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Interdigitated electrodes (IDEs) are commonly employed in biological cellular
characterization techniques such as electrical cell-substrate impedance sensing
(ECIS). Because of its simple production technique and low cost, interdigitated
electrode sensor design is critical for practical impedance spectroscopy in the
medical and pharmaceutical domains. The equivalent circuit of an IDE was
modeled in this paper, it consisted of three primary components: double layer
capacitance, Cq;, solution capacitance, C's,;, and solution resistance, Rso;. One
of the challenging optimization challenges is the geometric optimization of the
interdigital electrode structure of a sensor. We employ metaheuristic techniques
to identify the best answer to problems of this kind. multi-objective optimization

Optimization of the IDE using multi-objective particle swarm optimization (MOPSO) was
Particle swarm optimization achieved to maximize the sensitivity of the electrode and minimize the Cut-off
algorithm frequency. The optimal geometrical parameters determined during optimization
Sensitivity are used to build the electrical equivalent circuit. The amplitude and phase of the
impedance versus frequency analysis were calculated using EC-LAB® software,
and the corresponding conductivity was determined.
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1. INTRODUCTION

Giaever and Keese created the key impedance-based technology known as electrical cell-substrate
impedance sensing (ECIS) in 1984 for the in-vitro, real-time evaluation of biological cellular activities [1]].
Traditional round gold electrodes were employed to research cell adhesion, proliferation, migration, invasion,
and barrier activities in the early stages of biosensor development [2]-[6]. Non-ionizing radiation interactions
with biological matter are progressing in diagnostic and therapeutic issues. The electromagnetic properties
of the propagation medium must be determined in order to make progress [7]. Another application aspect
that requires the values of electrical characteristics such as conductivity and permittivity of biological tissues
is public health problems related to electromagnetic fields (dosimetry, biological impacts). These biological
tissue values at the frequencies of interest are unknown []].

The electrode design has a significant impact on biosensor accuracy and sensitivity. Cell-based biosen-
sors offer a wide range of applications, including clinical diagnostics, drug discovery, and electrophysiology
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[O]. Impedimetric and conductometric approaches can be used to measure morphological changes in cells,
which are impacted by the electrode geometry [10]-[11]. Microelectrodes have several advantages over con-
ventional macroscopic electrodes, including cost, high current densities during measurement, and the ability
to integrate them into other instrumental devices to create portable measurement systems, or even biochips or
lab-on-chips.

Microelectrodes, on the other hand, have a substantially larger resistance than macroelectrodes due
to contact phenomena. The interaction between ions and molecules at the border between the electrolyte’s
surface and the measuring electrodes causes an interface capacitance, or double layer, which manifests these
phenomena. This capacitance is inversely proportional to the surface area of the electrodes. As a result, the
double layer capacitance acts as a limitation, increasing measurement inaccuracy.

In all engineering fields, particularly in electronics used in biomedical circuits, reliable, efficient, and
robust optimization strategies are highly desired [12]. In this paper, we emphasize the application of a bio-
inspired technique, specifically particle swarm optimization. The optimization of IDEs or sensor shape is criti-
cal since it can enhance the bioimpedance measurement range, allowing for the most accurate cellular electrical
depiction. Several methods for optimizing interdigitated electrodes (IDEs) for bioimpedance spectroscopy have
already been investigated. Ibrahim er al. [13] used analytical modeling and simulation to investigate the re-
lationship between design factors and IDE frequency behavior in order to optimize configuration for a square
area cross section. Zhang et al. [14] used mathematical models to investigate the effect of electrode size on
ECIS sensitivity. Ngo et al. [15] used a modeling and experimental technique to optimize geometrical parame-
ters for biological media characterisation by reducing polarization impact and Mansor and Nordin [[1]] examine
the distribution of electric fields on various sensor geometries. Some research, such as the optimization of
IDEs for HS578T cancer cells [[L1], are more application specific. However, there hasn’t been much research
into employing metaheuristics algorithms to improve the IDE’s sensitivity and cut-off frequency (Fpoy ). For
cellular research, the shape of the sensor can be changed to get more sensitive and accurate results.

This research shows the similar circuit model of IDEs that are optimized for blood abnormalities.The
ECIS technique is used to optimize the IDEs’ design to increase sensitivity to changes in blood cells. The ECIS
approach enables accurate electrical representation of a cell’s biological response. Using the multi-objective
optimization approach based on the particle swarm optimization (PSO) algorithm, the IDE’s shape will be
adjusted so that the IDE’s sensitivity is maximized and the cut-off frequency of the interfacial impedance
is minimized. The corresponding circuit model is analytically modeled in section 2. Section 3 looks into
multi-objective optimization using PSO and the methodology to introduce the objective function from two dif-
ferent perspectives: sensitivity and cut-off frequency. The optimization results and conclusion are presented in
section 4.

2. THEORETICAL BACKGROUND
2.1. Biosensors with interdigitated electrodes

Single-plane electrodes are used in biosensors with interdigitated electrodes, which are manufactured
via traditional metal deposition [16]. Sensors with interdigital electrodes have been designed to identify de-
oxyribonucleic acid (DNA) sequences using impedance spectroscopy and blood analysis, and have been im-
proved to improve the frequency band. An interdigital sensor, as illustrated in Figure 1, is made up of two
comb-shaped metal electrodes, each with a width W, a length L of electrodes, and a spacing S between two
consecutive electrodes.

An interdigital electrode sensor works on the same concept as a parallel plate capacitor. The sensor
is deposited on a substrate, and a voltage is used to create an electric field between the two electrodes. An
electromagnetic field is created and travels through the sensor when a biological component is placed on it
[LO]. The geometry of the object under research and the biological fluid’s dielectric characteristics affect the
capacitance and conductance between the two electrodes. Depending on the use, the difference in the electric
fields is used to describe how the biological environment affects the organism. Based on the equivalent circuit,
the total impedance can be represented as (1).

2 n Rso
wCaqy (14 jwCso-Rsot)

Z = 2~Zdl + ZRsol//ZCsol = j (1)

The impedance modulus R, or resistance of the electrolyte solution mimics the conductive effects of the
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medium under the influence of an electric field. This is the measurement’s most delicate component. To
mathematically explain the effect of the IDE geometry on each component of the equivalent circuit model,
Olthuis et al. [[17] created a new parameter called the cell constant, K ¢.;;. The proportionality factor between
the electrolyte’s resistivity/permittivity and the actual measurement is K ¢.;;, which only exists at the electrode-
electrolyte interface. It is fully dependent on the sensor’s geometry, as illustrated in (2)-(5).

Rsol - (2)
JSol
With:
2 (k)

Kcen NI Tvi-h) 3)

! 1
I'K)= _—_ 4
() /0 1—-t)(1—kt) @

w
K:COS(E*W—&—S) (5)

The dielectric component of the material under test is represented by C.¢;. It depicts the two electrodes’ direct
capacitive interaction. The dielectric permittivity is proportional to the capacitance.

€0€rSol
Kceu

(6)

CCell -

The impedances that describe the interface effects produced at the electrode-electrolyte interfaces are made
possible by the double-layer capacitance Cy;. Both the electrolyte solution and the material used to form the
electrodes have an impact on the impedances. The simple capacitive coupling between the two electrodes is
what is meant by the capacitance that mimics the dielectric portion of the medium under test. The dielectric
permittivity and this capacitance are connected by (7).

Ca = 07 5x Ax C(dl,Surface) = Oa S5 W x Lx N x C(dl,Surface) @)

The overall electrode surface area is A. When a factor of 0.5 is applied, a single capacitance Cy; is produced by
dividing in half the two interface capacitances produced by interface effects at the entire electrode surface. In
the case of interdigitated electrodes, this surface equals the electrode length times their width times the number
of electrodes. The characteristic double layer called Stern’s capacity, Cy = 0.047F/m?, for electrolytes with a
very high ionic concentration is thought to be the same as the characteristic double layer capacity, Cy;, surface.

Figure 1. Similar circuit model of IDEs in a liquid environment
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2.2. The IDE’s sensitivity

Bouyghf et al. [12] and Mansor et al. [1] have shown that two cut-off frequencies separate the
dominance of components, namely F7,,,, and Fg;45,. The Zg,; will be quite high at frequencies between Fp,,,,
and F'ygp, and the C's,; will behave practically as an open circuit, allowing current to flow through the Cy;
and Rg,; branches. Cy; prevails at lower frequencies below F,,,, about a few kHz. Fp,,, frequencies ranging
from O to hundreds of kHz are dominated by Rg,;-

With increasing frequency, the impedance reduces until it reaches F7,,,. The double-layer capacity,
however, does not intervene in the overall impedance above the cutoff frequency Fr,,. Because only the
resistance Rg,; (or modulus of total impedance) affects impedances less than Fl;4p, and because Ccey is
not yet informative, this is the case. In this frequency band, which is limited by F7,,,, and F'p;gp, the total
impedance is the same no matter what frequency it is.

The observed impedance is based on the total impedance fields and represents an accurate measure-
ment of the biological sample within this range (for example, the conductivity, which can be estimated from
the Rg,; value). We might draw the conclusion that the sensitivity of the frequency measurement needs to be
improved. The dominant impedance spectra of the Rg,; module’s need a wider frequency range. By reducing
the low cut-off frequency FT,,, as much as is practical, increasing the frequency range (also referred to as
the useful frequency range) prevents the interface phenomenon represented by the double layer capacitance.
In square structure of IDEs with an LxL. dimension, (8) and (9) determine the sensitivity (Sen) and cut-off
frequency F'., respectively.

AZ _ (12| - | 2)

Sen = Ao (02 —o1) ®)
O sol

Frow = ——m—— 9

v TKceuCal ©)

3. METHOD
3.1. Multi-objective optimization

The following is a mathematical formulation of the general multi-objective optimization problem:
minimize

f@<o
§(@) =0
Z € R", k(%) € R*, f(%) € R™and §(Z) € RY.

—

X=Z|fn(@) <0 ,m=12,3.m,g(x) =0, ¢=1,2,3...¢q,S=H(@) | X

subject to:

Here & € R is the vector of design variables and n is the number of decision variables. k > 2 is the number
of objective functions, and H(Z) € R¥ is their vector in which h;(Z) : R — R'. In addition, m and f(Z)
stand for the quantity and direction of inequality restrictions, respectively. The number of equality constraints
and their vector, respectively, are q and g(Z). The feasible decision and criteria spaces, respectively, are X and
S.

Machairas et al. [18] proposed one of the most prominent approaches for presenting multi-objective
solutions. If there is no other possible option that improves one goal without worsening at least one other,
it is called a Pareto or non-dominated solution. For solving multi-objective optimization problems, there are
two main types of decision-making techniques. The second searches simultaneously for all non-dominated
solutions, as opposed to the first, which solves a single objective problem for each Pareto-optimal solution
[L19]-[21]].

The most popular multi-criteria decision-making approach in decision theory is the weighted sum
method (WSM) [22]. By summing standardized objective functions scaled by their weighting coefficients, ki,
the weighted sum technique can reduce the multi-objective task of reducing a vector of criteria functions into
such a scalar problem. In [23]] shows the formula for the weighted sum method as (10):
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% ,
_ _hix) = hi(x)™™"
st(w) - Z >\7’ hi(x)ma:c _ hz(m)mzn (10)
i=1
where H,,s(x) is the overall objective function, k is the number of objective functions h;(x) and A; € [0, 1]
when Zle Ai = 1. In addition, h;(x)™" and h;(z)™** are the minimum and maximum values of the

objective functions, respectively, as they are optimized independently.

3.2. Multi-objective particle swarm optimization (MOPSO)

The particle swarm optimization (PSO) algorithm was created in 1995 by Eberhart and Kennedy [24]].
This stochastic optimization method is population-based. In order to determine the best solution, the PSO
method first generates a set of random particles. At the conclusion of each generation, the two best values
are applied to each particle. The first option has so far had the best results. Another is the highest value that
any population particle has ever attained. This is the world’s best value. The best value is a local best when
a particle uses the population as its topological neighbors. Once you know the two best values for a particle’s
speed and location, you can change them [25]]. The position of z;(t) is calculated by adding its velocity, v;(t)
to the current position, i.e:

a:i(t):a:i(t—l)—i—vi(t). (11)

where the velocity vector is expressed as (12).

Ui(t) = wvi(t — 1) +Cir1 [Pbest — l‘i(t)] + Carg [Gbest — {,Ci(t)] (12)

The inertia weight w is used to influence the effect of the particle’s previous velocity on the current velocity.
(1 is the cognitive learning factor, which shows how interested a particle is in its own success. Cs is the social
learning factor, which shows how interested a particle is in the success of its neighbors. Positive constants,
C4 and Cy, are commonly used [21]]. Furthermore, r1 and ro € [0, 1] are two independent random number
sequences used to avoid entrapment on local minimums and to allow a tiny number of particles to diverge in
a more thorough search of the search space [26]; the personal and global best positions are Pyes: and Gpest-
Figure 2 shows the particle swarm optimization algorithm’s velocity and position updates. To turn a PSO
algorithm into a MOPSO, it is common to create an external repository to store the non-dominated solutions
and use a leader selection method to pick a global leader for the particles from a group of equally good solutions
based on some criteria. When the external repository fills up, an archiving method is required to prune it and
keep it at a predetermined size, removing non-dominant solutions based on some criterion. Due to the large
number of non-dominated populations, this criterion has a big effect on the quality of the solutions found by
the search, especially when there are many goals.

Moving to the best
performance
New
position
Current )
Position Moving to the best
performance of
neighboring particles

To the accessible point
with its current speed

Figure 2. The updating process of the particle velocity

3.3. Formalization
The optimization problem can be incisively described as following maximize the sensibility (Sen)
subject to minimize F'r,,, Where:
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Smin S S S Smaa:
Wmin S w S Wmaz
Nmin S N S Nmaz

Sen is given by (8) and Spin,maz> Wmin,maz> Nmin,maz 15 the minimum and maximum of each parameter
appropriate to the IDEs. This makes it easier for the algorithm to find the best design parameters for the best
performance.

To resolve multiobjective problems, we proposed the algorithm given in Figure 3. The parameter
settings have been fine-tuned to provide the best possible result. As mentioned already, our IDE is optimized
in order to improve the sensitivity, have reduced solution resistance, and have a low cut-off frequency. The
MOPSO algorithm was utilized in this method because of its good reputation when it comes to optimizing
multiple objective functions. The optimization was done considering the electrolytic medium with a change of
Ao =T 0.1107%S. Global parameters and data used are shown in Table 1.

Start
[
A

Initialize the position
and velocity of each
particule

Objectives,constraints,
dimensions,parameters

Y

Fitness calculation
(Sen,Flow)

Y

) } Acquire new
Fitness evaluation

position

Dominate
particule
condition?

Obtain Pareto Front

Figure 3. Flowchart for the intended simulation-based method to optimization

Table 1. Parameters and technical data

Parameter Designation
nPop Population Size (=100)
nRep Repository Size (=10)
MaxlIt Maximum Iterations (=1000)
alpha Grid Inflation Parameter (0.1)
nGrid Number of Grids per each Dimension (=100)
beta Leader Selection Pressure Parameter (=2)
gamma Repository Member Selection Pressure (=4)
Ao Electrolytic medium change (=0.1 10~6 S)
Wip- Wup Lower and Upper Bounds (1-100pm)
Sy — Sub Lower and Upper Bounds (1-100pm)
Nip — Ny Lower and Upper Bounds (2-100)
LXL Square length of the IDE (6 x 6 mm)

Optimal interdigitated electrode sensor design for biosensors using ... (Issa Sabiri)
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4. SIMULATION RESULTS

This section was focused on discussion of the multi-objective particle swarm optimization results for
the proposed application of our objective functions. We used MATLAB software to find the optimum result for
each parameter. The equivalent circuit model was implemented using EC-LAB® tools to validate the theory.

4.1. Optimization result

After fixing each parameter and technical data on the MATLAB software, the number of iterations
was set to 1,000 and the function tolerance was set to 10~*. The best outcomes are depicted in Figure 4 and
summarized in Table 2. The best-picked selected solution responds to our goals and criteria, according to Preto
Front analysis. L must adhere to the linear equality that fellow: N.(W + S) ~ 6 mm, with a maximum
sensitivity of 437.75 Ohm.m/S and a minimum cut-off frequency of 35.53 Khz.

g <1074 MOPSO
L % pareto Front

73
£ 6
=
=
=

4
2
2
At
‘B

ﬁ}*
b S - 4 * * *
0 . . s . . .
0 2 4 6 8 10 12 14
Cut - off frequency (Hz) «10*

Figure 4. Pareto front

Table 2. Parameters and technical data
Wopt(pm) — Sopt(pm)  Nopt  N.(S+W)(mm)  Sensitivity (Ohm.um/S)  Fpo.,(Khz)

98.04 65.01 45.30 97.40 237.19 43.45
76.52 93.17 28.35 4.81 48.74 28.15
9291 99.00 67.35 12.92 106.53 38.09
96.00 58.82 40.33 6.24 332.72 470.93
18.08 11.00 54.11 1.57 165.68 140.34
71.77 40.08 99.00 11.07 48.10 97.88
84.97 16.58 29.25 297 576 194.93
cyan99.13 78.32 33.48 5.94 437.75 35.53
75.63 11.86 64.47 5.64 116.34 312.06

4.2. Electrical simulation using equivalent circuit

The optimal geometrical parameters determined during optimization are used to build the electrical
equivalent circuit. The amplitude and phase of the impedance versus frequency analysis were calculated using
EC-LAB® software, and the corresponding conductivity was determined. The corresponding circuit compo-
nents are summarized in Table 3.

The total electrical impedance Z;,, can be trigonometrically expressed as in (13).

Zjw = |Zjule"” (13)
The resistance R,; will be presiding from the cut-off frequency F7,,, then the total impedance can be simpli-
fied as (14).

Rsop

F ow — -
L (1 +,7wCSolRSol)

(14)
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The conductivity can be expressed as showing in (15).
kcen
0501 = ——— cos(6) (15)
|ij|

Table 3. Equivalent circuit components

Rso1 (2)  Csol (pF)  Ca (uF)
11.82 41.73 0.76

The characteristics of the designed biosensors is essential for the effective use of impedance spec-
troscopy in the medical and pharmaceutical fields. The technical features of the designed IDE at the acquisition
frequency Fmdl simulated under its equivalent circuit. As shown in Figure 5, Figure 6, and Table 4.
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Figure 5. Impedance vs. frequency analysis using EC-LAB® software
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Figure 6. Phase vs. frequency analysis using EC-LAB® software
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Table 4. Characteristics of the IDE
W (pm) S(pm) N L (mm) KC’ell(Nmil) Sen(2.um/S) Frial(MHz) Umeasured(s/ﬂm)
99.13 78.32 34 6 10.41 437.75 0.36 0.2410=6

5. CONCLUSION

This study presents a physical model of an IDE that uses the MOPSO algorithm and Pareto Front
analysis to detect DNA sequences utilizing impedance spectroscopy and blood analysis. The simulation results
demonstrate the benefit of improving the sensor’s components. Finally, utilizing the best results, we built the
electrical equivalent circuit components and analyzed their impedance responses with the EC-LAB® program.
Theoretical and simulation results support the concept of having a maximum sensitivity and a low cut-off
frequency. However, factors such as electrical field distribution, fabrication process capabilities, working area
limitation, and relevance to the intended application limit the ideal configuration’s selection.
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