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 Chronic heart failure (CHF) is a significant public health concern due to its 

increasing prevalence, high number of hospital admissions, and associated 

mortality. Its prevalence is progressively increasing due to the aging of the 
population and the decrease in mortality from acute myocardial infarction, 

among other medical advancements. Consequently, the incidence of CHF 

predominantly affects older age groups, doubling its prevalence every 

decade, becoming one of the main causes of mortality in patients older than 
65 years. The main objective of this study is to apply machine learning based 

techniques to determine the best models to classify patients with chronic 

heart failure through their respiratory pattern. These patterns have been 

characterized from time series such as inspiratory and expiratory times, 
breathing duration, and tidal volume obtained from the respiratory flow 

signal. Based on the behavior of the respiratory pattern, CHF patients were 

classified into patients with non-periodic breathing, with periodic breathing, 

and with Cheyene-Stokes respiration (CSR). Time-frequency and statistical 
techniques have been implemented to analyze these features, and then 

various classification methods have been applied to define the optimal model 

with the best accuracy rates. These models could help to better understand 

the evolution of this disease and in early diagnosis. 
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1. INTRODUCTION 

Chronic heart failure (CHF) is a clinical syndrome that results from structural or functional damage 

to the heart, preventing its proper functioning as a pump that propels blood through the circulatory system to 

provide the body's metabolic needs. Its main manifestations are pulmonary edema (fluid accumulation in the 

lungs), dyspnea (breathing difficulty), decreased exercise tolerance and fatigue [1], [2]. CHF is associated 

with some diseases, including coronary ischemic heart disease, hypertensive heart disease, valvopathies, 

infective endocarditis, rheumatic valve disease, diabetes mellitus, myocardial infarction. It is a serious public 

health problem due to its growing prevalence, the highest number of hospital admissions and associated 

mortality [3], [4]. In addition, it constitutes a growing problem related to the aging of the population, and 

problems such as acute myocardial infarction double their prevalence every decade. Many studies are being 

carried out on CHF since, if the current trend continues, in a few years it could be one of the main causes of 

mortality in patients older than 65 years [5]–[7].  

https://creativecommons.org/licenses/by-sa/4.0/
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CHF patients often develop an irregular respiratory pattern, characterized by cyclic fluctuations in 

breathing drive, a sign of respiratory control system instability. Depending on the patient's level of severity 

these fluctuations are marked by alternating periods of fast and slow respirations, called periodic breathing 

(PB). Cheyene-Stokes respiration (CSR) is a more severe form of the PB pattern with alternating episodes of 

apnea and hypopnea [8], [9]. PB has a prevalence of up to 70% in patients with CHF and is associated with 

higher mortality, especially in patients with CSR [10], [11]. In general, three out of four patients admitted for 

CHF will not live for more than five years, which is comparable to the most aggressive neo-plasms between 

30% and 40% of patients will die during the first year after diagnosis [12], [13]. Therefore, it is important to 

establish an accurate risk stratification of CHF patients to optimize the allocation of limited resources and 

contribute to the clinical decision. 

In the initial stages of CHF, a reduction in the elasticity of the lungs is observed, which increases 

their work. Occasionally, dyspnea occurs at night and the patient awakens abruptly with a choking sensation 

or paroxysmal nocturnal dyspnea [14]. Patients are classified based on the New York Heart Association 

Index, which assesses the patient's physical activity [15], [16]. One way to characterize the respiratory 

pattern is through the analysis of its respiratory signals. Using the wavelet transform method and some 

classification techniques, the best parameters to characterize the respiratory pattern were selected [17]. The 

main objective of this study is to analyze parameters extracted from the respiratory flow signal using machine 

learning techniques, to classify CHF patients with periodic or non-periodic breathing. The time series of 

these signals, such as inspiration and expiration time, breathing duration, tidal volume, among others, can 

define the dynamics of the respiratory system and characterize different conditions of the CHF patients. 

 

 

2. MATERIAL AND METHOD 

2.1.   Datasets 

Respiratory flow signals were recorded from 27 elderly patients who were admitted to the short stay 

unit at Santa Creu i Sant Pau Hospital in Barcelona, Spain. The study was conducted in accordance with a 

protocol that was previously approved by the local ethics committee. A pneumotachograph, consisting of a 

Datex-Ohmeda monitor with a Validyne model MP45-1-871 variable reluctance transducer, was used to 

acquire the respiratory flow signal. The signals were recorded at a sampling rate of 250 Hz and a resolution 

of 12 bits for 15 minutes. 

The patients were classified into three groups based on clinical criteria and respiratory flow signal 

behavior: 19 patients with non-periodic breathing (CHF-nPB), 5 patients with periodic breathing (CHF-PB), 

and 3 patients with CSR, a pattern characterized by cyclical episodes of hyperventilation and apneas or 

hypopneas (CHF-CSR). Additionally, a control group of 35 healthy subjects was included. Figure 1(a) to (d) 

shows the respiratory flow signal of CHF-CSR, CHF-PB, CHF-nPB patients, and a control subject [18]. 

 

 

 
 

Figure 1. Excerpt of the respiratory flow signal from CHF patients with (a) CHF-CSR patient,  

(b) CHF-PB patient, (c) CHF-nPB patient, and (d) respiratory flow signal from a healthy subject 
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2.2.  Signal processing 

Respiratory flow signals were preprocessed using in-house tools to reduce artifacts, noise, and 

outliers. Afterward, the following time series were extracted: inspiratory time (𝑇𝐼), Exp_iratory time (𝑇𝐸), 

breathing duration (𝑇𝑇𝑜𝑡 = 𝑇𝐼 + 𝑇𝐸), tidal volume (𝑉𝑇), respiratory rate (𝑅𝑟) per minute, inspiratory 

fraction as the ratio of inspiratory time to breathing duration (𝑇𝑇 = 𝑇𝐼/𝑇𝑇𝑜𝑡), mean inspiratory flow as the 

ratio of tidal volume to inspiratory time (𝑉𝐼 = 𝑉𝑇/𝑇𝑇𝑜𝑡), and respiratory frequency-tidal volume ratio 

(𝐹𝑉 = 𝑅𝑟/𝑉𝑇).  

 

2.3.  Wavelet transform and feature selection techniques 

 The continuous wavelet transforms (CWT) of a signal x(t) with mother wavelet ψ (·) is defined as (1): 

 

W(τ, s) =
1

√|s|
∫ x(t)ψ (

t−τ

s
) dt

∞

−∞
 ,  (1) 

 

where the transformed signal 𝑊(𝜏, 𝑠) is a function of the translation parameter 𝜏 and the scale 𝑠. The signal 

energy is normalized to each scale by dividing the wavelet coefficients by 1 ⁄ √(|𝑠|). The original signal can 

be reconstructed with the inverse CWT, defined by (2) [19].  
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∞
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The discrete wavelet transform (DWT) allows multiresolution analysis by applying a bank of high-

pass filters, where each filter represents a level of decomposition. A cascade filter bank of eight-order is 

applied, a low-pass 𝐿(𝑧) and high-pass 𝐻(𝑧) filters, followed by a resampling step. Next, the original signal 

is reconstructed from a new bank of synthesis filters, introducing zero values between the sampled signal 

calculated with a new high-pass filter 𝐻′(𝑧) and a new low-pass filter 𝐿′(𝑧), respectively [19], [20]. Next, the 

original signal is reconstructed from a bank of synthesis filters, introducing zero values between the sampled 

signal calculated with a new high-pass filter 𝐻′(𝑧) and a new low-pass filter 𝐿′(𝑧), respectively [19], [20]. 

Afterward, the forward selection method [21], genetic algorithms [22], [23], and moving window [24], [25] 

with variance analysis are implemented to obtain the parameters that characterize the respiratory pattern. 

 

2.4.  Classification techniques 

Classification methods make it possible to determine the characteristics that differentiate the study 

data into subsets called classes. Based on the properties of these subsets, they are compared within each 

classification model. Based on the properties of these subsets, they are compared within each classification 

model. In this paper, the support vector machine (SVM) method [26], [27] and K-nearest neighbor [28], [29] 

are proposed and then a feature selection technique is applied [30]. 

 

 

3. DATA ANALYSYS 

A statistical analysis of the patient's data is performed, after preprocessing the time series that 

describes their respiratory pattern, to rule out outlier values, and information unrelated to the physiological 

process, and normalize them by standard scaling. Then, the principal component analysis (PCA) is applied to 

analyze the variability of these times series (i.e., TI, TE, TTot, VT, TT, VI, FV). Figure 2(a) illustrates the 

multidimensional projection of the means of these seven-time series for each patient, considering the first ten 

principal components, with a cumulative variance of 93.1%. Figure 2(b) represents a three-dimensional 

projection of the first three PCs, considering all study groups (CHF patients with non-periodic breathing, 

periodic breathing and Cheyene-Stokes respiration patterns, and healthy subjects) representing a cumulative 

variance of 58.7% [31]. 

The CHF patients studied were classified into three groups: non-periodic breathing (CHF-nPB), 

periodic breathing (CHF-PB), and Cheyne-Stokes respiration (CHF-CSR). Due to the small number of 

patients in PB and CSR groups, they were regrouped into one, periodic breathing and Cheyene-Stokes 

respiration (CHF-PBCSR). For the diagnosis-oriented classification, four clinical interest groups were 

defined: i) G1 group, healthy subjects versus CHF patients; ii) G2 group, healthy subjects versus CHF-

PBCSR patients; iii) G3 group, healthy subjects versus CHF-nPB patients; and iv) G4 group, CHF-PBCSR 

versus CHF-nPB patients. To evaluate the behavior of these groups, combined strategies of signal processing 

techniques, dimensionality reduction and classification methods were analyzed considering a set of 10 

experiments (Exp_). Figure 3 is a schematic representation of the applied process. 
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(a) (b) 

 

Figure 2. Representation of the principal component’s behavior for the mean values of the time series: 

(a) the cumulative variance collected through the first ten principal components and (b) the contribution of 

the first three principal components associated with the classification of patients with CHF (Cheyene-Stokes 

respiration, periodic breathing and non-periodic breathing) and healthy subjects 

 

 

 
 

Figure 3. Explanatory schematic of the set of 10 experiments  

 

 

3.1.  Statistical parameter extraction 

From the time series that characterize the respiratory pattern, TI, TE, TTot, VT, TT, VI and FV, the 

following statistics were calculated: mean (�̅�), standard deviation (SD), kurtosis (K), interquartile range 

(IQR) and variance (V). A total of 35 parameters were obtained from each patient (e.g., �̅�(𝑇𝐼), SD (TI), 

K(TI), IQR(TI), V(TI)). Then, these parameters were included in the Exp_ 1 and Exp_2 experiments to 

classify the patients and healthy subjects, according to the schema presented in Figure 3. 

 

3.2.  Wavelet transform process and statistics extraction 

The DWT is implemented to obtain information about the approximation coefficients and signal 

detail for each time series. The mother wavelets to be computed are: 'haar', 'db2', 'db3', 'db4', 'db5', 'db6', 

'db7', 'db8', 'db9', 'db10', 'bior1.3', 'bior1.5', 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1', 'bior3.3', 

'bior3.5', 'bior3.7', 'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8','coif1', 'coif2', 'coif3', 'coif4', 'coif5', 'sym2', 'sym3', 

'sym4', 'sym5', 'sym6', 'sym7', 'sym8' and 'sym9'. To determine the optimal mother wavelet (𝐴𝑐𝑖: approximates 

coefficient and 𝐷𝑖: details coefficients), the Q index is calculated according to (3). Each signal is 

decomposed and reconstructed using five decomposition levels, calculating the average mean square error 

(𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ), the average signal-to-noise ratio (𝑆𝑁𝑅̅̅ ̅̅ ̅̅ ), and the numbers of average decay coefficients (𝑁𝐷𝐶̅̅ ̅̅ ̅̅ ), being 

𝑥(𝑖) the original signal and 𝑥′(𝑖) the reconstructed signal [17]. Table 1 presents the mother wavelets that 

obtained the highest values of the Q index for each time series, with the haar being the optimal mother 

wavelet for this decomposition analysis. 
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𝑆𝑁𝑅̅̅ ̅̅ ̅̅ = 10 log
∑ [𝑥(𝑖)]2𝑁

𝑖=1

∑ [𝑥(𝑖)−𝑥′(𝑖)]2𝑁
𝑖=1

  𝑄 =
𝑆𝑁𝑅̅̅ ̅̅ ̅̅

𝑀𝑆𝐸̅̅ ̅̅ ̅̅ +𝑁𝐷𝐶̅̅ ̅̅ ̅̅
  (3) 

 
 

Table 1. Best values of the Q index for each time series  
Series Mother Wavelet 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  𝑆𝑁𝑅̅̅ ̅̅ ̅̅  Q 

FV ℎ𝑎𝑎𝑟 2,373E-32 278.462 0.775 

TE ℎ𝑎𝑎𝑟 2,543e-30 278.073 0.773 

TI ℎ𝑎𝑎𝑟 1,764e-30 278.139 0.772 

Ttot ℎ𝑎𝑎𝑟 9,793e-32 277.638 0.772 

TT ℎ𝑎𝑎𝑟 7,889e-30 278.051 0.773 

VI ℎ𝑎𝑎𝑟 5,959e-27 278.406 0.774 

VT ℎ𝑎𝑎𝑟 9,589e-27 278.412 0.774 

 

 

After selecting the optimal wavelet, a signal was obtained for each of the five decomposition levels 

and for each of the approximation (𝐴𝑖) and detail coefficients (𝐷𝑖) (e.g., 𝑇𝐼_𝐴𝑖, 𝑇𝐼_𝐷𝑖, approximation and 

detail coefficients of the inspiratory time serie (𝑇𝐼), for the i-decomposition level), resulting in 70 signals for 

each patient [11]. Next, a preselection of variables is performed for each of the four groups of clinical 

interest, calculating the mean p-value of the Mann-Whitney test for all-time series, for coefficients of 

approximation and detail, at each level of decomposition. Afterwards, the coefficients with p-value ≤ 0.05 

were selected for each group of the study and for each time series as shown in Table 2.  

Next, the statistics �̅�, SD, K, IQR and V are calculated for the preselected signals in Table 2 (e.g., 

G4 serie VT: �̅�(𝑉𝑇_𝐴1), SD(𝑉𝑇_𝐴1), IQR(𝑉𝑇_𝐴1), K(𝑉𝑇_𝐴1), V(𝑉𝑇_𝐴1)), obtaining a total of 145 variables 

for G1, 95 variables for G2, 140 variables for G3, and 135 variables for G4. Figure 4 illustrates the 

multidimensional projections of the preselected variables considering the first three principal components for 

each group when comparing in Figure 4(a) G1 group, healthy subjects versus CHF patients, Figure 4(b)  

G2 group, healthy subjects versus CHF-PBCSR patients, Figure 4(c) G3 group, healthy subjects versus  

CHF-nPB patients, and Figure 4(d) G4 group, CHF-PBCSR versus CHF-nPB patients. According to the 

results, the PCA contributions in each case are: G1 = 54.28%, G2 = 67.76%, G3 = 56.17%, and G4 = 60.74% 

of the information, respectively. 

 
 

Table 2. Coefficients of approximation and detail of the decomposition levels whose p-value ≤ 0.05 in each 

time series for each classification group 
Series G1 G2 G3 G4 

FV A1, A2, A3, A4, A5 A1, A2, A3, A4, A5 A1, A2, A3, A4, A5 A1 

TE A1, A2, A3 A1 A1, A2 A1, A2, A3, A4, A5 

TI A1, A2, A3, A4, A5 A1, A2, A3, A4, A5 A1, A2, A3, A4, A5 A1, A2, A3, A4, A5 

TTot A1, A2, A3, A4, A5 -------- A1, A2, A3, A4, A5 A1, A2, A3, A4, A5 

TT A1, A2 A1, A2, A3 A1 A1, A2, A3, A4, A5 

VI A1, A2, A3, A4, A5 -------- A1, A2, A3, A4, A5 A1, A2, A3, A4, A5 

VT A1, A2, A3, A4 A1, A2, A3, A4, A5 A1, A2, A3, A4, A5 A1 

 

 

3.3.  Dimensionality reduction and classification 

Once the variables have been preselected and their statistics calculated, the dimensionality reduction 

and classification process are implemented with the experiments Exp_2, Exp_3, Exp_4, Exp_5, Exp_7, 

Exp_8, Exp_9 and Exp_10 in Figure 3. To evaluate these results, maintaining the independence between the 

training-test data, a 4–fold cross-validation with 150 iterations is implemented. The value of average 

accuracy of the test results is calculated and used in the validation group to tune the parameters in the 

dimensionality reduction process with their respective metric. Then, the best fit result was used to calculate 

the balanced accuracy. 

Applying the forward selection method, the stopping criterion used was when the variables reached the 

maximum accuracy of the validation group in its respective classification method, after evaluating all the 

variables of the Experiment. Using the moving window and variance analysis (MWVA), the most relevant set 

of variables in the optimal window was selected according to the elbow method [18]. For the genetic algorithm 

method (GA) the following characteristics were defined: generations=100, population size=10, selection 

function=spinner, crossover function=scattered, crossover fraction=0.8, and mutation function=mutation adapts 

feasible. With the SVM classification methods, the kernel functions used were linear, polynomial order 3, 

polynomial order 2 and radial basic function (RBF). The adjustable parameters of the SVM were calculated by 

implementing the Bayesian optimization [32], [33]. For the k-NN method, the Euclidean distance was 

implemented, with the maximum K being twice the number of patients in the minority class. 
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(a) (b) 

 

 
(c) (d) 

 

Figure 4. Contributions of the first three principal components to classify (a) G1 group, healthy subjects 

versus CHF patients, (b) G2 group, healthy subjects versus CHF-PBCSR patients, (c) G3 group, healthy 

subjects versus CHF-nPB patients, and (d) G4 group, CHF-PBCSR versus CHF-nPB patients 

 

 

4. RESULTS AND DISCUSSION 

Tables 3 and 4 present the best results of all the experiments, in terms of accuracy and their 

balanced accuracy of the comparison groups G1, G2, G3 and G4, respectively. When comparing healthy 

subjects versus chronic heart failure patients (G1) the balanced accuracies are greater than 91.9% in all cases. 

Analyzing the performance of healthy subjects versus patients with periodic breathing and Cheyene-Stokes 

respiration (G2), the best results were obtained with Exp_3 and Exp_7, while the lowest value was 64.5%, 

obtained using the forward selection method and classification with SVM. Table 5 presents the best accuracy 

results of each group with the most relevant parameter of each system. Of all cases, the best result was 

obtained with Exp_9, classified with SVM, and the optimal window of 1 in the MWVA calculation. 

 

 

Table 3. Accuracy and balanced accuracy of G1 and G2 groups 
 G1 G2 

Experiment Accuracy (%) Balanced accuracy (%) Accuracy (%) Balanced accuracy (%) 

Exp1 96.25 ± 2.18 96.42 94.86 ± 3.66 92.62 

Exp2 92.25 ± 5.29 91.90 77.95 ± 16.48 64.49 

Exp3 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

Exp4 100.00 ± 0.00 100.00 98.63 ± 1.36 97.54 

Exp5 99.89 ± 0.11 99.89 99.90 ± 0.10 99.85 

Exp6 98.97 ± 1.03 98.90 84.97 ± 14.42 73.53 

Exp7 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

Exp8 100.00 ± 0.00 100.00 85.43 ± 12.26 74.73 

Exp9 100.00 ± 0.00 100.00 82.06 ± 5.48 79.45 

Exp10 100.00 ± 0.00 100.00 88.57 ± 10.73 81.84 
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Table 4. Accuracy and balanced accuracy of G3 and G4 groups 
 G3 G4 

Experiment Accuracy (%) Balanced accuracy (%) Accuracy (%) Balanced accuracy (%) 

Exp1 95.41 ± 2.25 95.72 96.81 ± 1.48 96.38 

Exp2 91.45 ± 7.30 89.71 95.29 ± 4.70 90.66 

Exp3 100.00 ±. 0.00 100.00 100.00 ± 0.00 100.00 

Exp4 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

Exp5 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

Exp6 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

Exp7 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

Exp8 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

Exp9 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

Exp10 100.00 ± 0.00 100.00 100.00 ± 0.00 100.00 

 

 

Table 5. Accuracy, balanced accuracy, and the most relevant variables of each group 
Groups Accuracy (%) Balanced accuracy (%) Variables 

G1 100.00 ± 0.00 100.00  �̅�(𝑉𝐼_𝐴5) and �̅�(𝑇𝑇𝑜𝑡_𝐴3) 

G2 100.00 ± 0.00 100.00  IQR(𝐹𝑉_𝐴1), IQR(𝑇𝐼_𝐴1) IQR(𝑉𝑇_𝐴1). 

G3 100.00 ± 0.00 100.00  IQR(𝑇𝐼_𝐴2), �̅�(𝑉𝐼_𝐴3) 

G4 100.00 ± 0.00 100.00  IQR(𝑉𝐼_𝐴1) 

 

 

Figure 5 presents the best result of the G1 group preselecting an initial set of 145 parameters and 

implementing the MWVA method for different window widths and amplitudes in Figure 5(a). Based on the 

relationship between the number of variables and the window widths, and the elbow criterion to select the 

best parameters, with 57 preselected, 99.98% of the energy was obtained in Figure 5(b). Then, the forward 

selection method is applied in Figure 5(c) and finally, the two best parameters are selected in Figure 5(d). 

 

 

 
(a) (b) 

 

 

 
(c) (d) 

 

Figure 5. Behavior of the best result of G1 group when comparing healthy subjects versus chronic heart 

failure patients (CHF): (a) for different width and amplitude of window selection according to MWVA 

dissimilarity, (b) relationship between number of variables and window amplitude, (c) results of the forward 

selection process, and (d) a scatterplot of the two most relevant parameters 
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Figure 6 presents the best result of the G2 group preselecting an initial set of 135 parameters and 

implementing the MWVA method for different window widths and amplitudes in Figure 6(a). Based on the 

relationship between the number of variables and the window widths, and the elbow criterion to select the 

best parameters, with 59 preselected, 99.87% of the energy was obtained in Figure 6(b). Then, the forward 

selection method is applied, obtaining an accuracy of 100% with the first selected parameter in Figure 6(c). 

Figure 7 presents the best result of the G3 group preselecting an initial set of 140 parameters and 

implementing the MWVA method for different window widths and amplitudes in Figure 7(a). Based on the 

relationship between the number of variables and the window widths, and the elbow criterion to select the 

best parameters, with 70 preselected, 99.86% of the energy was obtained in Figure 7(b). Then, the forward 

selection method is applied Figure 7(c), and finally the two best parameters are selected in Figure 7(d). 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 6. Behavior of the best result of G2 group when comparing healthy subjects versus CHF-PBSCR 

respiration: (a) for different width and amplitude of window selection according to MWVA dissimilarity, 

(b) relationship between number of variables and window amplitude, and (c) a scatterplot with the best most 

relevant parameter that achieved 100% accuracy 
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(a) 

 

 
(b) 

 

 

  
(c) (d) 

 

Figure 7. Behavior of the best result of G3 group when comparing healthy subjects versus CHF-nPB patients: 

(a) for different width and amplitude of window selection according to MWVA dissimilarity, (b) relationship 

between number of variables and window amplitude, (c) results of the forward selection process, and  

(d) a scatterplot of the two most relevant parameters 

 

 

Figure 8 presents the best result of the G4 group preselecting an initial set of 95 parameters and 

implementing the MWVA method for different window widths and amplitudes in Figure 8(a). Based on the 

relationship between the number of variables and the window widths, and the elbow criterion to select the 

best parameters, with 80 preselected, 99.99% of the energy was obtained in Figure 8(b). Then, the forward 

selection method is applied in Figure 8(c), and finally the three best parameters are selected in Figure 8(d). 
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Figure 8. Behavior of the best result of G4 group when comparing CHF-PBCSR versus CHF-nPB patients: 

(a) for different width and amplitude of window selection according to MWVA dissimilarity, (b) relationship 

between number of variables and window amplitude, (c) results of the forward selection process, and  

(d) a scatterplot of the three most relevant parameters 

 

 

5. CONCLUSION 

In this study, the classification of patients with CHF has been proposed through the parameters 

extracted from the respiratory flow signal. According to the results, techniques related to biomedical signal 

processing and machine learning can contribute to determining characteristics to classify these patients. 

Seven time series extracted from the respiratory flow signal allow describing the different respiratory patterns 

of these patients. The analysis based on the Q index allows selecting the best mother wavelet applied to these 

time series that characterize these respiratory patterns. Additionally, from the statistical analysis in Table 2, 

the low frequencies of the respiratory series predominate in the representation of the separability of the data 

classification as initial preselection of variables. Tables 3 and 4 show the strengths of the implementation in 

experiment 9, where the extraction of the most frequent information through the DWT and the statistical 

parameters generates a high-dimensional system. Subsequently, the selection of new variables with MWVA 

and then with the forward selection method allow avoiding the course of dimensionality, generating models 

for each of the four groups of clinical interest, with a maximum of 3 relevant variables, to make an 

outstanding diagnosis. 

The results of the classification showed that the SVMs present a reliable performance in the study of 

these characteristics with high accuracy. The procedure applied for the preselection of parameters, that can 

represent the most information about the process, has contributed to improving the selection of the minimum 

number of these best parameters that contain the maximum information. In all comparisons, models with a 

maximum of three parameters that presented the highest precision were obtained. Comparing the 

methodologies of this study, increases in the performance of the classifiers are observed when the proposed 

processing techniques and dimensionality reduction methods are implemented. A special contribution of this 
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study is the adaptability of parameter preselection to balance the performance of different types of groups 

regardless of the number of samples. However, these results should be validated with a larger number of 

patients, especially those with periodic breathing and Cheyene-Stokes respiration. All of this could contribute 

to improving the early diagnosis of these patients. 
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