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 Face recognition is a challenging task due to the complexity of pose 

variations, occlusion and the variety of face expressions performed by distinct 

subjects. Thus, many features have been proposed, however each feature has 

its own drawbacks. Therefore, in this paper, we propose a robust model called 

Krawtchouk moments convolutional neural networks (KMCNN) for face 

recognition. Our model is divided into two main steps. Firstly, we use 2D 

discrete orthogonal Krawtchouk moments to represent features. Then, we fed 
it into convolutional neural networks (CNN) for classification. The main goal 

of the proposed approach is to improve the classification accuracy of noisy 

grayscale face images. In fact, Krawtchouk moments are less sensitive to 

noisy effects. Moreover, they can extract pertinent features from an image 
using only low orders. To investigate the robustness of the proposed approach, 

two types of noise (salt and pepper and speckle) are added to three datasets 

(YaleB extended, our database of faces (ORL), and a subset of labeled faces 

in the wild (LFW)). Experimental results show that KMCNN is flexible and 
performs significantly better than using just CNN or when we combine it with 

other discrete moments such as Tchebichef, Hahn, Racah moments in most 

densities of noises. 
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1. INTRODUCTION   

Face recognition is an essential aspect of biometric technologies [1], [2]. that has received significant 

attention due to the fast development of technology such as digital cameras [3], the Internet [4], and mobile 

devices [5], as well as the rising desire for security [6]–[9]. Face recognition offers various benefits over other 

biometric systems, including natural, non-intrusive, and simple. However, face recognition has become one of 

the most challenging pattern recognition problems, owing the wide range of lighting circumstances, face 

expression, head size, pose variation, complex background, motion blurring, noisy conditions, and other 

environmental variables that could reduce recognition performance [10]. 

Three primary categories can be used to categorize the various approaches that have been utilized for 

face recognition: holistic approaches [11]–[21], feature-based approaches [22]–[30] and hybrid approaches 

[31]–[34]. In early 1990, researchers in face recognition field started using holistic approaches, i.e., facial 

detection systems use the entire face region as input to accomplish face recognition. In this approach, we find 

two sub-categories of techniques: the first one is based on linear methods like Eigenfaces principal component 

analysis (PCA) [11], [12], Fisherfaces linear discriminative analysis (LDA) [13], [14], independent component 
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analysis (ICA) [15], discrete wavelet transform (DWT) [16] and discrete cosine transform (DCT) [17]. The 

second technique is based on non-linear methods such as Kernel PCA (KPCA) [18], kernel linear discriminant 

analysis (KLDA) [19], Gabor-KLDA [20], and CNN [21]. In the first decade of the 21st century, studies have 

focused on feature-based approaches, and could possibly be separated into two distinct types: local appearance-

based techniques that consider the facial image as a collection of discrete vectors with low dimensions and 

focus on crucial parts of the face like the nose, mouth, and eyes to create additional information and make face 

recognition easier. Local binary pattern (LBP) [22], histogram of oriented gradients (HOG) [23], correlation 

filters (joint transform correlator (JTC) [24], VanderLugt correlator (VLC) [25]) and discrete orthogonal 

moments (DOM) [26] are the most methods used in this sub category. In the second sub-category, keypoints-

based techniques are utilized to detect particular geometric characteristics based on the geometry of the facial 

features (e.g., the space between the eyes, the circumference of the head) using algorithms like scale-invariant 

feature transform (SIFT) [27] and descriptors like speeded-up robust features (SURF) [28], binary robust 

independent elementary features (BRIEF) [29] and fast retina keypoint (FREAK) [30]. In early 2010, the face 

recognition community focused on hybrid approaches that combine local and subspace features to maximize 

the strengths of both types of approaches which could provide enhanced performance in face recognition 

systems, such as Gabor wavelet and linear discriminant analysis (GW-LDA) [31], multi-sub-region-based 

correlation filter bank (MS-CFB) [32], CNNs and stacked auto-encoder (SAE) [33], advanced correlation 

filters and Walsh LBP (WLBP) [34], Figure 1 shows a brief organization of the previous mentioned approaches. 

Recently, deep learning (DL) and more specifically convolution neural networks (CNN) is the most commonly 

methodology used for extracting features in face recognition, it has significant advantages due to its learning 

ability, generalization, and robustness [14], [15]. Deep and extensive neural networks have demonstrated 

remarkable performance with massive training datasets and the computing capacity of graphical processing 

units (GPUs); It could generate the fundamental feature representation of data and create high-level features 

from the low-level pixels. 

Ding et al. [35] presented the noise resistant network (NR-network), a deep learning network-based 

system that extracts low-level and high-level face characteristics using a multi-input structure; they used a 

downscaling approach to reduce the resolution of their dataset in order to accelerate the processing, focusing 

on facial recognition in noisy conditions. However, basic design and massive pooling operations are lost certain 

facial features. As a result, such a system will not be able to recognize faces in noisy environments. 

Meng et al. [36] presented a deep CNN with sub-networks for denoising and recognizing faces under noise; 

unlike traditional approaches, which train the two sub-networks separately, this method trains them together; 

hence, it requires more time. Wu et al. [37] proposed a light CNN framework based on three networks that 

reduce the computational costs and the number of parameters to train a 256-D compact embedding from 

enormous face data with several noisy labels, Ma et al. [38] introduce a robust local binary pattern (LBP) 

guiding pooling (G-RLBP) mechanism to enhance the accuracy of CNNs models while effectively reducing 

the noise effects. 

Dimensionality reduction and feature extraction are essential parts of any facial recognition system. 

Despite the fact that face images have a high dimensionality despite their small size, which leads to a significant 

amount of computational time, complexity, and memory occupation; the performance of any classifier is mainly 

determined by the good discriminating features included inside the face image [39], [40]. In this sense, the 

presence of noisy training data can harm the ultimate performance of trained convolutional neural networks. 

Although a recent research demonstrated that deep CNNs work well even on noisy samples with sufficient clean 

data [41], this conclusion is not always applicable in face recognition. Experimental tests indicate that noisy data 

appears to reduce the performance of trained face recognition CNNs [42]. To overcome these constraints and 

improve performance, another feature extraction technique that can deal with noise must be used.  

Orthogonal moments are robust in the presence of image noise and have a near-zero redundancy 

measure in a feature set. In this respect, 2D DOM that are based on the Krawtchouk polynomials [43] has the 

ability to extract local features from any region of interest in an image in addition to the global feature extraction 

capability. Apostolidis and Papakostas [44] showed that using Krawtchouk moments as an image local 

descriptor and a watermarking attack can affects the accuracy of deep learning models when it applied in 

medical images. Amakdouf et al. [45] came up with quaternion radial Krawtchouk moments that could be 

useful in the field of color image analysis by showing a good representation capability and robustness to 

different noises. Hassan et al. [46] demonstrated that invariant quaternion Krawtchouk moments are more 

effective than continuous orthogonal moments at representing images and showed more stability against the 

translation, rotation, and scaling transformation. Rahman et al. [47] introduced a new method for face 

recognition in which sparse representation of face images is created by selecting a discriminatory set of 

orthogonal Krawtchouk moments. Following the considerations presented above, the Krawtchouk DOM are 

investigated for grayscale face image recognition. The essence of our suggested model is to employ Krawtchouk 

moments as a fast and accurate object descriptor; the whole face shape moments could be computed and fed it as 

input layer to a convolutional neural network, the robustness of our proposed model is tested on small and large 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 4, August 2023: 4052-4067 

4054 

size databases with the presence of two types of noise and compared with CNN combined with others 2D DOM 

and without them. The main contributions of this study are summarized as follows: 

- A new architecture named Krawtchouk moments convolutional neural networks (KMCNN), defined by 

Krawtchouk orthogonal polynomials, is introduced for the first time in this paper. 

- A robust face recognition approach against various types of noises is proposed. 

- An application of the suggested KMCNN model for face reconstruction and recognition is presented. 

The remainder of this paper is structure as follows. Section 2 a brief review of 2D Krawtchouk 

orthogonal moments and the process of creating image moments. Section 3 describes the proposed KMCNN 

model and its architecture. The databases are considered in section 4. Experiments and results details are also 

conducted to evaluate the KMCNN compared with CNN only and its combination with other 2D orthogonal 

moments in this section. Section 5 concludes this paper. 

 

 

 
 

Figure 1. Summary of face recognition approaches 

 

 

2. 2D KRAWTCHOUK MOMENTS 

Krawtchouk moments are a set of orthogonal moments based on the discrete Krawtchouk polynomials 

defined over the coordinate image space. Their implementation does not involve any numerical approximation. 

In this section, we will give a brief formulation of 2D weighted Krawtchouk moments, including polynomials and 

describe their capacity to capture significant features from images with a significant dimensionality reduction.  

 

2.1.  Krawtchouk polynomials 

The Krawtchouk polynomials were initially presented by Krawtchouk [48], and recently utilized by 

Yap et al. [49] image analysis fields. The orthogonality relation of the Krawtchouk discrete polynomials is 

given by (1). 

 
∑  𝑁−1

𝑥=0 𝑤𝑘(𝑥; 𝑝, 𝑁)𝑘𝑛(𝑥; 𝑝, 𝑁)𝑘𝑚(𝑥; 𝑝, 𝑁) = 𝜌𝑘(𝑛; 𝑝, 𝑁)𝛿𝑛𝑚  𝑛, 𝑚 = 1, … , 𝑁, (1) 

 

where 𝑤𝑘(𝑥; 𝑝, 𝑁) is the weighting function defined as (2): 

 

𝑤𝑘(𝑥; 𝑝, 𝑁 − 1) = (
𝑁 − 1

𝑥
) 𝑝𝑥(1 − 𝑝)𝑁−1−𝑥 , (2) 

 

with the norm function is: 

 

𝜌𝑘(𝑛; 𝑝, 𝑁 − 1) = (−1)𝑛 (
1−𝑝

𝑝
)

𝑛 𝑛!

(1−𝑁)𝑛
 . (3) 
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Using the definition above, Yap et al. [49] presents the recurrent formula by using the normalized Krawtchouk 

polynomials. 

 

𝑘𝑛(𝑥; 𝑝, 𝑁 − 1) = 𝐴𝑛𝑘𝑛−1(𝑥; 𝑝, 𝑁 − 1) − 𝐵𝑛�̅�𝑛−2(𝑥; 𝑝, 𝑁 − 1)

�̅�0(𝑥; 𝑝, 𝑁 − 1) = 𝑤𝑘(𝑥; 𝑝, 𝑁 − 1)

�̅�1(𝑥; 𝑝, 𝑁 − 1) = 𝑤𝑘(𝑥; 𝑝, 𝑁 − 1)
(𝑁−1)𝑝−𝑥

√(𝑁−1)𝑝(1−𝑝)

with 𝐴𝑛 =
((𝑁−1𝑝−2(𝑛−1)𝑝+𝑛−1−𝑥)

√𝑝(1−𝑝)𝑛(𝑁−𝑛)
 and  𝐵𝑛 = √

(𝑛−1)(𝑁−𝑛+1)

(𝑁−𝑛)𝑛

 (4) 

 

Figures 2(a) and (b) show the weighted Krawtchouk polynomials up to the 7th degree for p=0.5 and 

p=0.2, respectively. The graphs illustrate the impact of the localization parameter p, which permits the 

polynomials to be moved to the appropriate location. 

 

 

  
(a) (b) 

 

Figure 2. Weighted Krawtchouk polynomials up to the 7th degree for N=168, (a) p=0.5 and (b) p=0.2 

 

 

2.2.  Krawtchouk moments 

In general, moments are defined as scalar values, that are consistent and efficient data descriptors [50]. 

They may be used to represent 1D signals like voice and 2D signals such as images without information 

redundancy in the moment set and to detect slight signal intensity variations [51]. For a two-dimensional signal 

with intensity function f(x, y) of size N1×N2, Krawtchouk moments 𝜓𝑛𝑚can be defined as (5) [50], [52]: 

 

𝜓𝑛𝑚 = & ∑  
𝑁1−1
𝑥=0 ∑  

𝑁2−1
𝑦=0 𝐾𝑛(𝑥; 𝑝, 𝑁1 − 1)𝐾𝑚(𝑦; 𝑝, 𝑁2 − 1)𝑓(𝑥, 𝑦)

𝑛 = &0,1, … , 𝑀1 − 1 and  𝑚 = 0,1, … , 𝑀2 − 1,
 (5) 

 

where M1 and M2 are the maximum moment orders used to describe the intensity signal f(x, y). To recover  

f(x, y) from Krawtchouk Moments, the (6) is used: 

 

𝑓(𝑥, 𝑦) = ∑  
𝑀1−1
𝑛=0 ∑  

𝑀2−1
𝑚=0 𝐾𝑛(𝑥; 𝑝, 𝑁1 − 1)𝐾𝑚(𝑦; 𝑝, 𝑁2 − 1)𝜓𝑛𝑚

𝑥 = 0,1, … , 𝑁1 − 1 and 𝑦 = 0,1, … , 𝑁2 − 1,

 (6) 

 

where 𝑓(𝑥, 𝑦) is the reconstructed function, 𝑓(𝑥, 𝑦) =  𝑓(𝑥, 𝑦) when all moments are taken into account 

throughout the reconstruction process. 

Figures 3(a) to (c) shows respectively a sample of an original face image from YaleB database [53], 

a noisy image when we mix the original image with 5% of salt and pepper and speckle noises. Figures 4 and 5 

show respectively reconstructions of face images mixed with salt and pepper and speckle noises, where 

subfigures (a) to (j) show the reconstruction up to orders 168 from 10 to 160 with 20 increments by using 2D 

Krawtchouk moments and noisy images shown in Figures 3(b) and (c). We choose p = 0.5 to obtain the highest 

representation; In the early stages, we can see a more striking resemblance between the noisy images and the 

reconstructed ones. This indicates that 2D Krawtchouk moments have the ability to extract more information 

from images in a smaller space, which means that instead of using the original picture, we may employ image 

moments to reduce dimensionality and extract meaningful features for classification. 
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(a) (b) (c) 

 

Figure 3. sample of image with/without noise from YaleB database, (a) original image, (b) with 5% of salt 

and pepper noise, and (c) with 5% of speckle-noise 
 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

 

Figure 4. Reconstruction results using 2D Krawtchouk moments and an image from YaleB dataset mixed 

with 5% of salt and pepper noise, (a) to (j) from 10 to 160 with 20 increments 
 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

 

Figure 5. Reconstruction results using 2D Krawtchouk moments and an image from YaleB dataset mixed 

with 5% of speckle noise, (a) to (j) from 10 to 160 with 20 increments 
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3. PROPOSED MODEL 

In this work, we presented a novel architecture for face recognition problems named KMCNN that 

combine the idea of orthogonal moments with the 2D CNN model, as shown in Figure 6. Indeed, duo to 

Krawtchouk moments property for representing face images in lower orders without redundancy, as 

demonstrated in the previous section; which facilitates the production of small 2D moments matrices that are 

inserted into a 2D convolutional neural network. Therefore, we get two benefits from this combination, the 

processing complexity is significantly reduced, and the computational speed is increased. Table 1 provides a 

summary of the principal model layers, and the suggested architecture design is organized as follows: 

- 2D Krawtchouk Moment layer: As the first layer of the KMCNN, Krawtchouk discrete orthogonal moments 

compute the input image moments by using (5) and provide a matrix whose size is proportional to the 

moment order value. This layer optimizes the image representation and decreases the processing dimension 

significantly. The subsequent 2D convolutional layer is then given this matrix of moments. 

- 2D Convolution layer: the purpose behind this layer is to recognize the presence of a set of features in the 

moment matrix rather than the original image, by the use of 2D convolution operators. The output 

activation value 𝑎(𝑖, 𝑗)𝐿 at position (i,j) is calculated by (7). 

 

a(i, j)L = f (∑  i+N−1
x=i ∑  

j+N−1
y=j

∑  S−1
s=0 Ws,x,yMs,x,y + bL) (7) 

 

where the matrix of moments M convolves with the 𝐿𝑡ℎ filter with a size of N×N, S is the number of input 

channels, W is the weight matrix with size (C, N, N), i,j are the indices of the output position, x,y are the indices 

of the input position. 𝑓 is the activation function. 

- Activation functions ReLU: The output feature maps from the convolution layer are given a non-linear 

transformation when they are sent through the activation layer. By transforming the data into a non-linear 

format, it facilitates the identification of complex features that cannot be explained using a linear 

combination of a regression technique. The most regularly used non-linear functions are sigmoid and 

hyperbolic tangent; in this work, the rectified linear unit (ReLU) defined by f(x)=max(0, x) is used, since it 

improves the non-linearity, avoids network saturation and speeds up training time networks [54]–[56].  

- Batch normalization: Allows each convolutional layer to learn more independently. This layer normalizes 

the output of the preceding layers to enhance their learning process and prevent overfitting and divergence 

risks [57]. 

- 2D Max-pooling layer: A pooling layer is typically added following the convolution layers, to decrease the 

size of the feature maps. Consequently, the number of network parameters, as a result the computation time 

is accelerated and the chance of the model falling in overfitting is diminished. 

- Fully connected layer: Is the last layer in our proposed KMCNN, this layer performs a linear combination 

on the data received from the preceding layers, and then applies the softmax function to produce the 

probability of each class as a new output vector.  

 

 

 
 

Figure 6. 2D KMCNN architecture 
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Table 1. Specifics of the suggested model. 
Layer Purpose Filter Number of filters Activation 

0 Input image - - 𝑁𝑥𝑁 

1 Moments layer - - 𝑛𝑥𝑛 

2 Conv+ReLU 3x3 5 𝑛𝑥𝑛𝑥5 

3 MaxPooling 2x2 - 𝑛/2𝑥𝑛/2 ∗ 5 

4 Conv+ReLU 3x3 10 𝑛/2𝑥𝑛/2 ∗ 10 

5 MaxPooling 2x2 - 𝑛/4𝑥𝑛/4 ∗ 10 

6 Fully connected - - 1,000 

7 Softmax - - number of subjects 

 

 

4. EXPERIMENTS AND RESULTS 

This section presents details about experiments conducted on face images using the proposed model 

KMCNN and provides a thorough description of the databases. The experiments are divided into two parts, the 

first one was conducted in free noise environment where the second was performed with presence of noise. 

Additionally, this section discusses the recognition accuracies obtained. 

 

4.1.  Experiments 

In this sub-section, we evaluated the classification performance of the proposed model by carrying 

out a number of relevant experiments using YaleB extended database [53], our database of faces (ORL) 

database [58] and a subset of 10 classes from labeled faces in the wild (LFW) database [10]. By randomly 

dividing each database into 70% for training and 30% for testing, the efficacy of the suggested model is 

examined, the results are properly compared to several 2D orthogonal moment-based approaches. All 

experiments were conducted in the cloud using Google Collaboratory with 2.20 GHz, Intel(R) Xeon(R) CPU, 

NVIDIA-SMI GPU and 13 GB of RAM. The evaluation of the recognition rate of the suggested model 

with/without noise is structured around three primary comparisons: 

- First, a comparison of the accuracy of Tchebichef, Krawtchouk, Hahn, and Racah moments as an input 

layer of the suggested CNN architecture was conducted using YaleB extended, ORL, and a subset of LFW 

database without any presence of noise. A comparison with existing methods is also presented. 

- Second, we compared our suggested model KMCNN against CNN only, in noisy environments using two 

forms of noise (salt and pepper and speckle) 

- Third, we have compared our proposed model with CNN combined with other 2D discrete orthogonal 

moments and Krawtchouk combined with pre-trained VGG16 model [59] in the same noisy environments. 

In addition, we used different densities of noise to test our model in noisy environments, by varying 

the salt and pepper noise densities from 1% to 5% and Speckle noise by varying the variance value from 0.1 to 

0.5 and a fixed the mean at 0. 

 

4.2.  Datasets 

In the course of those experiments, three face image databases are utilized, in order to investigate the 

recognition rate performance. The two first databases contain grayscale images, whereas the third provide red, 

green and blue (RGB) images that have been transformed to grayscale format. The selected databases are as 

follows: 

- The extended YaleB database: comprises 16,128 pictures of 28 individuals in 9 different positions and 64 

lighting settings. This database follows the same data structure of the YaleB Database. In contrast to the 

original YaleB database consisting of 10 participants, the extended database was originally revealed by Lee 

et al. [53]. Since we are not concentrating on position variation, only the frontal face image of each subject 

with 64 different illuminations will be selected, totaling 2,432 images from 38 distinct subjects. Manual 

alignment, cropping, and resizing to 168 by 192 pixels is performed on every image used in the experiments. 

Figure 7 depicts a selection of facial image instances. 

- The ORL database [58] consists of 400 images in total, including 40 persons with 10 unique image 

(4 females and 36 males), the images were captured at various periods, changing the illumination, face 

gestures (open/closed eyes, smiling/not smiling), and facial characteristics (glasses/no glasses). Figure 8 

shows that all of the images were taken with the people standing up and facing forward against a black 

background. The dimensions of each image are 70 by 80 pixels, and there are 256 levels of gray for each 

individual pixel. 

- The LFW database [10] includes 13,233 face images gathered from the internet. This collection contains 

5,749 identities for 1,680 individuals with two or more images. In this work we choose a subset of  

10 classes of people that have the most available images with total of 1456 images and the dimensions of 

each image are 240 by 240 pixels. Figure 9 shows an example of images used. 
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Figure 7. Examples of images from YaleB database 

 

 

  
 

Figure 8. Examples of images from ORL database 

 

Figure 9. Examples of images from a subset of 

LFW database 

 

 

4.3.  Results 

4.3.1. Face recognition with free noise 

Experiment 1: comparison between orthogonal moments. 

As mentioned in the first sub-section, we begin our experiments by analyzing the classification 

performance of the suggested CNN architecture using original images from YaleB [53], ORL [58], and LFW 

[10], and compared the results with CNN combined with Tchebichef moments [60], Hahn moments [61], Racah 

Moments [62], the corresponding classification accuracy results using the databases mentioned before started 

from lower orders to the maximum order are listed and summarized in Tables 2 to 4, each column in the tables 

represents the performance in terms of accuracy of the suggested CNN architecture combined with a different 

type of 2D orthogonal moments. 

Based on results from Table 2, the greatest score is achieved at the order (168,168) using Krawtchouk 

moments as an input layer on YaleB database with 92.03% of accuracy, followed by Tchebichef moments with 

a precision of 87.98% at the order (140,140), Hahn moments with 86.36% of accuracy at the order (160,160) 

and Racah moments with 82.99%. Nevertheless, we can see that Krawtchouk moments give interesting results 

starting from order 60 by surpassing 90% in terms of accuracy. However, As shown in Table 3, the fusion of 

CNN and Krawtchouk moments does not surpass other fusions of CNN with 2D discrete moments when we 

tested it on small-size face images from ORL database. Table 4 clearly shows that the suggested KMCNN 

outperforms the rest of models based on other 2D discrete orthogonal moments; we can clearly notice that the 

combination of Krawtchouk moments with convolutional neural networks gives 74.30% in terms of accuracy 

at order 20 when we test it on original images of LFW database. As a conclusion achieved from Tables 2 to 4, 

we can say that face image recognition by using CNN and Krawtchouk moments as input layer was 

significantly improved compared with results obtained using CNN combined with Tchebichef, Racah and Hahn 

moments. 

Experiment 2: comparison with the state-of-the-art methods. 

In order to illustrate the effectiveness of the suggested model, the classification accuracy is compared 

with the state-of-the-art approaches for face recognition. Table 5 shows the comparative analysis of the 

recognition rate, between the suggested KMCNN and the other approaches for the extended Yale B and the 

ORL databases. Each row from the table shows the method and the corresponding accuracy achieved, whereas 

the last row represents the accuracy of the KMCNN. 
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Table 2. Classification accuracies for different orders using Tchebichef, Krawtchouk, Hahn and Racah 

moments tested on YaleB database 
Order Tchebichef moments Krawtchouk moments Hahn moments Racah moments 

10 43.45 28.74 47.23 38.86 

20 71.52 66.93 71.65 68.82 

40 85.15 89.47 82.18 80.43 

60 85.34 90.41 84.34 82.45 

80 84.88 90.55 84.34 82.99 

100 84.21 90.95 80.56 82.45 

120 82.18 91.22 82.72 81.37 

140 87.98 90.95 81.24 80.29 

160 85.42 91.76 86.36 78.40 

168 85.69 92.03 85.96 77.59 

 

 

Table 3. Classification accuracies for different orders using Tchebichef, Krawtchouk, Hahn and Racah 

moments tested on ORL database 
Order Tchebichef moments Krawtchouk moments Hahn moments Racah moments 

10 56.1 28.05 63.41 47.56 

20 91.46 78.05 93.9 87.8 

30 95.12 96.34 93.9 95.12 

40 96.34 97.56 97.56 96.34 

50 98.78 95.12 97.56 96.34 

60 97.56 95.12 97.56 97.56 

70 96.34 95.12 97.56 96.34 

 

 

Table 4. Classification accuracies for different orders using Tchebichef, Krawtchouk, Hahn and Racah 

moments tested on LFW database 
Order Tchebichef moments Krawtchouk moments Hahn moments Racah moments 

10 41.44 56.16 38.36 41.44 

15 39.73 68.84 39.04 34.93 

20 44.86 74.32 36.99 40.41 

25 46.23 72.26 37.67 40.41 

30 50.68 70.55 42.81 40.75 

40 53.08 64.04 47.95 47.6 

60 60.96 59.93 52.05 50.0 

80 64.38 56.16 56.16 56.85 

100 63.7 54.11 58.22 55.82 

150 61.99 50.34 57.53 56.16 

200 63.36 54.79 58.22 57.53 

250 63.7 52.4 57.53 56.16 

 

 

Table 5. the comparison between the state-of-the-art methods and the KMCNN for the YaleB and ORL 

databases 
YaleB ORL 

Methods Accuracy Methods Accuracy 

LSP [63] 85.6 PCA [18] 93.91 

POEM [64] 90.5 2DHOG [65] 97 

LBP [66] 78.6 SIFT [67] 97 

GENet [68] 84.21 SURF [69] 88 

Gabor [70] 87.19 HOG + ConvNet [71] 95.5 

KMCNN 92.03 KMCNN 97.56 

 

 

To validate the efficacy of our suggested approach, we compared it to other methods were used the 

Extended YaleB and ORL databases. Following the comparison procedure, it is obvious that our methodology 

exceeds the methods indicated above in terms of recognition rate. Thus, we may assume that our KMCNN has 

the potential to be very effective in a wide range of computer vision applications. 

 

4.3.2. Face recognition with noise 

The second experiment was performed on the same databases, but instead of using original images, 

we compared our model KMCNN with the proposed CNN architecture using noisy images. Each column of 

Tables 6 to 11 illustrates the precision of the suggested model in terms of accuracy employing various salt and 

pepper and speckle noise degradations, starting from 1% to 5%. Each row represents results obtained from 
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each order starting from lower orders to bigger ones, except the last row that shows the accuracy of the proposed 

CNN architecture without using Krawtchouk moments. 

According to the results shown in Tables 6, 8, and 10, the KMCNN obtained good classification rates 

for various degradations of salt and pepper noise, beginning at order 40 when evaluated in YaleB, particularly 

when the accuracy was 88.93% even with 5% of noise. We also remark that results of the KMCNN are more 

accurate than those of CNN only, even if samples are under 5% of the same noise using ORL database. The 

high robustness of the KMCNN can be noticed when we compare it with CNN taking (as input) noisy images 

from LFW database; it achieves an accuracy between 71.58% and 73.97% compared with CNN that not even 

surpassing 68% in terms of accuracy. 

Taking into account the speckle noise classification rate values shown in Tables 7, 9, and 11, it can 

be clearly observed that the KMCNN provides the highest classification rates with YaleB database, particularly 

when the accuracy was 90.82% even with a variance of σ=0.4, and it performs better than CNN. By using noisy 

images from ORL database the KMCNN surpasses 96%, while CNN only did not even surpass 93%. Alternatively, 

we notice also that the KMCNN gives interesting accuracies in very low orders using LFW database. 

Considering the results depicted in Tables 6 to 11, it is evident that the accuracy values increase with 

the order of the moments up to an optimal order; after that it starts to decrease, but what is important is that the 

best results are obtained in lower orders and they are better than the results obtained by CNN. From this fact, 

we may deduce that the KMCNN is highly noise-tolerant, which is necessary for face recognition in noisy 

environments. Hence the KMCNN confirms the fact presented in [42], indicating that face recognition using 

CNN is intolerant to noisy conditions. 

 

 

Table 6. Classification accuracy using Krawtchouk moments and YaleB database in noise-free and salt and 

pepper noisy environment 
Krawtchouk 

moments + CNN 
Free Noise 

Salt and Pepper noise 

1 % 2 % 3 % 4 % 5 % 

Order Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy 

10 28.74 25.91 25.91 27.39 24.83 25.10 

20 66.93 65.45 63.02 64.23 60.59 61.26 

40 89.47 77.59 83.13 85.56 82.45 84.07 

60 90.41 88.66 87.85 87.98 87.58 86.63 

80 90.55 89.87 90.41 89.60 89.33 88.93 

100 90.95 88.93 89.33 89.47 88.79 87.98 

120 91.22 89.87 87.71 87.71 86.90 86.36 

140 90.95 89.06 87.17 87.04 86.36 84.48 

160 91.76 87.71 85.96 85.56 85.15 83.80 

168 92.03 87.98 84.88 84.34 84.21 81.91 

CNN 94.90 81.64 80.56 81.78 80.16 80.16 

 

 

Table 7. Classification accuracy using Krawtchouk moments and YaleB database in noise-free and speckle 

noisy environment  

Krawtchouk moments +CNN Free Noise 
Speckle noise 

1 % 2 % 3 % 4 % 5 % 

Order Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy 

10 28.74 28.60 28.07 29.28 27.93 29.28 

20 66.93 68.28 66.35 65.72 65.58 67.47 

40 89.47 89.74 89.20 88.93 88.66 86.90 

60 90.41 68.63 90.01 86.90 88.79 89.47 

80 90.55 91.09 91.63 89.47 86.77 89.60 

100 90.95 91.22 90.01 88.52 90.28 89.33 

120 91.22 91.63 90.41 81.51 90.82 90.28 

140 90.95 91.09 89.87 90.41 87.31 90.55 

160 91.76 90.68 90.41 89.74 90.55 90.41 

168 92.03 90.55 89.87 90.41 88.79 90.14 

CNN 94.90 93.65 87.58 90.41 82.32 91.22 

 

 

In the last experiment, we compared our KMCNN model with other models based on CNN combined 

with 2D orthogonal moments like Tchebichef moments [60], Hahn moments [61], Racah moments [62] and 

Krawtchouk moments combined with pre-trained VGG16 model [59] using the same noisy conditions 

presented in the previous experiment. The accuracy results of the noisy images from YaleB, ORL and LFW 

databases for the KMCNN and prementioned models are respectively shown in Figures 10 to 15, a descriptive 

legend is given in Figure 16. 
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Table 8. Classification accuracy using Krawtchouk moments and ORL database in noise-free and salt and 

pepper noisy environment 

Krawtchouk moments + CNN Free Noise 
Salt and Pepper noise 

1 % 2 % 3 % 4 % 5 % 

Order Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy 

10 28.05 30.49 23.17 28.05 30.49 29.27 

20 78.05 79.27 78.05 79.27 74.39 75.61 

30 96.34 93.9 96.34 96.34 95.12 92.68 

40 97.56 98.78 97.56 96.34 96.34 95.12 

50 95.12 90.24 93.9 96.34 91.46 85.37 

60 95.12 93.9 91.46 96.34 91.46 89.02 

70 95.12 92.68 93.9 90.24 86.59 85.37 

CNN 94.30 91.86 90.24 91.05 91.86 90.24 

 

 

Table 9. Classification accuracy using Krawtchouk moments and ORL database in noise-free and speckle 

noisy environment 

Krawtchouk moments + CNN Free Noise 
Speckle noise 

1 % 2 % 3 % 4 % 5 % 

Order Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy 

10 28.05 30.49 28.05 25.61 35.37 28.05 

20 78.05 78.05 78.05 79.27 79.27 75.61 

30 96.34 96.34 96.34 95.12 91.46 96.34 

40 97.56 97.56 97.56 96.34 96.34 95.12 

50 95.12 93.9 95.12 92.68 93.9 95.12 

60 95.12 95.12 95.12 95.12 95.12 93.9 

70 95.12 95.12 95.12 95.12 91.46 92.68 

CNN 94.30 92.68 92.68 91.86 91.86 91.05 

 

 

Table 10. Classification accuracy using Krawtchouk moments and LFW database in noise-free and salt and 

pepper noisy environment 

Krawtchouk moments + CNN Free Noise 
Salt and Pepper noise 

1 % 2 % 3 % 4 % 5 % 

Order Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy 

10 56.16 55.82 54.79 54.45 54.45 54.11 

15 68.84 70.55 70.55 68.49 69.18 71.92 

20 74.32 73.97 71.58 74.66 71.92 72.26 

25 72.26 72.95 71.58 70.21 68.84 73.29 

30 70.55 69.18 70.89 68.15 69.52 69.86 

40 64.04 70.55 67.12 68.15 67.81 68.49 

60 59.93 60.27 58.22 56.51 54.79 58.56 

80 56.16 55.48 57.88 53.42 51.71 52.74 

100 54.11 52.4 52.4 53.08 53.77 55.48 

150 50.34 50.0 47.6 48.97 47.95 46.92 

200 54.79 49.32 46.23 46.92 45.21 44.86 

250 52.4 47.26 44.52 45.21 43.84 44.86 

CNN 77.80 63.84 66.59 67.73 67.96 65.44 

 

 

Table 11. Classification accuracy using Krawtchouk moments and LFW database in noise-free and speckle 

noisy environment 

Krawtchouk moments + CNN Free Noise 
Speckle noise 

1 % 2 % 3 % 4 % 5 % 

Order Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy 

10 56.16 55.82 57.19 57.53 54.11 54.79 

15 68.84 69.18 68.84 70.55 70.21 69.18 

20 74.32 72.26 73.29 71.58 71.23 71.92 

25 72.26 73.29 71.23 72.6 71.23 71.58 

30 70.55 69.18 70.21 70.21 70.21 70.89 

40 64.04 65.07 68.15 66.44 66.1 69.18 

60 59.93 57.19 60.27 58.9 57.19 56.16 

80 56.16 56.85 54.79 56.51 55.82 55.14 

100 54.11 55.48 54.45 54.45 53.42 54.11 

150 50.34 50.34 52.74 51.37 53.42 51.03 

200 54.79 53.77 50.0 49.32 46.92 47.6 

250 52.4 54.45 51.37 46.23 46.23 48.29 

CNN 77.80 72.99 72.86 71.85 71.21 71.39 
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Examining the given results in the aforementioned figures, the proposed KMCNN achieved the 

greatest recognition performance for the four classifiers on the three datasets. In fact, the depicted graphs all 

demonstrate the same general trend, where the recognition rate values increase by increasing the order of the 

noisy image moments up to an optimal order, then start to decrease. The obtained results indicate that the 

KMCNN offers a better strategy to handle noise compared to the combination of CNN with other 2D discrete 

orthogonal moments. Perhaps this is due to our suggested KMCNN is able to accurately reflect global features 

by employing discrete orthogonal polynomials with a near-zero redundancy measure in a feature set, as well 

as their robustness against the effects of noise. 

Comparing the results with an architecture that use Krawtchouk moments with VGG16 [59] as pre-

trained convolutional neural networks, the KMCNN gives interesting accuracies. This is probably due to the 

flexibly of the proposed CNN to take different dimension as input layer, however using pre-trained CNNs like 

VGG16 requires a fixed input shape which lead to the necessity of resizing the image moment and transform 

it to RGB format. As a result, the capacity of our architecture to represent appropriate features for face 

recognition was proved. Finally, based on the results depicted in Figures 10 to 15, the proposed KMCNN has 

reached very satisfactory recognition accuracies, even in a noisy environment, also, it might have a great utility 

in real-world applications against this type of noise. 

 

 

   
 

Figure 10. Classification accuracy for different orders using 2D discrete orthogonal moments moments+CNN 

and Krawtchouk+VGG16 in noisy conditions with salt and pepper and YaleB database 

 

 

   
 

Figure 11. Classification accuracy for different orders using 2D discrete orthogonal moments+CNN and 

Krawtchouk moments+VGG16 in noisy conditions with speckle and YaleB database 

 

 

   
 

Figure 12. Classification accuracy for different orders using 2D discrete orthogonal moments+CNN and 

Krawtchouk moments+VGG16 in noisy conditions with salt and pepper and ORL database 
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Figure 13. Classification accuracy for different orders using 2D discrete orthogonal moments+CNN and 

Krawtchouk moments+VGG16 in noisy conditions with speckle and ORL database 

 

 

   
 

Figure 14. Classification accuracy for different using 2D discrete orthogonal moments +CNN and 

Krawtchouk moments+VGG16 in noisy conditions with salt and pepper and LFW database 

 

 

   
 

Figure 15. Classification accuracy for different orders using 2D discrete orthogonal moments+CNN and 

Krawtchouk moments+VGG16 in noisy conditions with speckle and LFW database 

 

 

 
 

Figure 16. A clear legend for Figures 10 to15 presented above 

 

 

5. CONCLUSION 

In this paper, we have suggested a novel face recognition approach that can tolerate deformations 

produced by two forms of noise: salt and pepper and speckle. The suggested model is founded on the 

combination of features extracted by the calculation of Krawtchouk moments and convolutional neural 

networks. Applying Krawtchouk moments on images produced various feature vectors that were then fed into 

CNN's input layer. The proposed model performed well on small-sized face images (70×80) from the ORL 

database, large-sized face images (168×192) from the YaleB database, and images (240×240) from the LFW 

database. The experimental results demonstrated that the suggested model enhanced the accuracy of face 

recognition with noisy images and surpassed CNN alone and when we combined it with 2D discrete moments 
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like Tchebichef Hahn and Racah significantly. For future works, we plan to further examinate the robustness 

of the proposed model using different types of noise. We also plan to extend our model to improve the accuracy 

of 3D noisy face images. 
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