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 We have developed and simulated a high electron mobility transistor 
(HEMT) operating in the 5 nm regime. This HEMT uses hafnium oxide 

(HfO2), a high-k dielectric material, to create an undoped region (UR) 

beneath the gate. While the gate and undoped regions share equal thickness, 

the channel length differs. This innovative undoped under the gate dielectric 
HEMT design mitigates the maximum electric field (V) within the channel 

area, leading to a significant increase in drain current. The utilization of a 

high-k dielectric in the HEMT structure results in a saturated Ion current that 

is 60% higher compared to conventional structures. Specifically, we use an 
AlGaN/GaN/SiC-based HEMT with an intrinsic section below the gate, 

using HfO2 as the high-k dielectric substantial, for applications requiring 

high power and high-frequency power amplifiers. Compare this advanced 

HEMT design to conventional HEMTs and you will see improved 
conductivity, a greater drain current (Id), a 54% increase in transconductance 

(Gm), and a lower on-resistance (Ron). Additionally, advancements in the 

electric field in the Y direction are seen. This HEMT structure exhibits 

superior performance compared to alternative materials analyzed. The 
integration of AlGaN/GaN materials in HEMTs opens up extensive 

opportunities in the realms of radio frequency very large-scale integration 

(VLSI) and power electronics. 
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1. INTRODUCTION 

As innovation progresses every year, there is a critical interest for very large-scale integration (VLSI) 

gadgets, particularly as device dimensions shrink to nanometer scale, making short channel effects more 

pronounced. Because channel lengths in submicron technology are less than 5 nm, decreasing gate lengths and 

the accompanying rise of undesired situations like drain induced barrier lowering (DIBL) require novel 

techniques to manage nanodevices. In nanoscale technology, architectures such as the double gate (DG), triple 

gate (TG), and gate all around (GAA) offer better scalability than conventional devices to reduce these short 

channel effects  [1], [2]. 

When compared to high electron mobility transistors (HEMTs), traditional metal oxide semiconductor 

field effect transistors (MOSFETs) are usually thought of as moderately slower devices. As a result, Gallium 
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nitride (GaN) HEMT devices show excellent thermal conductivity and stability along with a greater bandgap, 

higher critical electric field, and increased electron drift velocity [3], [4]. III-V bandgap semiconductors like 

gallium and aluminum nitride, as well as low-k dielectric materials like silicon dioxide (SiO2) and high-k 

dielectric materials like hafnium oxide (HfO2), are used in optoelectronic devices, especially high-power ones 

[5]. The heterostructure of Gallium nitride HEMT enables an undoped channel, leading to higher breakdown 

voltages owing to the utilization of higher bandgap semiconductors like Gallium nitride, as well as low-k 

dielectric materials like silicon dioxide and high-k dielectric materials like hafnium oxide [6], [7]. 

One particular kind of heterostructure field effect transistor (H-FET) is the high electron mobility 

transistor (HEMT), renowned for its exceptional performance at RF and microwave frequencies, coupled 

with a lower noise figure [8]. Operating on the principle of a two-dimensional electron gas within its 

heterostructure, HEMTs experience fewer electron collisions, contributing to their efficacy. Because HEMTs 

have a high on-current (Ion) at lower gate voltages (VGS), they are a good choice for a variety of radio 

frequency design applications, such as radar communications, broadcast radio receivers, and cellular mobile 

telecommunications [9], [10]. 

Due to their exceptional material properties, such as their high electron saturation velocity, high 

breakdown electric field, and efficient underlap implementation of gate induced drain lowering (GIDL) 

mitigation, Gallium nitride-based high electron mobility transistors (GaN-HEMTs) are widely used. 

Unfortunately, the underlap approach shortens the gate's effective length, which deteriorates the gate 

manageability of silicon dioxide (SiO2) and silicon (Si) based HEMT devices and clearly lowers the  

on-current (Ion) [11]. 

Gallium nitride-based HEMTs operate effectively without doping due to their high carrier 

concentration, which minimizes dopant scattering and ensures a more uniform distribution of dopants. 

However, the significant concern with GaN-based HEMTs is the self-heating effect resulting from increased 

channel temperature. Continuous efforts are underway to reduce thermal resistance and mitigate this 

consequence in the expedient, particularly in nanodevices. GaN-based HEMTs are lethargy to utilizing 

different dielectric materials in order to solve the thermal resistance and self-heating consequence. The most 

preferred dielectric materials among them include silicon (Si), silicon dioxide (SiO2), silicon carbide  

(6H-SiC), silicon nitride (SiN), and high-k dielectric material like helium oxide (HfO2). Specifically, Silicon 

Carbide (6H-SiC) efficiently reduces leakage current in the device by forming a high-quality interface with 

GaN-HEMTs [12], [13]. 

The outline of the paper structure is as follows: The model of an intrinsic 5 nm regime gate HEMT 

is covered in detail in the second section. This includes mesh view, potential distribution and electric field 

analysis. Subsequently, the Results are shown in the third part along with performance comparisons of 

different materials. Lastly, the final section discusses the conclusion. 

 

 

2. DEVICE STRUCTURE AND SIMULATION PARAMETERS 

Figure 1 depicts the planned high electron mobility transistor (HEMT) operating within the 5 nm 

gate regime, featuring an undoped region referred to as U-HEMT. This innovative device incorporates  

high-k dielectric material, specifically hafnium oxide (HfO2), with dimensions restrained in millimicrons 

using the Silvaco TCAD ATLAS simulator [14], [15]. Noteworthy is the inclusion of an undoped region with 

HfO2, setting it apart from conventional devices. The gate length is given as Lg=0.005 μm, and the work 

function of the metal gate is 4.87 eV. Other dimensions include gate-source spacing (Lgs=0.015 μm), length 

(Ld=0.032 μm), gate-drain spacing (Lds=0.015 μm), and undoped HfO2 region length (Lu=0.08 μm). The 

undoped region beneath the gate effectively reduces the electric field within the channel region, leading to a 

significant increase in drain current [16]. Figure 2 illustrates the mesh view of the undoped HEMT, 

showcasing non-uniform grid spacing along both axes. Additionally, Figures 3 and 4 depict potential 

distributions and the electric field of the new structure, respectively. The device's speed and performance 

parameters are intricately tied to the gate length, with channel doping influencing drain current levels. 

Utilizing the Silvaco ATLAS Simulator, simulation of the undoped HEMT within the 5nm gate regime, 

employing HfO2 as the high-k dielectric material, is conducted to extract all pertinent electrical parameters. It 

is noteworthy that in this suggested configuration, silicon (Si) replaced by silicon carbide (6H-SiC) of serves 

as the substrate [17], [18]. 

Using the ATLAS simulator, the direct current (DC) and radio frequency (RF) properties of the 

Undoped HEMT with HfO2 are investigated for several material combinations. A fixed gate length of  

0.005 μm is used [19], [20]. Table 1 displays the dimensions of the undoped HEMT device, with particular 

emphasis on the crucial parameter of Gate length (5 nm). The high-k, 5 nm regime gate HEMT employs 

diverse materials and simulation methods, as outlined in Tables 2 and 3. 
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Figure 1. Proposed structure 

 

 

 

Figure 2. View of the planned structure in mesh 

  
 

Figure 3. Electric field distribution of purported 

structure 

 

Figure 4. Potential scattering of proposed structure 

 

 

Table 1. Utilized parameters for the suggested structure 
Parameter Notation Values 

Device length LD 0.036 µm 

Channel length 𝐿𝑔 0.006 µm 

Gate space to source  𝐿𝑔𝑠 0.016 µm 

Drain space to gate 𝐿𝑔𝑑  0.014 µm 

Undoped region length 𝐿𝑠 0.006 µm 

Source length 𝐿𝑠 0.006 um 

Drain length 𝐿𝑑 0.004 um 

work function=4.82eV 

 

 

Table 2. Used processes for simulation of proposed device 
Technique Pattern Description 

Gummel Used as solution technique  

Newton trap SHJ models and SIS models 

Maxtrap Method statement and trap is enabled 

Gummel Structural information is preserved after each iteration 

 

 

Table 3. Models used for the simulation 
Material model Description 

conmob Concentration Dependent model 

srh carrier lifetimes model  

auger high current densities model 
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3. SIMULATION RESULTS AND DISCUSSION 

When the gate voltage (VG) falls below the threshold voltage (Vt), minority carriers flow from the 

source and the off-state of the device is indicated, resulting in a subthreshold current [21]. Conversely, when 

the gate voltage (VG) surpasses the threshold voltage (Vt), the device transitions to the ON state, prompting 

the flow of drain current (Id) versus drain voltage (Vd) for various material combinations, as illustrated in 

Figure 5 [22], [23]. 

Figure 6 illustrates the drain current of the intrinsic area utilizing a 5 nm gate and high-k dielectric 

factual, specifically hafnium oxide (HfO2), within the HEMT, with the gate length fixed at 5 nm. It is noted 

that the leakage current (Ioff) remains constant [24], [25]. Notably, Figure 6 demonstrates that the 

AlGaN/GaN/SiC combination yields a higher ON current compared to other material combinations [26]. 

 

 

 
 

Figure 5. Id vs Vd for different dielectric materials 

 

 

 
 

Figure 6. Id vs Vgs for different dielectric materials 

 

 

3.1. Variation of drain current and drain conductance 

Figure 7 illustrates the drain conductance (𝐺𝑑) across different drain voltages. It is evident that the 

AlGaN/GaN/SiC combination exhibits enhanced drain conductance compared to other material combinations 

[27]. 

 

𝐷𝑟𝑎𝑖𝑛 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 (𝐺𝑑) =  
𝛿𝐼𝑑𝑠

𝛿𝑉𝑑𝑠
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3.2. Variation of transconductance 

High transconductance is necessary to get the right amplifier gain; Figure 8 [28] shows how this 

varies with gate voltages (𝑉𝑔𝑠). 

 

𝑇𝑟𝑎𝑛𝑠𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 (𝐺𝑚) =  
𝛿𝐼𝑑𝑠

𝛿𝑉𝑔𝑠
 

 

Figure 9 presents plotting the simulated drain voltage (𝑉𝑑) against on-resistance (Ron). For all materials, it is 

found that the equivalent on-resistance reduces as drain conductance rises [29]. The electric field 

dissemination of the suggested intrinsic HEMT device using HfO2 beneath 5 nm regime gate is shown in 

Figure 10. It is evident that the electric field concentration in the undoped HEMT has been enhanced 

compared to conventional devices [30]. Table 4 lists the suggested HEMT's performance specifications. The 

data obtained clearly show that the AlGaN/GaN/SiC HEMT performs better than the other two material 

HEMT constructions. 

 

 

  
  

Figure 7. Gd vs Vds for different dielectric  

materials 

Figure 8. Drain conductance vs gate voltage for 

different materials 

  

  

  
  

Figure 9. Ron vs Vds for different dielectric 

materials 

Figure 10. Electric field for different dielectric 

materials 
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Table 4. Performance metrics for obtained results 
Parameter AlGaN/GaN/ SiC AlGaAs/ GaAs/SiC InGaAs/InP/SiC 

Ion(A) 5.041 1.8 2.12 

Ioff(A) 1.01 2.8 9.17 

Ion/Ioff 4.19 0.59 .24 

Gd(S) 6.18 4.51 4.01 

Ron(ohms) 1.17 2.1 2.12 

Vth(V) 0.8 0.36 0.6 

Gm(S) 8.02 6.12 4.16 

 

 

4. CONCLUSION 

Using the Silvaco TCAD ATLAS simulator, the research presents the design and simulation of an 

advanced high electron mobility transistor (HEMT) operating in the 5nm gate regime. This new HEMT 

structure has an undoped area below the gate and uses hafnium oxide (HfO2) as a high-k dielectric material. 

The substrate is silicon carbide (SiC) and the channel is AlGaN. With HfO2 serving as the high-k dielectric 

material below the gate, the GaN-based advanced HEMT exhibits a number of noteworthy performance 

improvements, such as higher on-current (Ion), a higher Ion/Ioff ratio, higher transconductance, lower ON 

resistance, and improved drain conductance. Consequently, the suggested HEMT device employing HfO2 as 

the high-k dielectric material beneath the gate emerges as the preferred choice for high-power and high-

frequency applications. 
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