International Journal of Electrical and Computer Engineering (IJECE)
Vol. 13, No. 3, June 2023, pp. 3124~3130
ISSN: 2088-8708, DOI: 10.11591/ijece.v13i3.pp3124-3130 a 3124

Evaluation of the strength and performance of a new hashing

algorithm based on a block cipher

Kunbolat Algazy'?, Kairat Sakan'?, Nursulu Kapalova'?

!Laboratory of Information Security, Institute of Information and Computational Technologies, Almaty, Kazakhstan
2Faculty of Information Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Article Info

ABSTRACT

Article history:

Received Jul 28, 2022
Revised Sep 7, 2022
Accepted Oct 1, 2022

Keywords:

Algebraic cryptanalysis
Collision

Cryptanalysis
Cryptography

Hash function

The article evaluates the reliability of the new HBC-256 hashing algorithm. To
study the cryptographic properties, the algorithm was implemented in software
using Python and C programming languages. Also, for the algebraic analysis
of the HBC-256 algorithm, a system of Boolean equations was built for one
round using the Transalg tool. The program code that implements the hashing
algorithm was converted into a software program for generating equations. As
a result, one round of the compression function was described as conjunctive
normal form (CNF) using 82,533 equations and 16,609 variables. To search for
a collision, the satisfiability (SAT) problem solver Lingeling was used,
including a version with the possibility of parallel computing. It is shown that
each new round doubles the number of equations and variables, and the time to
find the solution will grow exponentially. Therefore, it is not possible to find
solutions for the full HBC256 hash function.

This is an open access article under the CC BY-SA license.

00

Corresponding Author:

Kairat Sakan

Faculty of Information Technology, Al-Farabi Kazakh National University
71 al-Farabi Ave., Almaty, 050040, Kazakhstan

Email: 19kairat78@gmail.com

1. INTRODUCTION

In today's information world one of the key values is to ensure the reliability and security of
information. Many information systems, including low-resource internet of things (1oT) devices, use various
cryptographic transformations to ensure information security during data storage and transmission. One of the
basic cryptographic transformations involved in various security issues is hash functions; one-way
mathematical transformations that convert an arbitrary input data array into a unique sequence of fixed length.
Modern hash functions are used to implement various information security procedures, such as user
authentication [1]-[5], data integrity control [6], [7], electronic signature [8], formation of cryptocurrency
transactions [9]-[12], search for malicious software [13]-[17], creation of stego-containers (hash-based
approach) [18], and optimization of biometric identification algorithms [19]. The requirements for
cryptographic hash functions are as follows.

— High performance: For any message M it is possible to efficiently calculate the hash value h in real time.
— lrreversibility (one-way function): Given a known hash value h, it is computationally difficult to find a

message M with h = hash(M).

— Weak resistance: Given a known message M, it is computationally difficult to generate (compute) a
message M' such that h = hash(M) = hash(M").
— Strong resistance: It is computationally difficult to find random messages M and M' such that hash(M) =

hash(M").

Journal homepage: http://ijece.iaescore.com

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 g 3125

Currently, hashing functions are built using three constructions. The first one is various non-linear bit
functions. The second one is the Merkle-Damgard construction that uses compression functions in the form of
block symmetric encryption algorithms. The third one is specialized structures.

Given that the strength of the algorithms used to calculate hash values underlies the security of many
information systems and services, an important task is a comprehensive study of the strength of the developed,
modernized, and initially applied cryptographic algorithms for calculating hash values to various cryptanalysis
methods and methods for detecting collisions. Baseline security recommendations for 10T [20] of the European
Union Agency for Network and Information Security (ENISA) describe that to ensure information security in
critical information infrastructures, it is required to provide the following:

— GP-TM-24: Authentication credentials shall be salted, hashed, and/or encrypted.

— GP-TM-34: To ensure proper and effective use of cryptography to protect the confidentiality, authenticity,
and/or integrity of data and information (including control messages), in transit and at rest. To ensure the
proper selection of standard and strong encryption algorithms and strong keys and disable insecure
protocols. To verify the robustness of the implementation.

— GP-TM-36: Build devices to be compatible with lightweight encryption and security techniques.

— GP-OP-04: To use proven solutions, i.e., well-known communications protocols and cryptographic
algorithms, and recognized by the scientific community. Certain proprietary solutions, such as custom
cryptographic algorithms, should be avoided.

Based on recommendations, standards, and international experience in the field of information
security, it can be argued that research devoted to the analysis of the strength of cryptographic algorithms of
hash functions is relevant and requires continuous work to assess the current state in this field of knowledge
for each algorithm used or its modification.

2. METHOD
2.1. HBC-256 hash function

The hash-based on block cipher (HBC-256) hashing algorithm is new and belongs to the class of new
hash functions. A detailed description of the algorithm and some approaches to its analysis are presented in
[21]. The HBC-256 hash function is built on the Merkle-Damgard construction. The essence of the design is
an iterative process of sequential transformations when the input of each iteration receives a block of the source
text and the output of the previous iteration. At each iteration, the transformation occurs by a special
compression function (CF).

The general structure of the compression function can be represented as shown in Figure 1. The input
of the compression function receives a 128-bit message. This message is also the master key from which the
round keys are generated, and the same message is the input message of the compression function. The main
difference is that multiple processing (8 rounds) takes place to generate the next key. Also, different Stage-2
operations are applied during key generation and the compression function.

The general hashing scheme processes the message M, which consists of three 128-hit blocks. After
all, three blocks have been processed, they are shuffled and the first 256 bits form the desired hash value. If
the length of the original message is less than 384 bits, then the message is padded as described in [21].

Mull state @
A
| — — ¥
£ XOR 81 Round 8

s [
| I

82

I I

g3 XOR

| |

XOR ||

Figure 1. General structure of the compression function

Evaluation of the strength and performance of a new hashing algorithm based ... (Kunbolat Algazy)

3126 O3 ISSN: 2088-8708

Each round for the compression function consists of three transformations called Stage-1, Stage-2,
and Stage-3. For Stage-1 and Stage-3 operations, data is represented as a 4x4 matrix, where each element of
the matrix is one byte. For the Stage-1 operation, the transformation is performed from left to right and from
top to bottom. To form each element, the addition modulo two is implemented to all elements of the row and
column at the intersection of which the element is located, and then it is replaced using S-boxes. The Stage-3
transformation is similar to the Stage-1 transformation but the transformation is applied from right to left and
from bottom to top. To replace each byte, two S-boxes are used from those presented in Table 1. The byte that
needs to be replaced by S-boxes is in a 4x4 matrix at the intersection of the i column and the j™ row. Therefore,
to convert each byte, it is necessary to divide it into two nibbles. The high nibble is replaced by Si-box and the
low nibble—by Sj-box. After that, the result of the replacement is reversed: the output of S; forms the low nibble
of the new state, and the output of S;j is the high nibble as can be seen in Figure 2.

The Stage-2 transformation consists of two operations: a circular shift and a modulo 2 addition (XOR)
operation. The elements of a 4x4 matrix are written as a single block of data by concatenating all bytes. Further,
a cyclic shift to the left by one bit is performed. The result of the Stage-2 operation is the result of the modulo two
addition of the original state and the state shifted to the left by one bit. When generating a key in the Stage-2
operation, there is no modulo two addition operation, and the result of the function is a shift to the left by one bit.

A hash function or compression function is a function that converts an array of input data of arbitrary
length into an output bit string of a fixed length, performed by a certain algorithm. The transformation
performed by the hash function is called hashing. The input data is called the input array, key, or message. The
result of the transformation is called a hash, hash code, hash sum, message summary, or digest.

In the general case, there is no one-to-one relationship between the hash code and the original data.
The values returned by the hash function are less diverse than the values of the input array. The case in which
a hash function converts more than one array of input data into the same summaries is called a collision.
Collision probability is used to evaluate the quality of hash functions.

For cryptographic hash functions, special requirements apply, i.e., resistance to pre-image and second
pre-image attacks and irreversibility. Irreversibility of a hash function is such a property that, for a given value
of the hash function h(M), it is computationally impossible to find the original block of data M. Pre-image
resistance means that for a given message M it is computationally difficult to select another message M so that
the hash values of these messages match, i.e., hash(M) = hash(M1). Second pre-image resistance means that
it is computationally difficult for any M to find two different messages M and M; that have the same hash.

Table 1. Four "golden” S-boxes

X 0 1 2 3 4 5 6 7 8 9 A B C D E F
So(x) 0 F B 8 C 9 6 3 D 1 2 4 A 7 5 E
s 2 E F 5 ¢ 1 9 A B 4 6 8 0 7 3 D
s} 7 ¢ E 9 2 1 5 F B 6 D 0 4 8 A 3
S3(X) 4 A 1 6 8 F 7 C 3 0 E D 5 9 B 2

a:: =

\
\

if [Efblsbsb«l]&{’/zblbu

p1=5i(t1) po = S;(to)
X

™D

Qi = [‘17‘16‘15‘1}&13_‘512_'1@1

Figure 2. S-box byte transformation

2.2. Method of algebraic analysis

Methods of algebraic analysis [22] are universal methods applicable to many varieties of
cryptographic algorithms: symmetric block and stream ciphers, and algorithms for computing hash values.
Algebraic attacks are based on solving systems of non-linear equations to recover a secret key or message. For
the cryptanalysis of hash functions, algebraic attacks can be used to detect collisions and pre-image if a
potentially weak compression function is used. The basic idea of algebraic attacks is to recover the secret key

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 3124-3130

Int J Elec & Comp Eng ISSN: 2088-8708 a 3127

by solving non-linear equations involving the message, the ciphertext, and the key bits. An algebraic attack
consists of two stages. Stage 1 is the generation of a sufficient number of non-linear equations of low degree
or structured (multidimensional) non-linear equations. Stage 2 is the calculation of key bits by solving a system
of equations.

The first step needs to be performed only once for the cryptographic algorithm under consideration.
The most commonly used methods for solving equations include linearization algorithms [23]-[25], Grébner
basis [26], and reduction to the SAT problem [27]. Linearization solves the resulting system of non-linear
equations by replacing non-linear terms with new variables, so each non-linear monomial is replaced by a new
variable. The resulting new system will be linear and can be solved by the Gaussian elimination method.
Another class of general algorithms for solving systems of algebraic equations is based on Grébner bases. In
practice, there are some automated tools, such as SAT solvers: CryptoMiniSat, Lingeling, and Cadical, if the
number of equations describing the analyzed hash algorithm is not too large.

The algebraic analysis assumes that any encryption process can be represented in the form of algebraic
transformations and mathematically describe the explicit dependence of output bits on input bits. The process
of compiling such a system (most often just Boolean equations) is quite difficult and takes up most of the time.
This type of analysis is not statistical, which means that only a few pairs of plaintext-ciphertext are needed to
solve this system. The variables of a Boolean set of equations can take only two values 0 and 1, therefore, the
system can be written with several logical bases — (|,&), (& —),(,), (,&). The last three options,
respectively, allow us to write the expression in disjunctive normal form (DNF), conjunctive normal form
(CNF), and the form of the Zhegalkin polynomial. After creating such an algebraic description, it is necessary
to solve the constructed system of equations, which can be done using one of the SAT solvers, the result of
which will show whether the system has a solution under given conditions or not.

3. RESULTS AND DISCUSSION
3.1. Features of HBC-256 hashing function implementations and experimental data obtained

For hashing functions, we have obtained program implementations using Python and C programming
languages. Below is a fragment of the C implementation of the HBC-256 function, which describes the
operation of the Stagel function.

void Stagel (struct CompressFunction*HashObject) {
for (int i = 0; 1 < NUMBER OF ELEMENTS IN STATE; i++) {
for (int j = 0; j < NUMBER OF ELEMENTS IN STATE; j++) {

unsigned char tmp = HashObject > statel[i][j];

for (int k = 0; k < NUMBER OF ELEMENTS IN STATE; k++) {
tmp ~ = HashObject > state[i] [k];

}

for (int m = 0; m < NUMBER OF ELEMENTS IN STATE; m++) {
tmp ~ = HashObject > state[m][]J];

}

HashObject ->state[i][j]l= SBOX(i, Jj, tmp));

Using the obtained implementations, we carried out experiments and time measurements of the
processing speed of one message using different personal computer (PC) configurations. During an experiment,
the same block of data was hashed 1,000 times, after which the average processing time per data block was
calculated. It is important to consider that in multicore systems the experiment was performed using a single
core. The results of the experimental measurements are shown in Table 2.

Table 2. Experimental results of software implementations

Algorithm PC parameters Language Max t Min t Avgt
HBC-256 Intel(R) Core (TM) i5-11400H C 0.000728 0.000614 0.000650
HBC-256 Intel Core i5, 83GB RAM Python 0.052314 0.0276546 0.0379676

3.2. Finding a collision by algebraic analysis

For algebraic analysis, it is necessary to construct a system of Boolean equations. For this purpose,
the tool Transalg is used [28], [29]. This software tool converts a cryptographic algorithm into a system of
equations and supports writing in the CNF format, in the basis of &, - and in the form of dependencies on the
input bits in the symbolic postfix representation.

Evaluation of the strength and performance of a new hashing algorithm based ... (Kunbolat Algazy)

3128 O3 ISSN: 2088-8708

The program code implementing the hashing algorithm was converted into the program code for
generating equations. As a result, one round of the compression function was described as a CNF using 82,533
equations and 16,609 variables. Some of the equations are presented below.

X176 = X168 X102

X177 = X169 X103

X178= X170 X104 »

X179 = Xu78 X177 " X177 X178 & ™ Xu7e ™ Xuze Xurg & ™ Xze Xu77 &
X1go= X178 X177 X178 & " X176 * X176 X177 & X178 & ™ X175 ™ Xu7s
X181 = Xu78 X177 ™ X176 X178 & ™ X175 X178 & ™ X175 X177 & X178 &
X182 = Xa78 X177 ™ X176 X177 & ™ Xuzs N Xuzs Xazg & ™ Xurs Xuze &

X183 = X174 X173 ™ X173 X174 & ™ Xaz2 N Xuzz X174 & N Xz Xz &

X184 = Xa74 X173 X174 & " X172 N Xuz2 X173 & Xi7a & N Xu71 N X

X185 = X174 X173 ™ X172 X174 & ™ Xu71 X17a & ™ Xuz1 X173 & Xia &
X186 = X174 X173 ™ Xa72 X173 & ™ Xu71 N X1 Xaza &N X Xare &

X187 = Xo Xa79 "

The correctness of the constructed equations was checked using control values for the input and output
of the compression function using special code in Java. To partially generate the system and solve it, the use
of an SAT solver is necessary. We chose a series of SAT solvers Lingeling, including a version with the ability
to parallelize the calculation of Plingeling, as well as cubic and competitive versions of Treengeling and
Lingeling. Value checking is performed on one state of one round of the compression function [30].

To test the operation, Lingeling was run with the original system of equations and the constraint on
the values of output variables, that is, finding the values of input variables with known output variables
(restoring the prototype). These calculations were run with the condition that the outputs are equal to the test
condition. The solution was known, that is, there was a check for side solutions (collisions), as well as an
estimate of the computation speed of the known input value (test restoration of the prototype). Without
additional options using a single-processor kernel, this problem took 241,000 sec = 67 hours and did not find
an existing solution or an additional one Figure 3. To speed up solution finding, some of the input variables were
marked and the speed of finding the solution was checked on a test case. Data with the calculation time for partially
marked values are shown in Tables 3 and 4. Thus, the constructed system of equations with some probability
allows obtaining a prototype for one round of compression function. Further work should be aimed at constructing
a system of equations describing a full-round hashing function. Also, the solution search algorithm can be
reconfigured to find a first-order collision.

c 1l 5 1321200.1 15832 81756 €0400771 2432040 1540 87 58 131 43 0 524 45 23987 5010
c 2 8 1321200.1 10088 78408 26500005 2907539 1735 O 8e 123 o7 -1 458 483 93S%0 5901
c

c seconds irredundant redudant clauses glue iterations™ MB stability

c variables clauses conflicts large ternary binary Jjlevel Jlewel’ agility tlevel
c

c 0 5 1321200.4 10076 78435 55252397 2875160 1795 o 59 143 47 -15 488 50 2984 3245
c 5 8 1321200.6 1000 79816 57215567 2911408 1735 o el 131 45 -2 475 49 988 3020
c 3 5 1321200.7 10080 78413 55188498 2876906 1805 o 63 134 47 -6 486 50 989 5203
c 4 8 1321201.0 10071 78512 20044163 3174600 1827 0 4e 177 2g -11 508 435 374 2135
c 1 2 1324800.4 10032 91756 ©050%350 2430984 1940 87 59 127 43 -1 524 4% 35%0 4429
c 0 5 1324800.2 10076 78435 55326336 2972343 1795 o 4 154 47 -23 545 495 387 5562
c 4 8 1324800.1 10071 78512 202140985 23169680 1830 0 4e 168 28 3 548 435 976 2750
c 5 5 1324800.4 10060 79816 57281178 2852573 1735 o 59 164 45 -7 457 50 987 5510
c 2 8 1324800.4 10088 78408 26544507 2938074 1735 o 85 121 7 0 481 50 980 5989
c 3 5 1324800.8 10080 76413 55349526 2937044 1805 0 48 145 47 -14 503 52 987 4699
c 1 8 1328400.1 10032 81756 60596516 2534618 1945 89 62 139 43 -12 5%0 50 =88 8871
c 5 5 1328400.2 10060 79816 57322403 2916374 1735 0 53 137 45 -8 501 43 9584 5397
c 4 5 1328400.4 10071 78512 90354547 3146121 1830 0 48 148 29 -9 526 4% 973 3105
o 2 5 1328400.6 10088 78408 26587538 2924946 1735 o 85 123 97 -0 48% 43 590 6023
c 0 8§ 1328400.8 10080 78435 55490715 2867430 1795 0 50 190 47 2e 467 50 981 2151
c 3 5 1328400.6 10076 78413 55419123 2904285 1805 a 57 138 47 -9 4350 50 988 4795
c 0 8§ 1322000.2 10076 78435 5557%671 2975017 1785 0 54 203 46 24 541 45 sS81 2403
c 1 s 1322000.4 10032 81756 6068%363 2523433 1%47 90 &5 133 43 -1 577 50 989 5703
c 3 8 1322000.1 10080 78413 555082%¢ 2896525 1805 o 57 151 46 -17 473 51 384 5655
c 5 5 1322000.4 10060 79816 57407588 28%0312 1735 o el 134 45 -3 484 4% 9E5 5061
c 4 5 1322000.5 10071 78512 90475820 3113113 1&30 o 46 159 29 18 511 4% 969 2067
c 2 8 1322000.8 10088 78403 26630505 2913884 1735 o B84 121 7 0 456 50 980 5753

Figure 3. Calculation of the prototype in Lingeling

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 3124-3130

Int J Elec & Comp Eng ISSN: 2088-8708 g 3129

Table 3. Computation speed in seconds for Table 4. Computation speed in seconds for
calculations on a single-processor core calculations on a six-processor core
Number of unknown bits 0 8 16 24 Number of 0 8 16 24 128
Plingeling - 15.8 1851 unknown unknown bits
Treengeling 0.11 1954 10541 207987.68 Plingeling - 01 29 278075 3933L7

4. CONCLUSION

The results obtained correspond to the chosen methods of analysis. For the hashing algorithm, we
obtained implementations using Python and C programming languages, which were tested using different
computer configurations (Table 1). Algebraic analysis of one round of the hashing function HBC-256 yielded
a system of 82,533 equations and 16,609 variables. It took about 11 hours to solve the system and allow us to
determine the prototype for one round of encryption (Tables 3 and 4). It should be noted that Plingeling uses
randomization in its algorithms to find a solution. Therefore, only one experiment out of five ended with a
successful finding of the full prototype. That said, it is naturally clear that with each new round the number of
equations and variables will double, and the time to find a solution will grow exponentially. Thus, at the
moment it is not possible to find solutions for the full HBC-256 hashing function.

The HBC-256 hashing algorithm under consideration is new and was first presented. Currently, there
are no publications on the study of the properties of this hashing algorithm. The reliability of new cryptographic
algorithms is confirmed by thorough multiple studies of different aspects of robustness. For hashing functions,
it is research in the field of irreversibility and searches for collisions.

The biggest limitation when conducting research is the difficulty of using full-size inputs and outputs
for the developed hashing algorithms because the analysis becomes time-consuming and demands
computational resources and time. One solution to this problem is to use reduced models or functions to model
and approximate the result. The study has not identified any vulnerabilities in the full-round hashing algorithm.
Not all possible analysis methods were considered. The methods used were not always applied to full-run
versions of the algorithm. All of this will be improved upon in the future. This study is only the first step in
investigating the properties of the new hashing algorithm. The proposed approaches can be improved.

ACKNOWLEDGEMENTS

The research work was carried out within the framework of the project OR11465439 — Development
and research of hashing algorithms of arbitrary length for digital signatures and assessment of their strength”
at the Institute of Information and Computational Technologies.

REFERENCES

[1] S. L. Nita and M. L. Mihailescu, “Hash functions,” in Cryptography and Cryptanalysis in Java, Berkeley, CA: Apress, 2022,
pp. 101-112, doi: 10.1007/978-1-4842-8105-5_8.

[2] N. Kheshaifaty and A. Gutub, “Engineering graphical captcha and AES crypto hash functions for secure online authentication,”
Journal of Engineering Research, Nov. 2021, doi: 10.36909/jer.13761.

[3] P.Farshim and S. Tessaro, “Password hashing and preprocessing,” in EUROCRYPT 2021: Advances in Cryptology — EUROCRYPT
2021, 2021, pp. 64-91, doi: 10.1007/978-3-030-77886-6_3.

[4] J. Herrera and M. L. Ali, “Concerns and security for hashing passwords,” in 2018 9th IEEE Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON), Nov. 2018, pp. 861-865, doi: 10.1109/UEMCON.2018.8796720.

[5] M.A.D.Brogada, A. M. Sison, and R. P. Medina, “Head and tail technique for hashing passwords,” in 2019 IEEE 11th International
Conference on Communication Software and Networks (ICCSN), Jun. 2019, pp. 805-810, doi: 10.1109/ICCSN.2019.8905384.

[6] V.Fomichev, D. Bobrovskiy, A. Koreneva, T. Nabiev, and D. Zadorozhny, “Data integrity algorithm based on additive generators
and hash function,” Journal of Computer Virology and Hacking Techniques, vol. 18, no. 1, pp. 3141, Mar. 2022, doi:
10.1007/s11416-021-00405-y.

[7] J.Wang, W. Luo, Y. Hu, and H. Jiang, “PN-HASH: An immune-inspired scheme for data integrity check,” in 2020 12th International
Conference on Advanced Computational Intelligence (ICACI), Aug. 2020, pp. 340-348, doi: 10.1109/ICACI49185.2020.9177796.

[8] T. Espitau, “Mitaka: Faster, simpler, parallelizable and maskable hash-and-sign signatures on NTRU lattices,” in Proceedings of
the 8th ACM on ASIA Public-Key Cryptography Workshop, May 2021, pp. 1-1, doi: 10.1145/3457338.3458293.

[9] O. Belej, K. Staniec, and T. Wigckowski, “The need to use a hash function to build a crypto algorithm for blockchain,” in Theory
and Applications of Dependable Computer Systems, 2020, pp. 51-60, doi: 10.1007/978-3-030-48256-5_6.

[10] N. Yuvaraj and P. Mohanraj, “Radial kernelized regressive Merkle-Damgard cryptographic hash blockchain for secure data
transmission with IoT sensor node,” Peer-to-Peer Networking and Applications, vol. 14, no. 4, pp. 1998-2010, Jul. 2021, doi:
10.1007/s12083-021-01135-0.

[11] N. R. Chilambarasan and A. Kangaiammal, “Matyas—Meyer—Oseas skein cryptographic hash blockchain-based secure access
control for E-learning in cloud,” in Inventive Systems and Control, 2021, pp. 895-909, doi: 10.1007/978-981-16-1395-1_65.

[12] H. K. Patil, “Blockchain technology-security booster,” in IGI Global, 2021, pp. 128-139, doi: 10.4018/978-1-7998-2414-5.ch008.

[13] R. Punithavathi, K. Venkatachalam, M. Masud, M. A. AlZain, and M. Abouhawwash, “Crypto hash based malware detection in
IoMT framework,” Intelligent Automation & Soft Computing, vol. 34, no. 1, pp. 559-574, 2022, doi: 10.32604/iasc.2022.024715.

[14] N. Naik, P. Jenkins, N. Savage, L. Yang, T. Boongoen, and N. lam-On, “Fuzzy-import hashing: A malware analysis approach,” in
2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul. 2020, pp. 1-8, doi: 10.1109/FUZZ48607.2020.9177636.

[15] S.C. Peiser, L. Friborg, and R. Scandariato, “JavaScript malware detection using locality sensitive hashing,” in ICT Systems Security

Evaluation of the strength and performance of a new hashing algorithm based ... (Kunbolat Algazy)

3130 O3 ISSN: 2088-8708

and Privacy Protection. SEC 2020, 2020, pp. 143-154, doi: 10.1007/978-3-030-58201-2_10.

[16] D. Moon, J. Lee, and M. Yoon, “Compact feature hashing for machine learning based malware detection,” ICT Express, vol. 8,
no. 1, pp. 124-129, Mar. 2022, doi: 10.1016/j.icte.2021.08.005.

[17] T.Baba, K. Baba, and T. Yamauchi, “Malware classification by deep learning using characteristics of hash functions,” in Advanced
Information Networking and Applications. AINA 2022, 2022, pp. 480-491, doi: 10.1007/978-3-030-99587-4_40.

[18] R. Riasat, I. S. Bajwa, and M. Z. Ali, “A hash-based approach for colour image steganography,” in International Conference on
Computer Networks and Information Technology, Jul. 2011, pp. 303-307, doi: 10.1109/ICCNIT.2011.6020886.

[19] S. Karaman and S.-F. Chang, “Hashing for face search,” in Computer Vision, Cham: Springer International Publishing, 2021,
pp. 553-558, doi: 10.1007/978-3-030-63416-2_817.

[20] ENISA, “Baseline security recommendations for IoT,” European Union Agency for Network and Information Security
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot/@@download/fullReport (accessed Jun. 01,
2022).

[21] K. Sakan, S. Nyssanbayeva, N. Kapalova, K. Algazy, A. Khompysh, and D. Dyusenbayev, “Development and analysis of the new
hashing algorithm based on block cipher,” Eastern-European Journal of Enterprise Technologies, vol. 2, no. 9 (116), pp. 6073,
Apr. 2022, doi: 10.15587/1729-4061.2022.252060.

[22] G. V. Bard, Algebraic cryptanalysis. Boston, MA: Springer US, 2009, doi: 10.1007/978-0-387-88757-9.

[23] N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with overdefined systems of equations,” in ASIACRYPT 2002:
Advances in Cryptology — ASIACRYPT 2002, 2002, pp. 267-287, doi: 10.1007/3-540-36178-2_17.

[24] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms for solving overdefined systems of multivariate polynomial
equations,” in Eurocrypt 2000, LNCS 1807, 2000, pp. 392-407, doi: 10.1007/3-540-45539-6_27.

[25] R. Biyashev, D. Dyusenbayev, K. Algazy, and N. Kapalova, “Algebraic cryptanalysis of block ciphers,” in Proceedings of the 2019
International Conference on Wireless Communication, Network and Multimedia Engineering (WCNME 2019), 2019, pp. 129-132,
doi: 10.2991/wcnme-19.2019.30.

[26] M. Bardet, J.-C. Faugére, and B. Salvy, “On the complexity of the F5 Grobner basis algorithm,” Journal of Symbolic Computation,
vol. 70, pp. 49-70, Sep. 2015, doi: 10.1016/j.jsc.2014.09.025.

[27] E. Ishchukova, E. Maro, and P. Pristalov, “Algebraic analysis of a simplified encryption algorithm GOST R 34.12-2015,”
Computation, vol. 8, no. 2, May 2020, doi: 10.3390/computation8020051.

[28] A. Biere, “Lingeling, Plingeling, and Treengeling entering the SAT competition 2013,” Proceedings of SAT Competition, 2013,
pp. 51-52.

[29] 1. Otpuschennikov, A. Semenov, I. Gribanova, and O. Zaikin, “Encoding cryptographic functions to SAT using TRANSALG
system,” in ECAI’16: Proceedings of the Twenty-second European Conference on Artificial Intelligence, 2016, pp. 1594-1595, doi:
10.3233/978-1-61499-672-9-1594.

[30] A. Biere, “lingeling,” Github. https://github.com/arminbiere/lingeling (accessed Jun. 03, 2022).

BIOGRAPHIES OF AUTHORS

Kunbolat Algazy FUBS © received a master's degree in mathematics from Al-Farabi Kazakh

National University in 2001 and a Ph.D. degree in information security systems, in Almaty,
- Kazakhstan, in 2021. From 2001 to 2014 he worked in the field of information protection in the
state structure. Between 2014 and 2016, he worked as a teacher at the Department of
Mathematics at Satbayev University. Currently, he is a researcher in the laboratory "Information
Security" at the Institute of Information and Computing Technology. His research interests
include cryptography, cryptanalysis, development, and research in the field of information
protection. He can be contacted at kunbolat@mail.ru.

Kairat Sakan @ R Ed © graduated from the Faculty of Mechanics and Mathematics of Al-Farabi
Kazakh National University, majoring in mathematics and applied mathematics (KazNU, Almaty,
Kazakhstan) in 2001. From 2001 to 2002, he worked as a teacher at the Department of Applied
Mathematics and Mathematical Modeling at KazNU. From 2003 and 2005, he worked as a junior
researcher at the Research Institute of Mathematics and Mechanics (IMM) of KazNU. After that,
he worked in the field of information protection in the state structure for several years. Since 2018,
he has been working as a mathematician in the information protection laboratory at the Scientific
Institute of Information and Computing Technologies. Currently, he is a doctoral student at KazNU,
majoring in information security systems. His field of scientific research is information protection
in the public and private sectors. He can be contacted at 19kairat78@gmail.com.

Nursulu Kapalova BJ B © received her master's degree in mathematics from Al-Farabi
Kazakh National University in 2002 and her degree candidate in technical sciences (Almaty,
Kazakhstan) in 2009. Currently, she is a leading researcher in the laboratory of "Information
Security" at the Institute of Information and Computing Technology and an associate professor
at the Department of "Information Systems" at Al-Farabi Kazakh National University. Her areas
of scientific works are development and research in the field of information protection. She can
be contacted at nkapalova@mail.ru.

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 3124-3130

https://orcid.org/0000-0003-3670-2170
https://scholar.google.com/citations?view_op=list_works&hl=ru&user=I512CzYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57202761698
https://www.webofscience.com/wos/author/record/2224884
https://orcid.org/0000-0002-6812-6000
https://scholar.google.co.id/citations?hl=ru&user=hgk1jFQAAAAJ
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57687675800&zone=
https://www.webofscience.com/wos/author/record/3914255
https://orcid.org/0000-0001-9743-9981
https://scholar.google.com/citations?user=ErxcNU8AAAAJ&hl=ru&oi=ao
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57191242124&zone=
https://www.webofscience.com/wos/author/record/705250

