s indices (Dunn-index) (DI) 

[32] 

Benefit 

𝑚𝑖𝑛
𝑖
 {𝑚𝑖𝑛

𝑗
 (

𝑚𝑖𝑛
𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

 𝑑(𝑥, 𝑦)

𝑚𝑎𝑥
𝑘
  {𝑚𝑎𝑥
𝑥,𝑦∈𝐶𝑘

 𝑑(𝑥, 𝑦)}
)} 

(6) 

C-Index (CI) [33] Benefit 𝛿𝑤 −𝑚𝑖𝑛 (𝛿𝑤)

𝑚𝑎𝑥(𝛿𝑤) −𝑚𝑖𝑛 (𝛿𝑤)
 

𝛿𝑤 = (𝑅(𝑈),𝐷) =  ∑ ∑𝑟𝑖𝑗(𝑈)𝑑𝑖𝑗 =

𝑛−1

𝑖=1

𝑛

𝑗=𝑖+1

∑ ∑[∑𝑢𝑘𝑖. 𝑢𝑘𝑗

𝑐

𝑘=1

] 𝑑𝑖𝑗

𝑛−1

𝑖=1

𝑛

𝑗=𝑖+1

  

(7) 

Davies-Bouldin index (DBI) [34] Costly 
1

𝑁𝐶
∑ 

𝑖

𝑚𝑎𝑥
𝑗,𝑗≠𝑖

 {[
1

𝑛𝑖
∑  

𝑥∈𝐶𝑖

𝑑(𝑥, 𝑐𝑖) +
1

𝑛𝑗
∑  

𝑥∈𝐶𝑗

𝑑(𝑥, 𝑐𝑗)] /𝑑(𝑐𝑖 , 𝑐𝑗)} 

(8) 

 

 

4. RESULTS AND DISCUSSION 

This section shows the outputs of the methodology section. The section provides an analysis of the 

output results. It consisted of the following two subsections. 

 

4.1.  Feature statistics 

The number of features that were presented both before and after the text cleansing process is detailed 

in Table 3, along with the top three most frequent features. Also, the table showed the common words and 

features (“Allah” or “God, “believe”, “said”, “shall, “into”, “ye”, and “people”) that were used often. These 

features can be found (shared) in more than one Tafseer (T). 

 

 

Table 3. The features statistics results 
Tafseer No. Total Features Stop Words Removal Stemming First Three Frequent Features 

T1 1466 1278 1033 God, shall, believe 

T2 1591 1362 1198 Allah, into, ye 

T3 2008 1775 1388 Allah, people, shall 

T4 1591 1392 1254 Allah, said, say 

T5 1563 1332 1060 Allah, shall, sure 

T6 1705 1493 1183 God, shall, believe 

 

 

4.2.  Clustering validation 

The result outputs of the three clustering algorithms are presented in Figure 5. In terms of the ET, 

Figure 5(a) proved that k-medoids are faster than Mini Batch k-means and the k-means. In contrast,  

Figure 5(b) proved the SC of k-means is better than Mini batch k-means and k-medoids. Figure 5(c) presented 

the CHI of mini-batch k-means performed better than k-means and k-medoids. Figure 5(d) showed k-medoids 

superior to the other two algorithms, while the other two algorithms performed approximately the same. 

Figure 5(e) demonstrates there is no one algorithm performed better than others. Finally, Figure 5(f)  
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illustrates the CHI of mini batch k-means performed better than others. Tables 4 to 6 display the results of the 

clustering validation section for the three algorithms in detail. Moreover, Figure 6 displays the seven clusters 

allocated by each algorithm using PCA for Tafseer (T1-T3). Figure 7 shows these clusters for the reset Tafseer 

(T4-T6). 

Hence, we can rank the performance of the three algorithms using ET only. However, the five cluster 

validation metrics proved there is no one algorithm outperformed the others for the six Tafseer datasets. 

Therefore, the research experiments confirm the NFL theorem assumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

(c) (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e) (f) 

 

Figure 5. The clustering validations diagrams for three algorithms according to 

(a) ET, (b) SC, (c) CHI, (d) CI (e) DI, and (f) DBI 

 

 

Table 4. k-means 
Tafsser No. ET SC CHI CI DI DBI 

T1 0.15055 0.01037 2.49427 0.51684 0.63141 6.24313 

T2 0.30618 0.00973 2.45939 0.47029 0.67927 6.253 

T3 0.24534 0.00678 1.9668 0.54389 0.62583 6.97075 

T4 0.28424 0.00729 2.1466 0.58458 0.5981 6.75686 

T5 0.14057 0.01225 2.70327 0.50306 0.59065 6.09906 

T6 0.26629 0.00927 2.30578 0.53672 0.18091 6.38556 

 

SC
 

C
H

I 

C
II 

D
I 

D
B

II
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Table 5. Mini batch k-means 
Tafsser No. ET SC CHI CI DI DBI 

T1 0.07076 0.00936 2.54523 0.52098 0.64932 6.02506 

T2 0.0478 0.00754 2.50234 0.50207 0.64674 6.17125 

T3 0.07373 0.00671 2.1036 0.54168 0.60871 6.68228 

T4 0.07775 0.00803 2.35974 0.55301 0.64866 6.04956 

T5 0.0399 0.0128 2.78878 0.49852 0.59065 6.18554 

T6 0.08772 0.00767 2.29872 0.51938 0.72997 6.30662 

 

 

Table 6. k-medoids 
Tafsser No. ET SC CHI CI DI DBI 

T1 0.01559 0.00352 1.99045 0.59095 0.29264 6.87424 

T2 0.01558 0.00477 2.08027 0.53027 0.63353 6.69356 

T3 0.05111 0.00344 1.84291 0.59053 0.50117 7.27606 

T4 0.00794 0.00322 1.84866 0.61708 0.59652 7.06599 

T5 0.01097 0.00644 2.22286 0.55116 0.59065 6.56997 

T6 0.01562 0.00352 1.86907 0.60241 0.55833 7.06202 

 

 

   
   

   
   

   
 

Figure 6. The seven clusters’ diagrams of (T1-T3) for the three algorithms 
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Figure 7. The seven clusters’ diagrams of (T4-T6) for the three algorithms 
 

 

5. CONCLUSION 

Three stages were implemented in this study. At the first stage (the preprocessing), six of 286 verses 

of chapter Al-Baqarah English Tafseer text documents related to six translators represented the input datasets. 

Tokenization, normalization, stop-word removal, part of speech (POS), and stem are used at this stage. 

Moreover, TF-IDF is used to provide the weighting term. In the second stage (clustering process), three cluster 

algorithms (k-means) and two k-means variations (Mini Batch k-means and k-medoids) were executed. The 

number of clusters used was (K=7) obtained from the literature for all six datasets. In the third and final stage 

(clustering validation stage), five internal cluster validation metrics (SC, CHI, CI, DI and DBI) are used, and 

the ET is calculated. Moreover, at this stage, PCA was employed to present and visualize the seven clusters’ 

output datasets/algorithms. 

The research aim is to analyze the k-means cluster algorithms’ variations behaviors according to the 

six input datasets that relate to the same topic or theme. The results output proved the k-medoids algorithm 

outperformed the two others in the ET. Moreover, the experiments demonstrated that none of the three 

algorithms outperformed the others in clustering validation. However, the research conclusion confirmed the 

NFL theorem. 

In future works, the authors suggest that more k-means variations can be implemented. Expanding the 

dataset number to include more than six and analyzing the results. Expanding the number of internal cluster 

validation metrics. 
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