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 The exponentially increasing bioinformatics data raised a new problem: the 

computation time length. The amount of data that needs to be processed is 

not matched by an increase in hardware performance, so it burdens 

researchers on computation time, especially on drug-target interaction 

prediction, where the computational complexity is exponential. One of the 

focuses of high-performance computing research is the utilization of the 

graphics processing unit (GPU) to perform multiple computations in 
parallel. This study aims to see how well the GPU performs when used for 

deep learning problems to predict drug-target interactions. This study used 

the gold-standard data in drug-target interaction (DTI) and the coronavirus 

disease (COVID-19) dataset. The stages of this research are data acquisition, 
data preprocessing, model building, hyperparameter tuning, performance 

evaluation and COVID-19 dataset testing. The results of this study indicate 

that the use of GPU in deep learning models can speed up the training 

process by 100 times. In addition, the hyperparameter tuning process is also 
greatly helped by the presence of the GPU because it can make the process 

up to 55 times faster. When tested using the COVID-19 dataset, the model 

showed good performance with 76% accuracy, 74% F-measure and a  

speed-up value of 179. 
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1. INTRODUCTION  

Nowadays, the demand of efficient computing is increasing due to the abundance of data, especially 

in the field of bioinformatics. High performance computing (HPC) is a collection of integrated computing 

environments and programming techniques that can help solve large-scale problems [1]. It is something that 

is currently applied in chemoinformatics; Heikamp and Bajaroth [2] have conducted an in-depth review of 

the field of chemoinformatics [3], compound screening [4] and the challenges that will be faced in the future. 

One of their concerns is computational efficiency. This happens because the amount of available data is 

increasing exponentially, so standard computational techniques will take a long time to process the data. 

Several solutions are also proposed in this article, including the use of a graphics processing unit (GPU)  

[5]–[7], parallel programming such as MapReduce [8] and a particular computer for molecular dynamics 

simulation [9]. 

One of the large-scale problems in the computing world is in bioinformatics or, more precisely, in 

the prediction of drug-target interactions [10]. Prediction of drug-target interaction (DTI) is the first step that 

is usually done in the drug development process or commonly called drug discovery. The use of conventional 

https://creativecommons.org/licenses/by-sa/4.0/
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methods is considered less able to accommodate the trend in biological data which is increasing yearly. A 

topic often discussed in HPC is GPU utilization as a parallel computing tool [11]–[14]. DTI is an interaction 

between the drug and the target (protein). DTI prediction is carried out to find new indications for existing 

drugs which can be achieved by identifying new interactions between drugs and target proteins. The in silico 

(computational) prediction of DTI has several challenges in two aspects. The first aspect is that the volume of 

available data on drugs and proteins is growing exponentially. The second aspect is that drug-target 

interaction pairs are pretty rare. In addition, it is quite challenging to select negative samples because no 

negative interactions of the drug-target interactions have been verified experimentally. These conditions need 

some unique approaches to integrate the computational power of GPU to predict a DTI efficiently. 

To date, two approaches have been used to predict new interactions of drugs and known targets, 

namely network-based and learning-based approaches [15]. Many kinds of research have been done to 

develop the DTI model. Bahi and Batouche [15] proposed using a deep semi-supervised learning model 

called DeepSS-DTI to accurately predict potential novel drug-target interactions using large-scale drug-target 

data. This model uses a stacked autoencoder to initialize the weights in the deep learning model. The 

proposed deep learning model managed to get better performance than the support vector machine (SVM) 

[16], nearest neighbor [17], ensemble classifier [18], random forest (RF) [19] and decision tree (DT) [20]. 

Ezzat et al. [21] tried to use ensemble learning and dimensionality reduction methods to predict  

similarity-based DTI. They reduced the large dimension of the drug-target data using singular value 

decomposition (SVD). Then the learning model uses the same type of positive data but different negative 

data. The resulting area under ROC curve (AUC) value outperforms the DT, RF, and SVM models. 

Using parallelization schemes to speed-up large-scale data processing has become a common 

practice. We used the hardware devices of the GPU. Although initially, this device was devoted to improving 

graphics rendering performance. This study uses GPU parallelization to generate a DTI prediction model 

using a deep learning method and existing drug-target interaction data. This approach is based on several 

reasons. The first reason is to see how much performance gain when using the GPU during the model 

training process. The second reason is to determine the performance of deep learning methods in processing 

and predicting chemical compound data. The deep learning model was chosen because it is considered to 

have an easy parallelization scheme so that it can maximize the role of the GPU. The development of the 

deep learning model in this study was built from scratch and did not use existing libraries. The reason for the 

manual creation of deep learning models without using a library is the versatility of the code, so that if we 

want to apply it to other devices such as supercomputers, it can be quickly done.  

This kind of study is unique because, to date, no research precisely measures the performance of 

graphics processing unit (GPU) in a deep learning model using available drug-target interaction data. Several 

studies that have been carried out using deep learning models or compound molecular data are the 

development of new molecular fingerprints [22], prediction of drug-target interactions [23], new quantitative 

structure analysis relationship methods [24] and development of the stacked auto-encoder deep neural 

network model [25]. Efficient parallelization schemes are needed to be developed and applied to the current 

DTI data. To better understand the role of GPU parallelization in deep learning of drug-target interaction 

prediction, this study aims to measure the level of effectiveness of GPU in its integration with deep learning 

models suitable for HPC development. The result of this research can be used by researchers, chemists and 

the general public to conduct an initial screening of their chemical compounds before further testing on  

drug-target interaction. 

 

 

2. METHOD 

This research was divided into several stages. This division of stages aimed to make it easier for 

researchers and readers to carry out research work so that other researchers can duplicate the same thing if 

they want to do similar research. The research began with preparation of research data, followed by 

preprocess of the data, perform hyperparameter tuning, perform deep learning modeling with and without 

GPU and the last was model performance evaluation. 

 

2.1.  Research data 

This study used the gold-standard data in DTI from Yamanishi et al. [26]. The information 

contained in this dataset is taken from several databases such as KEGG BRITE [27], BRENDA [28], 

SuperTarget [29] and DrugBank [30]. This dataset was further divided into four sections that represent the 

interaction of ligands and proteins, namely enzymes (E), ion channels (IC), G protein-coupled receptors 

(GPCR) and nuclear receptors (NR). Table 1 shows the statistics of each dataset. We can see the difference in 

the number of drugs, target proteins and interactions involved in each dataset. 
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Table 1. Statistics for drug-target interaction datasets 
Statistics E IC GPCR NR 

Number of drugs 445 210 223 54 
Number of target protein 664 204 95 26 
(Total in human genome) (2,741) (292) (757) (49) 

Number of drug-target interactions 2,926 1,476 635 90 

 

 

2.2.  Data preprocessing 

The objective of data preprocessing is to produce numerical feature vectors of drug-target pairs so 

that they can be used as input data for machine learning models [23]. Sulistiawan et al. [25] state that the best 

pair of numeric vectors was the PubChem fingerprint paired with dipeptide composition (DC). The data 

preprocessing flow can be seen in Figure 1, which briefly describe how the data was handled from the data 

acquisition step until it was ready to be used as an input to the deep learning model. 

The existing drug data was processed using the simplified molecular input line entry system 

(SMILES) descriptor. SMILES, the simplified molecular input line entry system, is a chemical notation 

system designed for modern chemical information processing [31]. SMILES represents a compound in the 

form of alphabet, numeric and symbols that describe the interactions between its constituent atoms. An 

example of a SMILES representation for the compound acetic acid or CH3COOH is CC(=O)O. The next 

step was to change the SMILES descriptor to the PubChem fingerprint. 

A fingerprint is a way to represent chemical compounds into numbers 1 and 0, according to the 

presence or absence of the criteria set on the compound. The PubChem fingerprint contains 881 structural 

keys. A structural key is a structural criterion assigned to each bit, indicating whether or not a structural 

criterion exists in the compound in question. For example, since PubChem has a bit position from 0 to 880, 

bit 0 addresses the structural criterion of whether a molecule has more than equal to 4 hydrogen atoms or not. 

The PubChem fingerprint representation is a sequence of 0 or 1 bits totaling 881 units. The SMILES 

descriptor and the PubChem fingerprint were obtained using the “Rcpi” library in R. 

FASTA is a text-based file format representing the amino acid sequences that make up a protein. 

For the protein target data, FASTA files were used before being processed into feature proteins. The existing 

protein data was converted into the FASTA descriptor form. Proteins with UniProt entry names [32] are 

searched for their FASTA files using the UniProt RESTful service and a UniProtKB query using Python. In 

addition, proteins whose GDP ID was known got a FASTA file from the protein data bank [33] website. 

After obtaining the PubChem fingerprint of drugs and the dipeptide composition of targets, the final 

step was to combine them into a single compound-protein feature vector. The protein feature used was DC. 

DC is a value with a range of 0 to 1, indicating the percentage of a dipeptide occurrence in the amino acid or 

protein sequence. Dipeptides are peptide or amino acid pairs calculated using the sliding window. Since the 

number of amino acids is 20, the number of dipeptides present is 202 or 400 pairs. The total number of 

features this combined feature had been 1,281. 

 

 

 
 

Figure 1. Data reprocessing flow to obtain drug-target feature vector 

 

 

2.3.  Build prediction model 

Deep neural networks (DNN), or neural networks in general, have a parallelization concept known 

as embarrassingly parallel. The meaning of embarrassingly parallel is that neural network algorithms can be 

easily managed to run in parallel, so the researcher does not have to think about complicated techniques to 

achieve it. The neural network parallelization process can occur during feed forward and backpropagation. It 

is because each node in a layer does not need information from other nodes in the same layer, so the process 

can run in parallel [34]. 
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Two types of models were created to compare their performance. The first model was a deep 

learning model built with central processing unit (CPU) or sequential. The second model was a deep learning 

model built on GPU or parallel. The meaning of parallel is simultaneously working on several computational 

processes at the same time in this model. 

The first model only used the CPU in the modeling process because the processes were sequential. 

The processing unit processed each node in a layer one by one so that node n could not perform computations 

before the node (n-1) was finished and produced output. Figure 2 provides a visualization of the CPU model 

created. In this model, there are input layers, hidden layers and output layers. In Figures 2(a)-(d), we can see 

that to process a single layer, the sequential process can only run one node at a time, and if we consider a 

time in the node calculation process as 𝑡, then we needed 5𝑡 to process a single layer that consists of 5 nodes. 

The visualization given in Figure 2 illustrates the processes that occur in the CPU model. At the 

input layer, all data in each feature was spread to all nodes in the first hidden layer. At the input layer, there 

was no computation process because the task of this layer was only to spread data to all nodes in the next 

layer. In the first hidden layer, nodes in each layer received data from the previous layer within the  

feed-forward process. Figures 2(a)-2(d) show that a single thread could only do computation for one node at 

a time. 

 

 

  
(a) (b) 

  

  

 
(c) (d) 

 

Figure 2. CPU model visualization with single thread sequential computation on (a) processing the first node 

in the first hidden layer, (b) processing the second node in the first hidden layer, (c) processing third node in 

the first hidden layer, and (d) processing fourth node in the first hidden layer 

 

 

The role of the CPU was to receive data and perform computations for each node in each hidden 

layer and output layer. It started from the first node in the first hidden layer to the last node in the last hidden 

layer. All nodes in the hidden layer only have one node with pattern because there was only one thread on the 

CPU that did all the computing. It means that the CPU did the computations on each node. Logically, this 

process took a long time because the number of nodes in each layer reached hundreds. Deep learning models, 

both in the feed-forward and backtracking processes, used simple mathematical calculations, so it is hoped 

that CPU threads could do the computations faster. 

The second model used a GPU in the modeling process. Here, the CPU only played a role in sending 

data between the hard drive and the GPU. The process that occurred in this GPU model was a parallel 

process, doing several computations simultaneously at a time. Figure 3 provides a visualization of the GPU 

model created. We can see that because of parallelization, all nodes in the same layer could be calculated 

simultaneously with several threads. If we consider a time in the node calculation process as 𝑡, then we only 

need 2𝑡 to process two hidden layers in a deep learning network. Figures 3(a)-3(b) shown that each node on 

the same layer could be computed simultaneously by allocating different thread on it. 
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The visualization given in Figure 3 illustrates the processes that occur in the GPU model. The 

process that occurred at the input layer only spread the data of each feature to every node in the next layer. 

The difference between this model and the previous model was visible when entering the first hidden layer. 

In the first hidden layer, the data received by each node was processed according to the deep learning 

algorithm. 

In the first hidden layer, each node in the hidden layer was processed by a different thread so that 

the computing process could run simultaneously. After the process was complete, the same concept of 

parallelization was applied to the next hidden layer and remained the same until it reached the output layer. 

This process can save time because the work in each layer is done in parallel. However, the downside of this 

process was that GPU threads have lower computational capabilities than CPU threads, so the parallelization 

scheme needs to be adequately planned to have optimal results. 

Block is a group of threads in a GPU that can access the same memory cache. In this research, the 

block size used was 1,024. This means that in one block, there are 1,024 threads with identifiers 0 to 1,023. 

In this study, we used the default value of the block size to speed up the research process and focus on the 

data processing capabilities of each thread between CPU and GPU. If the desired number of threads exceeded 

the block size, another block with the appropriate number of threads was called to fulfil the need for the 

remaining threads. 

The training process used a train-test split by doing class balancing first. Class balancing is a 

method to equalize the proportion of positive class (existing interaction) and negative class (no interaction) in 

data. This method is essential because bioinformatics data often contain negative classes far exceeding the 

number of positive classes. Train-test split is a data training method that separates the dataset into training 

data and test data according to the specified proportion. In this case, it was 75:25, i.e., 75% for training data 

and 25% for testing data. 

 

 

  
 

 
(a) (b) 

 

Figure 3. GPU model visualization with multiple thread parallel computation with (a) thread 1, 2, 3, 4 and 5 

processing node 1, 2, 3, 4, 5, respectively in the first hidden layer and (b) thread 1, 2, 3, and 4 processing 

node 1, 2, 3, 4, respectively in the second hidden layer 

 

 

2.4.  Hyperparameter tuning 

Hyperparameter tuning purpose is to select optimal hyperparameters for a machine learning model 

[35]. In this study, we used the grid search technique for hyperparameter tuning [36] because this technique 

had the same number of hyperparameter combinations to be carried out on CPU and GPU models. The grid 

search is a hyperparameter tuning approach that methodically builds and evaluates a model for each 

combination of hyperparameters written in a grid [37]. Although not the fastest algorithm, grid search was 

chosen because it clearly showed the comparison of CPU and GPU model performance in the case of 

hyperparameter tuning. The list of tested hyperparameters can be seen in Table 2. Each hyperparameter had 

two kinds of values which need to be selected. 

 

 

Table 2. List of hyperparameters for tuning 
Hyperparameter List of values 

Number of nodes in HL0 (HN0) 300, 500 
Number of nodes in HLn (HNn) ½×HNn-1, ⅔×HNn-1 
Number of Hidden Layer (HL) 2, 3 

Learning rate 0.01, 0.005 
Activation function ReLU, Sigmoid 
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This hyperparameter tuning process was carried out on two models, the CPU and GPU, to compare 

the performance achieved. The GPU parallelization process occurred in the learning stages, where the deep 

learning model leveraged hundreds of threads within the GPU to perform simple arithmetic operations such 

as addition, subtraction, multiplication and division. The process was adjusted to the stages in each node or 

neuron, such as the weight multiplication stage, the sum of all inputs, activation functions and 

backpropagation. 

 

2.5.  Performance evaluation 

Performance was calculated through testing on test data for the CPU model and GPU model. We 

used accuracy (1), precision (3), recall (2), F-measure (4), receiver operating characteristic (ROC) curve and 

speed-up (5) as performance metrics. When viewed from the confusion matrix [38] in binary classification, 

there are four types of model prediction results when compared to the actual value, namely true positive (TP), 

true negative (TN), false positive (FP) and false negative (FN) [39]. Based on those four values, the accuracy 

value [40] can be defined as the number of correct predictions divided by the number of all data that went 

through the prediction process. The recall value is defined as the accuracy of the model in predicting the 

positive class by minimizing the positive data that is wrongly predicted [41]. In other words, recall is the 

number of correct positive predictions divided by the number of all data whose actual values are positive (2). 

The precision value is defined as the accuracy of the model in predicting the positive class by minimizing the 

negative data that is wrongly predicted. In other words, precision is the number of correct positive predictions 

divided by the number of all positive predicted data (3) [41]. The F-measure value is defined as a weighted 

comparison of the average precision and recall values [42]. F-measure pays attention to precision and recall 

values to measure the performance of the minority class as a whole (4) [10]. The speed-up value is a value 

that compares the processing time required between processes running with the CPU and processes running 

with the GPU (5) [43]. The process whose speed-up value is calculated is the training and testing process. In 

(7), 𝑡𝑐𝑝𝑢 is the time needed to run the process with the CPU, while 𝑡𝑔𝑝𝑢 is the time needed to run the process 

with the GPU. If the value is more than 1, then the processing time with the CPU is longer than the 

processing time with the GPU. Conversely, if the value is less than 1, then the processing time with the GPU 

is longer than the processing time with the CPU. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

 

𝑠𝑝𝑒𝑒𝑑 − 𝑢𝑝 =  
𝑡𝑐𝑝𝑢

𝑡𝑔𝑝𝑢
 (5) 

 

2.6.  Testing with COVID-19 dataset 

Testing must be done to determine the model’s performance with a more relevant dataset. In this 

study, the drug-protein interaction dataset from Sulistiawan et al. [25] was chosen as the test data because of 

the novelty of the data and the shape of the dataset which tends to be similar to the dataset of  

Yamanishi et al. [26]. Dataset of Sulistiawan et al. [25] is a collection of positive interaction data from drug 

compounds that can bind to proteins associated with COVID-19 disease in humans. This dataset took data 

from the research of Li and Clercq [44] and Wu et al. [45]. Li and Clercq [44] conducted a study on reusing 

existing or currently used antiviral agents in diseases similar to COVID-19. The antiviral agents referred to in 

this study are antiviral agents for human immunodeficiency virus (HIV), hepatitis C virus (HCV) and 

influenza. This research is based on the experience of drug discovery in other diseases caused by the corona 

virus, namely severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS).  

Wu et al. [45] analyzed the proteins in the SARS-CoV-2 gene and screened them with drug compound data 

in the ZINC database [46]. This is done to find compounds that can bind to these proteins so that they are 

helpful for inhibiting the metabolism and life cycle of the SARS-CoV-2 virus. 

Dataset of Sulistiawan et al. [25] has 712 positive interactions between compounds and proteins. 

The number of unique compounds in this dataset is 123 compounds. The number of unique proteins present 

in this dataset is 325 proteins. Like the previous dataset, negative interactions were obtained from data on 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Deep learning optimization for drug-target interaction prediction in … (Refianto Damai Darmawan) 

3117 

proteins and compounds present in the dataset but did not have positive interactions. Seeing the number of 

positive interactions that are similar to the GPCR dataset, the results of the hyperparameter tuning used are 

the best hyperparameters in the GPCR dataset. Tests were conducted using the CPU and GPU to compare the 

performance of the two models. The best-performing model will be used to predict the possible binding of 

negative interactions in the COVID-19 dataset. The flow of the drug-target interaction prediction process can 

be seen in Figure 4, which briefly describes how to get the training data for the model and which data will be 

predicted. 

 

 

 
 

Figure 4. Process flow of drug-target interaction prediction in COVID-19 dataset 

 

 

The feature vectors obtained from the data preprocessing results of the COVID-19 dataset were 

divided into two: data with positive interactions and data with negative interactions. Data with negative 

interactions needed to be randomized undersampling before being used in training of deep learning models so 

that the proportion of data with positive interactions and data with negative interactions was balanced. This 

balance of data aimed to improve the model’s performance in the predictability of the data. After the model 

has been trained, all data with negative interactions would be predicted by the model. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Data preprocessing 

Data from Yamanishi et al. [26] are pairs of compounds and target proteins that interact positively 

in four datasets: E, IC, GPCR and NR. Each of the four datasets has a unique list of compounds and proteins. 

Because the data in each dataset is a type of positive interaction between the drugs and the target protein, 

negative interactions were obtained from combining drugs and proteins that were not in the dataset. Because 

the number of positive interactions was much less than the number of negative interactions, stratified random 

sampling was used for each dataset so that the ratio between positive and negative interactions is 1:1, i.e., the 

number of positive interactions equals the negative ones. This was done so that the training process runs 

optimally. 

The next step was to convert the compound data into 881 bits of PubChem fingerprint via the 

SMILES descriptor and change the protein data to 400 features of dipeptide composition or DC. After the 

fingerprint and DC data were collected, the selected drug-target data was converted into fingerprint-DC data 

totaling 1,281 features along with the type of interaction, whether positive (value of 1) or negative (value of 

0). After the data was ready to be treated as input into the deep learning model, the data was further divided 

in the proportion of 75:25 as training data and test data. Table 3 provides comprehensive information about 

the data contained in each dataset. We can see that each dataset has different number of training and testing 

data. This difference was the key comparison to evaluate whether or not the deep learning model could be 

applied in various DTI data. The complete source code of this research is available at [47]. 

 

 

Table 3. The number of drugs, protein targets, training data, and test data in each dataset 
Dataset Total drug Total target Training data Testing data 

E 445 664 4,389 1,463 
IC 210 204 2,214 738 

GPCR 223 95 952 318 
NR 54 26 135 45 
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3.2.  Hyperparameter tuning 

The hyperparameter tuning step was performed on two identical models: the CPU version with C++ 

and the GPU version with CUDA. This step was carried out using the grid search method to test all possible 

combinations on the model. Table 4 shows the optimal hyperparameter results based on the level of accuracy 

and recall at the hyperparameter tuning stage. The runtime column shows the most significant difference 

between the two models in the same dataset. This result indicates that the use of GPU can increase the 

processing time significantly. 

 

 

Table 4. The number of drugs, protein targets, training data and test data in each dataset 
Dataset Model HN0 HNn HL Learning rate Activation function Runtime (s) Speed-up 

E 
CPU 300 ½×HNn-1 2 0.005 Sigmoid 155,173.74 - 
GPU 300 ½×HNn-1 2 0.010 Sigmoid 1,348.28 115.09 

IC 
CPU 300 ½×HNn-1 3 0.010 ReLU 78,304.19 - 
GPU 300 ⅔×HNn-1 2 0.010 ReLU 701.94 111.55 

GPCR 
CPU 500 ½×HNn-1 2 0.010 Sigmoid 33,542.97 - 
GPU 300 ½×HNn-1 2 0.005 Sigmoid 328.33 102.16 

NR 
CPU 500 ⅔×HNn-1 2 0.010 Sigmoid 4,769.28 - 
GPU 300 ⅔×HNn-1 2 0.005 Sigmoid 85.67 55.67 

 

 

The results in Table 4 show that the selected hyperparameters for each dataset only had a slight 

difference between the CPU and the GPU model. A significant difference was found in the runtime between 

models as indicated by the speed-up value (comparison of CPU runtime with GPU runtime) which was quite 

large. The lowest speed-up value was the NR dataset with a value of 55.67, then above it was the GPCR 

dataset with a value of 102.16, followed by the IC dataset with a value of 111.55 and the largest was the 

speed-up from the E dataset with a value of 115.09. This speed-up value was positively correlated with the 

amount of training data in each dataset, where dataset E had the largest amount of training data, then below 

that there are IC, GPCR and NR datasets, respectively. This showed that the larger the dataset that needs to 

be trained, the better the GPU optimization capability in building deep learning models. 

 

3.3.  Performance evaluation 

Models that already have optimal hyperparameters were tested with test data that has been prepared. 

Table 5 shows each dataset’s accuracy, recall, precision, F-measure and speed-up values. The significant 

difference can be seen in the runtime column between two models of the same dataset. Again, the runtime 

and speed-up values indicate that GPU models showed a better performance than CPU models. 

 

 

Table 5. Accuracy, recall, precision, F-measure and speed-up values in each dataset 
Dataset Model Accuracy (%) Recall (%) Precision (%) F-measure (%) Runtime (s) Speed-up 

E 
CPU 76.90 78.69 75.99 77.32 3,233.88 - 
GPU 77.38 77.46 77.35 77.41 30.64 105.54 

IC 
CPU 70.88 75.34 69.67 72.40 1,654.47 - 
GPU 71.68 72.90 71.16 72.02 16.56 99.91 

GPCR 
CPU 64.47 66.67 63.86 65.23 1,310.59 - 
GPU 64.78 62.26 65.56 63.87 7.58 172.90 

NR 
CPU 68.89 56.52 76.47 65.00 193.83 - 
GPU 60.00 56.52 61.90 59.09 2.11 91.86 

 

 

The accuracy of each model ranges from 60%-80%. The accuracy value that appears could be said 

to be pretty good, considering that the model structure was quite simple and had not implemented the latest 

techniques from deep learning models such as optimizer and dropout rate. The lowest accuracy value in the 

model was the NR dataset, namely 60.00% and 68.89%. Most likely this was due to the lack of available 

training data, so the model had not reached the optimal weight when the training process was completed. The 

highest accuracy value was in dataset E, with values of 76.90% and 77.38%. The accuracy value tends to 

increase as a dataset's training data increases. 

In the drug prediction step, the model was considered better if it has a high recall value to produce 

better drug candidates. The recall value that appeared was included in the reasonably good category, which is 

all in the range of 50%-80%. This recall value indicated how likely the model was to produce a false negative 

prediction (FN). The lowest recall value was found in the NR dataset, which was 56.52%. This was most 

likely due to the small training data, so the model did not yet have optimal weight. The model owned the 
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highest recall value was dataset E, namely 77.46% and 78.69%. This happened because the training data was 

quite large, so the model could better identify drug data with a potentially positive value (capable of binding), 

so the resulting FN value was low. 

In order to avoid the emergence of drug candidates that cannot interact with proteins, we measured 

the model’s precision. The overall precision value was quite good, which was in the range of 60%-80%. A 

high precision value indicates the model’s low false positive (FP) prediction. The smallest precision value 

was in the NR dataset, with a value of 61.90% for the GPU model. This showed that the model with the NR 

dataset had a higher probability of producing FP predictions than other models. The highest precision values 

were in the model with dataset E, namely 75.99% and 77.35%. This shows that the model in dataset E had 

the possibility of producing fewer FP values than the model in other datasets. 

Furthermore, the overall F-measure value was in the reasonably good category, ranging from  

59-80%. The F-measure value shows how likely the model is to produce FN and FP values. In drug-target 

interaction prediction, the higher the F-measure value, the better the model. The lowest F-measure value was 

found in the model with the NR dataset, 59.09% and 65.00%. This value indicates that the model’s 

performance was quite good, although there was the possibility of producing wrong predictions. The highest 

F-measure value was found in the model with dataset E, which is 77.32% and 77.41%. This showed that  

this model was the best among other models and the probability of making wrong predictions was much 

smaller. 

Regarding the computational performance, we evaluated the runtime and speed-up. The overall 

runtime values showed significantly different values across the four datasets between the CPU and GPU 

models. In dataset E, which has 4,389 training data, it takes 3,233.88 seconds to train the model, while the 

GPU model with the same dataset takes 30.64 seconds to train the model. When converted to minutes, the 

CPU model in dataset E takes 53.9 minutes. The IC, GPCR and NR datasets also showed significant 

differences in the runtime of the CPU model and GPU model, although the time is relatively faster than the E 

dataset. This was due to the different amounts of training data in the four datasets. The less training data 

available, the faster the training process occurred. 

Moreover, the speed-up value showed a relatively high number in the four datasets. The speed-up 

value for dataset E showed the number 105.54. This indicated that using the GPU model, the training time 

was 105.54 times faster than the CPU model. The speed-up value for the IC dataset showed the number 

99.91. This indicated that the GPU model on the IC dataset requires 99.91 times faster training time than the 

CPU model. The speed-up value in the GPCR dataset showed the number 172.90. This indicated that the 

GPU model in the GPCR dataset requires 172.90 times faster training than the CPU model. The speed-up 

value in the NR dataset showed the number 91.86. This indicated that the GPU model on the NR dataset 

requires 91.86 times faster training time than the CPU model. Overall, using the GPU model could speed up 

the model training process by up to 90 times. 

 

3.4.  Testing with COVID-19 dataset 

The first test is to look at the model’s performance against the COVID-19 dataset as a whole. The 

results of performance testing can be seen in Table 6. A significant difference could be seen in the runtime 

column, which indicate that GPU model could do DTI prediction much faster than CPU model. Table 6 

shows that the performance of the CPU and GPU models was quite similar, with the GPU model slightly 

better in terms of accuracy, recall and F-measure. A quite big difference was seen at model’s runtime. The 

CPU model takes 179 times longer than the GPU model. This showed that using GPU in deep learning 

models could shorten training times by up to 179 times, with model performance likely to match the 

performance of the CPU model. The test was continued by predicting drug-target interactions on the  

COVID-19 dataset. The seven most considerable possible interaction outcomes are shown in Table 7. The 

prediction score value showed that these drug-target interactions were predicted to be highly possible by the 

deep learning model. 

 

 

Table 6. Accuracy, recall, precision, F-measure and speed-up values in COVID-19 dataset 
Dataset Model Accuracy (%) Recall (%) Precision (%) F-measure (%) Runtime (s) Speed-up 

COVID-19 CPU 76.12 67.42 81.63 73.85 2,952.82 - 
GPU 76.40 69.10 80.92 74.55 16.41 179.99 

 

 

Arsentrioxide, also known as arsenic trioxide, currently has been widely used in India as health 

supplement, immune-booster and COVID-19 preventive drug in the form of homeophatic remedy [48]. 

Arsentrioxide in this case was processed and consumed in the form of Arsenic Album 30C. Further study 

needs to be done in order to prescribe the exact amount of Arsenic Album 30C to patients in order to prevent 
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acute severe liver injury as stated in [48]. Although Theruvath et al. [48] mentioned some harms of toxicity 

in a therapy of COVID-19 patients with arsentrioxide, they concluded that the sources of toxicity are the poor 

manufacturing practices, use of concentrated tincture formulations, and adulteration and contamination of 

homeophatic remedies, and not the compound itself that act as a harmful medication. Arthrocine, also known 

as sulindac, was recently suggested as potential drug repurposing in COVID-19 therapy in [49] by using 

molecular dynamic simulation and docking analysis of NF-κB protein binding.  

NMDE4_HUMAN is a component of glutamate receptor N-methyl-D-aspartate (NMDA) that can 

be used as an entry of SARS-CoV-2 into specific cell populations [50]. MRP2_HUMAN is an  

ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to 

enable active transport of various substrates including potential drugs for COVID-19 [51]. DPOL_HHV11 is 

a protein that replicates viral genomic DNA of human herpesvirus. This protein is worth to be further studied 

because there is possible association between COVID-19 and herpes simplex virus [52]. Q13746_HUMAN is 

a mRNA of acute lymphocytic leukemia patients that have high mortality rates when in contact with  

COVID-19 [53]. ERBB2_HUMAN is a receptor tyrosine-protein kinase erB-2 which several studies have 

pointed out that a correlation between SARS-CoV-2 viruses and dysregulations of signaling pathways 

activated by tyrosine-protein kinase receptors can be established [54]. PYRD_HUMAN is a protein that 

catalyze the conversion of dihydroorotate to orotate with quinone as electron acceptor in the inner layer of 

mitochondria, which becomes highly vulnerable in COVID-19 infected cells, and vulnerability increases with 

age [55]. 6VSB:A is a prefusion 2019-nCoV spike glycoprotein which has a role for virus attachment, fusion 

and entry into the host cell [56]. 

The prediction results in Table 7 indicate that Arsentrioxide can bind to NMDE4_HUMAN, 

DPOL_HHV11, Q13746_HUMAN, ERBB2_HUMAN, PYRD_HUMAN and 6VSB:A, while Arthrocine 

can bind to MRP2_HUMAN. For target proteins that are in humans, further studies need to be carried out to 

know the impact of these interactions and what their effects are in the healing process of COVID-19. For 

target proteins other than those found in humans, namely DPOL_HHV11 and 6VSB:A, it can be concluded 

that Arsentrioxide has a high probability of interfering with the metabolism of these viruses, so the results of 

this study can be used as a reference in vitro and in vitro studies. 

 

 

Table 7. Top seven results of drug-target interaction prediction in COVID-19 dataset 
Drug Protein target Prediction score 

Arsentrioxide NMDE4_HUMAN 0.928608 
Arthrocine MRP2_HUMAN 0.928425 

Arsentrioxide DPOL_HHV11 0.928398 
Arsentrioxide Q13746_HUMAN 0.928371 
Arsentrioxide ERBB2_HUMAN 0.928365 
Arsentrioxide PYRD_HUMAN 0.928348 
Arsentrioxide 6VSB:A 0.928274 

 

 

4. CONCLUSION 

This study showed that the use of GPU in deep learning models for drug-target interaction cases 

gives good results. The results showed a significant increase when performing hyperparameter tuning and 

during model training. The values of accuracy, recall, precision and F-measure that do not differ much in the 

CPU and GPU models in the same dataset indicate that the difference is only due to the different weight 

initialization values and the performance of the CPU and GPU models is approximately the same. 

The use of GPUs, proven to accelerate the training process of deep learning models, should be used 

as a basis for further research on the use of GPUs in bioinformatics. Because the use of GPU is not limited to 

personal computers (PC), bioinformatics research centers that want to process extensive data should use GPU 

either in PC, servers, or HPC so that the process of hyperparameter tuning and training on deep learning 

models can be done more quickly. 
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