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 The state of functioning (posture) of a driver at the wheel of a car involves a 

complex set of psychological, physiological, and physical parameters. This 
combination induces fatigue, which manifests itself in repeated yawning, 

stinging eyes, a frozen gaze, a stiff and painful neck, back pain, and other 

signs. The driver may fight fatigue for a few moments, but it inevitably leads 

to drowsiness, periods of micro-sleep, and then falling asleep. At the first 
signs of drowsiness, the risk of an accident becomes immense. In Morocco, 

drowsiness at the wheel is the cause of 1/3 of fatal accidents on the freeways. 

Thus, in this paper, a new hybrid data analysis and an efficient machine 

learning algorithm are designed to detect the drowsiness of drivers who spend 
most of their time behind the wheel over long distances (older than 35 years). 

This analysis is based on a single channel of electroencephalogram (EEG) 

recordings using time, frequency fast Fourier transform (FFT), and power 

spectral density (PSD) analysis. To distinguish between the two states of 
alertness and drowsiness, several features were extracted from each domain 

(time, FFT, and PSD), and subjected to different classifier architectures to 

conduct a general comparison and achieve the highest detection accuracy 

(98.5%) and best time consumption (13 milliseconds). 
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1. INTRODUCTION  

While driving, a complex connection of our brain signals is established, which can cause the driver to 

feel tired and, even more so, to feel drowsy and fall asleep (drowsiness is a transitional state between the 

waking and sleeping states), leading to dangerous and fatal accidents [1], [2]. In addition, the monotony of 

highways and especially driving long distances and for many hours are other factors that can cause drowsiness 

in the driver [3]. 

In Morocco, a 33.33% rate of fatal accidents on the highways is caused by drowsiness [4], [5]. This 

gave us the opportunity to think about how to solve this serious tragedy, concluding that it is to develop an 

intelligent and hybrid algorithm for automatic early detection of drowsiness, which will warn the driver to take 

precautions. The aim of this work is to improve our previous algorithms for predicting driver drowsiness, and 

to overcome the weaknesses and limitations of existing systems in terms of speed and accuracy of detection. 

Many previous works present techniques based on sensor signals to detect drowsiness, both in 

literature and commercially. Some have developed a smart glasses system that detects drowsiness based on eye 
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closure by sending infrared light between an emitter and a receiver, or by adding other information such as 

micro-falls of the head subtracted from accelerometers and gyroscopic sensors [6]. The use of accelerometers 

and an infrared transceiver have been used but implemented on a wearable cap instead of glasses. Nevertheless, 

these methods have multiple limitations in real driving situations, especially in the absence of physiological 

parameters. For example, the driver can make different actions and movements that are normal but can be 

attributed to signs of drowsiness based on sensor signals. 

Some authors proposed a non-invasive eye-tracking method based on an optical correlator to estimate 

eye state, which will then be used to detect driving fatigue. An accuracy of 99.9% was achieved for the 

estimation of the eye state at different situations [7]. Other systems based on face detection have also been 

developed, based on image processing and analysis of the eye and head states in addition to physiological 

signals such as respiratory signals and electrocardiogram (ECG) [8]–[10]. This idea has many limitations such 

as eye detection and tracking error due to eye shape for some subjects (e.g., Chinese population), camera 

direction and camera discomfort. Another non-intrusive technique was introduced, where the authors used 

thermal imaging to analyze the variations in respiratory rhythms under the nose region in a normal state and in 

drowsiness to identify the drowsy state, they were able to achieve a detection accuracy of 90% [11]. The idea 

of using a thermal camera solved the problem of non-detection at night or even in the absence of light of 

previous facial imaging-based systems. 

In 2010, a study focused on the analysis of physiological signals such as electrocardiogram (ECG) 

[12] or using electrooculogram (EOG) signals in 2013 [13]. The analysis of EEG signals becomes the main 

field in the study of human body phenomena such as epilepsy, sleep apnea, and especially the study of awake 

and drowsiness states based on the difference between brain waves. 

The difference between works is basically in the method of signals analysis (algorithms), the 

classification method, or the number of electrodes and even their position. A study cited the use of 32 electrodes 

for the acquisition before extracting the spectrum entropy, approximate entropy, sample entropy, and fuzzy 

entropy. So as to feed a support vector machine (SVM) with a radial basis function (RBF) kernel to achieve an 

accuracy of 98.75% [14]. Decreasing the number of electrodes down to 24 was also performed besides using 

the logarithm of energy, and chaotic feature extraction such as Petrosian and Higuchi fractal dimension or also 

empirical mode decomposition (EMD) [15], [16]. The accuracies obtained were 83.3% and 84.8%, 

respectively, or even 12 electrodes [17], where they proposed a method to explore the spectrogram of each 

EEG channel using the short-time Fourier transform (STFT), and the discrete Fourier transform (DFT). The 

accuracy reached an average of 91.72% after using the linear kernel of the SVM classifier. Another study 

developed a method based on fast Fourier transform (FFT) to calculate the spectrum and signal power spectral 

density (PSD) instead of STFT and showed an accuracy of 88.8% [18].  

A method based on a single EEG channel parietal-zero-occipital-zero (Pz-Oz) and the zero means that 

the electrodes are placed in the midline sagittal plane of the skull), was proposed to detect drowsiness using 

the decomposition of the signal into frequency sub-bands according to a time-domain distribution called Haar 

wavelet packet transform (WPT) [19]. These techniques are the most widely used in these studies, whether 

brain waves are decomposed into Delta [<4 Hz], Theta [4 to 8 Hz], Alpha [8 to 16 Hz], Beta [16 to 32 Hz], and 

Gamma [>32 Hz] bands. In general, the increase in Theta waves and the decrease in Alpha waves correspond 

to a high level of transition from the awake to the drowsy state. The discrete wavelet transform (DWT), Tunable 

Q-factor wavelet transform (TQWT), and continuous wavelet transform (CWT) have also been discussed in 

previous works [20]–[22], respectively. These works have shown high detection accuracy of up to 91.842%. 

The positions of the electrodes used are important to extract the most significant signals to detect drowsiness 

when the number of these electrodes is reduced, according to the international 10 to 20 system, especially if a 

single channel of EEG recordings is used, as in our proposal.  

The complexity is reduced due to the absence of a large number of electrodes, but it is more difficult 

to extract all the information from a single channel. Therefore, in this paper, we present a novel EEG signal 

analysis method based on hybrid features extracted from the time and spectral domains and our optimized 

random forest (RF) classification architecture to predict driver drowsiness, which achieved 98.5% of detection 

accuracy in 13 milliseconds, overcoming all the limitations of existing methods that we will explain in the next 

section. 

 

 

2. METHOD  

The objective of this paper is to develop a hybrid algorithm for drowsiness detection that encompasses 

three signal processing domains (temporal, and spectral using FFT, and PSD) and achieves a higher 

performance of speed and accuracy than the cited works. Each of the domains has been performed and tested 

separately, the distribution of features is analyzed to eliminate those that decrease the accuracy, and finally 

using the total of the most significant ones, then building different machine learning models to test their 

accuracies and maintain the best. The target population, as mentioned previously, is drivers working in 
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transportation, who spend the majority of their time driving long distances and are over 35 years old. However, 

in terms of algorithm approval, we used an open database with an average of subjects aged 18 years (between 

17 and 26 years). 

 

2.1.  Acquisition phase 

The data used in this article were obtained from the Physionet database [23]. EEG signals were 

recorded monopolar using the 23-channel Neurocom EEG system (Ukraine, XAI-MEDICA). The 36 subjects 

were of both genders, aged 16-24 years (an average of 18 years). 

Electrodes were placed according to the international 10 to 20 system. All electrodes were referenced 

to the interconnected ear reference electrodes (Ref). To remove artifacts from the EEG segments, a low-pass 

filter with a cutoff frequency of 30 Hz and a power-line notch filter (50 Hz) were used. This database is 

published for use in research work due to the high quality of its signals. 

The data is available in European data format (.edf), so we took 6 male and female subjects of different 

ages (an average of 18 years) and converted the data file into a comma-separated values (.csv) extension with 

3s EEG signal segments using Python and started our processing algorithm. In this work, we focused on a 

single channel of EEG recordings FP1-Ref. FP1 is known to be an optimal location for detecting sleepiness, 

studies based on the FP1 spot also showed a high correlation for detecting the sleepiness state [24]. 

 

2.2.  Processing method 

The EEG recordings were free from artifacts, as all noises were filtered out during recording, as 

described in the European Commission Study (section 2.1). After the EEG recordings were collected/acquired, 

a first arrangement was applied to the data in order to prepare them for the extraction of the selected features. 

The second step consists of grouping all features into a vector following the form of the classifier, dividing 

them into training and test inputs, adding the corresponding label, and finally obtaining the confusion matrix 

containing all the results about the applied training method. Here is the flowchart of our method presented in 

Figure 1. 

 

 

 
 

Figure 1. Flowchart of the treatment method 

 

 

2.2.1. Time domain analysis 

The objective of this step is the extraction of features in the time domain, i.e., the processing of the 

potential difference generated by the electrodes but considering first the single channel (Fp1-Ref) instead of 

the total of 23 electrodes, in order to reduce the hardware consumption and to keep the analysis in real-time, 

as shown in Figure 2. The detection of the drowsy state must be based on several parameters that make the 

difference between the two states, awake and drowsy, these characteristic parameters are called "features". The 

more these features are well dispersed between the two states, the more efficient and accurate the detection is. 
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In this work, the features chosen and extracted are the median, the mean, the standard deviation (Std), the 

variance (Var), the root mean square (RMS), the minima (Min), the maxima (Max), and a new parameter that 

we called mean of peaks (MOP) which represents the average of all the peaks of the signal. 

 

 

 
 

Figure 2. EEG signals recorded from 23 electrodes (left) and Fp1-Ref (right) 

 

 

2.2.2. Frequency domain analysis 

a.  Fast Fourier transform approach 

This second analysis starts by switching from the time domain to the frequency domain and extracting 

the most significant features. It aims at computing the one-dimensional DFT by a function that computes the 

one-dimensional n-point DFT with the efficient FFT algorithm. 

 

For 0 ⩽  k ⩽  N –  1 

Xk = ∑ 𝑥𝑛𝑒−2𝜋𝑖
𝑘𝑛

𝑁

𝑛−1

𝑛=0
 (1) 

 

After calculating the Fourier transform of all the data, in the same way as in the time domain, the 

features were extracted but were in the complex domain (real and imaginary values), so we adopted a method 

to convert these real and imaginary value into a pure real value in order to start our classification step. This 

method consists in calculating the modulus of the features. 

 

𝐹𝑖 =  𝑅𝑒(𝐹𝑖)  +  𝑖 ∗  𝐼𝑚(𝐹𝑖) 

 

|Fi|  = √𝑅𝑒
2 + 𝐼𝑚

2   (2) 

 

𝐹𝑖 is the extracted feature number 𝑖. 
 

b.  Power spectral density approach 

In this section, the spectrum was estimated based on Burg’s algorithm, which estimates the power 

spectral density of the data of each segment. PSD represents the spectral power per unit frequency. Using this 

technique, we might be able to distinguish the two states, especially after extracting the eight features 

mentioned earlier but this time from the spectrum of each sample/segment. 

 

PSD =  
1

𝑁
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𝑛

𝑁
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=
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𝑁
 𝑋𝑘   (3) 

 

2.3. Classification 

In this step, different analyses were adopted to obtain the best accuracy in drowsiness detection. Each 

approach (time, FFT, PSD) was tested separately and went through different classifier architectures, and then 

a method combining all the approaches was used (hybrid algorithm) to get the best efficiency of our proposed 

method based on the best classifier. The classifiers used in our study are SVM with its RBF kernel, RF, 

multilayer perceptron (MLP), nearest centroid (NC), K-nearest neighbors (KNN), Gaussian process, decision 

tree (DT), optimized decision tree (ODT), and finally stochastic gradient descent (SGD). 

A general study on these classifiers is done to compare their efficiency and accuracy depending on 

the type of data used which are random signals (EEG signals). This means that the most meaningful method is 
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to analyze our data and train a classifier that has a random architecture instead of a linear architecture. In the 

following section, we will show the results obtained for several aspects of our study. 

 

 

3. RESULTS AND DISCUSSION 

In this section, we will provide all the results of our proposed method, these results are the major sign 

of the performance of our model. The training and test scores (accuracies) indicate the ability of the model to 

predict drowsiness against all predictions made, the recall (sensitivity or also called success rate) is the ability 

to detect drowsiness when the subject is actually drowsy, the F1-score gives an idea of the prediction rate of 

sleepiness and wakefulness and the total accuracy of the classifier. The results are based on four parameters, 

their total is called the confusion matrix of a classifier. 

 True positive (TP): Prediction is positive (Drowsy state is predicted) and X is Drowsy. 

 True negative (TN): Prediction is negative (Awake state is predicted) and X is Awake. 

 False positive (FP): Prediction is positive (Drowsy state is predicted) and X is Awake. 

 False negative (FN): Prediction is negative (Awake state is predicted) and X is Drowsy. 

Based on these parameters, we could calculate our different scoring outputs. 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (4) 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (6) 

 

F1 − score = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
        (7) 

 

Tables 1 to 4 show all the results obtained when we trained different models using only the PSD 

domain features extracted from EEG data samples in Table 1, FFT-only features in Table 2, time-only features 

in Table 3, and our hybrid approach of features selection in Table 4. 

 

 

Table 1. Performance comparison between different classifiers applied on only PSD features 

Classifier Precision Accuracy Recall F1-score D/A 

SVM (RBF kernel) 70.4% 71.9% 75.9% 0.71 / 0.71 

Gaussian process 49.1% 49.1% 100% 0.00 / 0.66 

Stochastic gradient descent 50.2% 50.2% 100% 0.00 / 0.67 

Multi-layer perceptron 49.8% 49.8% 100% 0.00 / 0.66 

Nearest centroid 54.6% 57% 86.3% 0.39 / 0.67 

Random forest 49.7% 49.7% 100% 0.00 / 0.66 

K-nearest neighbors 90.6% 90.6% 90.8% 0.90 / 0.91 

 

 

Table 2. Performance comparison between different classifiers applied on only FFT features 

Classifier Precision Accuracy Recall F1-score D/A 

SVM (RBF kernel) 84.6% 86.5% 89.7% 0.86 / 0.87 

Gaussian process 63.7% 68.9% 87.6% 0.62 / 0.74 

Stochastic gradient descent 49.7% 49.7% 100% 0.00 / 0.66 

Multi-layer perceptron 69.4% 74.1% 84.1% 0.72 / 0.76 

Nearest centroid 69.6% 72.9% 82.6% 0.70 / 0.76 

Random forest 96.7% 96.5% 96.1% 0.97 / 0.96 

K-nearest neighbors 93.3% 92.9% 92.4% 0.93 / 0.93 

 

 

Table 3. Performance comparison between different classifiers applied on only time features 

Classifier Precision Accuracy Recall F1-score D/A 

SVM (RBF kernel) 92.0% 93.3% 94.5% 0.93 / 0.93 

Gaussian process 49.0% 49.0% 100% 0.00 / 0.66 

Stochastic gradient descent 50.5% 50.5% 100% 0.00 / 0.66 

Multi-layer perceptron 48.9% 48.9% 100% 0.00 / 0.66 

Nearest centroid 84.4% 88.4% 95.0% 0.87 / 0.89 

Random forest 93.5% 94.6% 95.5% 0.95 / 0.95 

K-nearest neighbors 95.8% 94.1% 92.3% 0.94 / 0.94 
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Table 4. Performance comparison between different classifiers applied on our hybrid method 

Classifier Precision Accuracy Recall F1-score D/A 

SVM (RBF kernel) 85.3% 87.8% 91.3% 0.87 / 0.88 

Gaussian process 53.2% 56.0% 96.1% 0.27 / 0.68 

Stochastic gradient descent 59.9% 65.5% 90.4% 0.55/ 0.72 

Multi-layer perceptron 70.7% 75.6% 85.5% 0.73 / 0.78 

Nearest centroid 68.7% 73.4% 85.3% 0.70 / 0.76 

Random forest 98.2% 98.5% 98.0% 0.98 / 0.98 

K-nearest neighbors 93.2% 93.1% 92.6% 0.93 / 0.93 

 

 

As a result, our proposed method (hybrid approach) presented in Table 4 showed a remarkable 

performance improvement in terms of accuracy. The accuracy reached 98.5% for drowsiness detection based 

on our chosen features. To justify these good results here is for example the distribution of some randomly 

chosen features along the extracted data lines. We can also observe that the classifiers that obtain the best 

accuracy are RF and KNN, due to the adherence between the nature of our EEG signals (which has a random 

distribution) and the architecture of these classifiers presented in Figure 2. 

To show that our results are far from so-called overfitting and to justify these good results, in Figure 3 

we present a distribution of randomly selected features (standard deviation and variance) extracted from awake 

and drowsy subjects over all EEG data row samples, and we notice that the features extracted from each state 

of the subjects are very distinct and could summarize that we are dealing with two different states called classes. 

 

 

 

 

 

 
 

Figure 3. Features distribution along the total rows of EEG data extracted 

 

 

It can be clearly seen that the two classes awake (from 0 to 3,599) and drowsy (from 3,600 to 7,199) 

are well separated, except for the distribution of the characteristics of some subjects, but in general, the 

classification reached a high percentage of detection (98.5%). In order to situate our method, a two-axis study 

was conducted to compare all previous work that used the same dataset and the single-channel-based 

processing shown in Table 5. Achieving higher accuracy of a system depends on two studies: either we use a 

large data segment to give the classifier a higher margin for training and testing, or we try to build the analysis 

on robust features. As shown in Table 5, our proposed method performed best using only 3-second data 

segments instead of 5 s, 10 s, or 30 s segments.  
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In terms of time consumption, this Table 6 compares the classifiers used and the time taken during 

the entire training process from data entry to classifier output (prediction). By comparing these results in  

Table 6, we conclude that the runtime is different from one classifier to another. But in terms of time and 

accuracy, the RF classifier is the most efficient and effective for our work. The final phase was to save our 

(trained) model and use it to predict the state of new subjects to validate our work and calculate the prediction 

time. The state of these subjects used for approval was already known and tested by our new hybrid model.  

The average prediction time was 13 milliseconds as shown in Table 6 and Figure 4. The reason why 

the RF and KNN classifiers show the highest accuracies in each approach is that our data type is compatible 

with the nature of the classifier. Using a nonlinear classifier for random, nonlinear data like ours (EEG signals) 

is the best method for building a predictive model. Linear classifiers will not be as effective as nonlinear ones 

due to the non-possibility of finding a linear separator between the distribution of the data called a hyperplane. 

 

 

Table 5. Comparison of performance between our and existing models obtained using Physionet EEG 

database and single-EEG-channel approach 
Work Platform used Sampling frequency Size of segments Processing method Classification method Accuracy 

Proposed Python 100 Hz 3s Hybrid  RF 98.50% 

[25] Python 100 Hz 3s Hybrid  ODT  96.40% 

[26] Python 100 Hz 3s Hybrid  DT  95.70% 

[27] MATLAB 100 Hz 5s WPT ET 94.45% 

[28] -- -- -- TQWT ELM 91.80% 

[29] MATLAB 250 Hz 30s STFT, TQWT LSTM 94.31% 

[18] MATLAB 250 Hz 30s FFT ANN 88.80% 

[30] iPad app 512 Hz 10s PSD SVM 72.70% 

 

 

Table 6. Time comparison between the different classifiers used 
Classifier Accuracy Time (s) 

Random forest 98.5% 0.013 

Optimized decision tree 96.4% 0.053 

Decision tree 95.7% 0.065 

SVM (RBF kernel) 87.8% 0.985 

Gaussian process 56.0% 12.57 

Stochastic gradient descent 65.5% 0.366 

Multi-layer perceptron 75.6% 5.144 

Nearest centroid 73.4% 0.006 

K-nearest neighbors 93.1% 0.142 

 

 

 
 

Figure 4. Output of our model showing the total time consumed 

 

 

4. CONCLUSION 

The proposed method represents a new hybrid method based on time processing (FFT, and PSD 

techniques) to predict sleepiness from physiological signals (EEG signals), this work shows an interesting 

performance improvement under three axes: the software used (Python), the prediction accuracy (98.5%) and 

the prediction time (0.013 s). Using the features extracted from the three domains (time, FFT, and PSD), we 

were able to train different classifiers to predict sleepiness and compared each of them to get an overview and 

concluded that our method offered the best performance among all existing works.  

The only limitation of this work is that the average age used is related to the database used (18 years) 

which is different from the target population (over 35 years). This limitation will be overcome once we have 

realized our own prototype (hardware acquisition system). 

 

- - - Execution time is : 0.01146554946899414 seconds - - -

‘Attention !!! Subject is drowsy ‘

- - - Execution time is : 0.014030694961547852 seconds - - -

‘Subject is Awake ‘
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