
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 13, No. 5, October 2023, pp. 5607~5616 

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i5.pp5607-5616      5607 

 

Journal homepage: http://ijece.iaescore.com 

Image compression approach for improving deep learning 

applications 
 

 

Raed Altabeiri, Moath Alsafasfeh, Mohanad Alhasanat 
Department of Computer Engineering, Al-Hussein Bin Talal University, Ma’an, Jordan 

 

 

Article Info  ABSTRACT  

Article history: 

Received Jun 28, 2022 

Revised Feb 8, 2023 

Accepted Feb 10, 2023 

 

 In deep learning, dataset plays a main role in training and getting accurate 

results of detection and recognition objects in an image. Any training model 

needs a large size of dataset to be more accurate, where improving the dataset 

size is one of the most research problems that needs enhancement. In this 

paper, an image compression approach was developed to reduce the dataset 

size and improve classification accuracy for the trained model using a 

convolutional neural network (CNN), and speeds up the machine learning 

process, while maintaining image quality. The results revealed that the best 

scenario for deep learning models that provided good and acceptable 

classification accuracy was one that had the following parameters: 80×80 

image size, 10 epochs, 64 batch size, 40 images dataset quality (images 

compressed 60%), and gray image mode. For this scenario a Dog vs Cat 

dataset is used, and the training time was 48 minutes, classification accuracy 

was 86%, and images dataset size was 317 MB on storage device. This size 

makes up 58% of the size of the original image’s dataset, saves 42% of the 

storage space and reduces the processing resources consumption. 
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1. INTRODUCTION  

The number of cell phones in use in the world is estimated at 4.7 billion phones. All users of these 

phones take photos and videos which usually accumulate up to 80% of their storage. These images and videos 

should be compressed. Image compression means reducing the size of the graphics file while keeping the image 

quality within an acceptable level, which allows more images to be stored and reduces the time required to 

send and download an image over the internet [1]. The image compression is performed in five steps: color 

space conversion, down-sampling, discrete cosine transform (DCT), quantization, and entropy encoding [2]. 

The digital image is a two-dimensional array of pixels. Image manipulation used mathematical functions and 

transformations, including smoothing, sharpening and segmentation of the image [3]. Additionally, computer 

vision by using images can solve more complex problems such as facial recognition (used, for example, by 

Snapchat to apply filters). Unsolvable digital image processing problems are now resolved by deep learning (DL) 

methods such as a convolutional neural network (CNN), a prime example of this is image classification [4].  

Deep learning is a subfield of machine learning concerned with algorithms that are inspired by the 

structure and function of the brain called artificial neural networks. Deep learning technologies have evolved 

from Google Brain, founded by Andrew Ng, chief scientist at Baidu Research, and via various Google services 

[5]. Also, the following examples show where images are used in computer vision and deep learning: 

behavioral tracking (customers and how they behave), inventory management (generating a very accurate 

https://creativecommons.org/licenses/by-sa/4.0/
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estimate of the items available in the store, and analyzing the use of shelf space and suggesting better item 

placement), manufacturing (predictive maintenance, by identifying potential trouble before it occurs, and 

defect reduction, where the system can spot defects throughout the entire production line), healthcare (medical 

image analysis to find anomalies such as tumors or search for signs of neurological illnesses), autonomous 

vehicles (computer vision allows them to perceive and understand the environment around them to operate 

correctly) [6]. When discussing why deep learning took off in ExtractConf 2015, it is found that unlike 

conventional machine-learning and data mining techniques, deep learning is able to generate very high-level 

data representations from massive volumes of raw data. Therefore, it has provided a solution to many real-

world applications [5]. An important point regarding the topic of deep learning, is that, it is the first class of 

scalable machine learning algorithms, where performance continues to improve when more data is presented. 

Datasets are not algorithms might be the key limiting factor to development of human-level artificial 

intelligence [7]. The most popular image datasets on the internet are ImageNet (14M images with  

21,841 classes), Microsoft common objects in context (MS COCO) (200K images with 80 classes), CIFAR-

10 (60K images with 10 classes), PASCAL visual object classes (VOC) (11.5K images with 20 classes) [8]. A 

large dataset for deep learning algorithms needs large storage space and consumes computer resources. In 

addition, a large dataset needs a long training time to train the model and to get an accepted classification. 

These parameters are considered an impediment to real-time applications. For that, an approach has been 

proposed to compress the images dataset so that it reduces the size of the dataset and improves the classification 

accuracy, thus speeding up the machine learning process while preserving the image quality. The importance 

of this paper lies in developing a compression method for the huge dataset used in machine learning so that the 

process of machine training in visual recognition is accelerated, thus facilitating the process of creating deep 

learning applications. These applications include [6]: smart surveillance and monitoring, health and medicine, 

sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image 

classification, localization, and detection, are the core building blocks of many of these applications. This paper 

achieved the objectives; develop an approach to compress the dataset used for deep learning, use the developed 

compression method for training CNN models, speed up the training time and get high accuracy for deep 

learning applications, and reduce the required storage space for a dataset in deep learning algorithms. 

Regards to literature, many papers presented using of different image compression techniques for 

improving deep learning applications. Gogoi and Begum [9] used progressive resizing to increase the 

classification accuracy of CNNs. The authors start training the model with 64×64 images, then double that size 

to (128×128), use a learning transfer technique to train the previous model to the new size, then double the size 

again (224×224), and train the previously trained model on the new size (which in turn includes training at 

sizes128×128 and 64×64). From the results obtained it may be concluded that enhancement in learning 

strategies and scaling up image size is more effective than increasing model size by adding layers in high 

accuracy regime. With increased performance, the suggested architecture outperforms the competition in all 

three benchmark datasets. However, more testing on multiple datasets with different image sizes and training 

samples is required for general applicability. It is noticeable to the researchers' work that is a lack of interest in 

the reducing of training time, and their focus only on classification accuracy. 

The effect of standard image compression techniques, such as joint photographic expert group (JPEG), 

JPEG2000, and high-efficiency video coding (HEVC) encoder on the classification performance of images 

using a CNN was done by [10]. Researchers studied coding parameters: color space, resolution, and 

quantization parameter (QP), and they studied the correlation between classification performance and image 

quality. They found that an image can be compressed by a factor 7, 16, 40 for a JPEG, JPEG2000, and an 

HEVC encoder and still maintain a correct classification by the CNN. The study was able to demonstrate that 

it is the JPEG encoder that causes the greatest degradation in image quality. The study also showed that the 

better portable graphics (BPG) encoder gives the best results. One of the observations of this study is that it 

does not use image encoders that reduce the "over-fitting" JPEG phenomenon, as the portable network graphics 

encoder (PNG); to build a more robust CNN.  

Kannojia and Jaiswal [11] studied the effects of varying resolution on the performance of CNN-based 

image classification. The study proposed two separate training testing methods. In the first method training on 

original resolution images and testing on varying resolution images (TOTV), this classifier is trained on the 

original resolution training images dataset and evaluated on a set of varying resolution testing images dataset. 

In another method training on varying resolution images and testing on the corresponding resolution images 

(TVTV), the same classifier is trained on each varying resolution training images dataset and evaluated on the 

corresponding resolution testing images dataset. The study shows that degradation in resolution from higher to 

lower decreases performance accuracy. One of the notes of the study is its lack of training time spent training 

CNNs on datasets. 

The performance of deep neural network classifiers through a simple training strategy was 

implemented in [12]. They proposed dividing the internal deep neural network (DNN) parameter space into 
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sections and optimizing these sections individually. They implemented their proposed strategy using the 

popular limited memory-Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimization algorithm. The most 

prominent factor that impairs the performance of the L-BFGS algorithm is the total number of optimization 

parameters, which is very high. The researchers suggest a simple but very effective strategy, called the partial 

limited memory BFGS strategy (pL-BFGS), to implement the L-BFGS algorithm. Their classification 

experiments showed that the proposed method greatly enhances the training process of a DNN classifier and 

improvements the classification accuracy. The researchers did not care to solve the problem of training time.  

Gueguen et al. [13] proposed training the CNN directly with discrete cosine transform (DCT) 

coefficients computed in the middle of the JPEG codec. The researchers modified libjpeg to directly produce 

DCT parameters, modified ResNet-50 to accommodate inputs of different sizes and steps and evaluated 

performance on ImageNet. The study results were compelling: in a performance like ResNet-50 baseline, the 

researchers found an acceleration of 1.77x, and in performance significantly better than baseline, they obtained 

an acceleration of 1.3x. The results of this study may be effective for speeding up processing in a wide range 

of speed-sensitive applications, from processing large datasets in data centers to processing JPEG images 

locally on mobile devices. 

Optimizing CNNs through parameter fine-tuning (learning transfer) was done by [14]. This method 

can improve CNN performance and can help overcome the lack of training data. The researchers investigated 

three main areas. The first is the optimal learning rate for transferred layers. The second is to analyze how 

different source datasets affect the outcome of several target datasets. Lastly, they compared an ensemble of 

fine-tuned networks to an ensemble of randomly initialized networks. The results of the study indicated that 

setting parameter finetuning always improved the accuracy of image classification, but the only possible 

downside is the increased training time required for pre-training.  

Cheng et al. [15] start from that current DNN models are computationally expensive and consume 

intensive memory, which hinders their deployment in devices with low memory resources or in applications 

with stringent latency requirements. Therefore, the normal procedure is to compress the model and accelerate 

it in deep networks without significantly reducing model performance. The researchers reviewed the recent 

techniques for compacting and accelerating DNN models, such as parameter pruning and quantization, low-

rank factorization, transferred/compact convolutional filters, and knowledge distillation. also, they reviewed 

some very recent successful methods, such as dynamic capacity networks and stochastic depths networks. 

A good compression method should achieve almost the same performance as the original model with much 

smaller parameters and less computing time. 

The idea of integrating source coding and DL to obtain better performance in classifying images. The 

author proposed a new CNN topology done by [16], which absorbs the original input along with its various 

compressed versions. This architecture facilitates compressed information via compression inputs from low 

quality to high quality and allows the device to learn from all potential compressed information by itself. The 

researcher was able to increase the accuracy of the modern CNN image classification: 0.374% increase in 

Top-1 accuracy, 0.346% increase in Top-5 accuracy in terms of the inception V3 model, and 0.39% increase 

in accuracy Top-1, and 0.228% increase in Top-5 accuracy of the ResNet-50 V2 model. But like other 

technologies, there were some limitations to the new CNN topology: the 11 branches of this structure are 

needed to insert compressed versions of the originals. The total number of parameters in the new architecture 

is 11 times the original. This can easily deplete the graphics processing units (GPU) random-access memory 

(RAM) resource when training and evaluation of the entire architecture are desired. Therefore, the block-by-

block training method is applied incrementally to avoid overusing computational resources at the start. 

Jia et al. [17] wanted to improve system scalability and balance the communication and computation 

ratio for CNN. Researchers have built a highly scalable DL training system for GPU-dense sets with three main 

contributions: i) they proposed a mixed-precision training method, ii) they proposed an optimization approach 

for an extremely large minibatch size (up to 64K), and iii) they proposed highly optimized all-reduce 

algorithms. As a result, when training the ImageNet dataset, the researchers achieved 58.7% of the accuracy of 

the Top-1 test with AlexNet (95 epochs) in just 4 minutes using 1024 Tesla P40 GPUs, and they achieved 

75.8% of the accuracy of the Top-1 test with ResNet-50 (90 epochs) in 6.6 minutes using 2048 Tesla P40 

GPUs, which outperform current systems. In summary, the related works showed that there was needed to 

develop an image compression approach to reduce the size of the dataset and improve the classification 

accuracy, which speeds up the machine learning process while maintaining image quality. 

 

 

2. METHOD  

This section introduces the dataset compression method used to improve deep learning applications. 

This method is presented in three main steps. First: creating a database of compressed images by applying the 

standard JPEG algorithm. Second: create a CNN model for image classification. Third: examine the effect of 

image compression on the model training time, classification accuracy, and the size of the image data set on 
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the storage device. The primary purpose of this method is to study the effect of the compression of the dataset 

on the performance and accuracy of the deep learning model. This study will help determine whether it is worth 

compressing the images for the training purpose in the machine learning model. 

 

2.1. The phases of the implemented compression method 

In this paper, the approach was developed based on six consecutive phases as detailed in Figure 1, and 

the following paragraphs. These six phases were implemented on a personal laptop computer with the following 

characteristics: Processor: Intel® Core ™ i7-7500U CPU @2.7 GHz 2.90 GHz. Installed memory (RAM): 

8.00 GB. System type: 64-bit Operating System, x64-based processor. Windows edition: Windows 10 Pro © 

2019 Microsoft Corporation. 

 

 

 
 

Figure 1. The proposed compression and training method 
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In phase 1, the Cats vs. Dogs images dataset (25,000 images) is getting and copy into the work folder, 

which was divided into two sub-folders: Cats and Dogs, then the original images were copied to the subfolders 

according to the label (name of the image file). Images were classified according to their content by their labels, 

using the word "dog" or "cat" followed by a number indicating the sequence of the image within the images 

dataset. In the meantime, the compressed image folders were prepared. Each folder was divided into two sub-

folders: Cats and Dogs. Then the original images dataset is read and compressed to the desired folder according 

to the given quality (10, 20, 40, 80, 100). Custom code was written to load images into the memory image-by-

image from the dataset folder according to the desired color pattern (color or gray), and resize them, then save 

them ready for modeling as a single NumPy array. For each array of images and labels, the NumPy array will 

look like this when printed: 
 

𝑃𝑟𝑖𝑛𝑡 (𝑋_𝑡𝑟𝑎𝑖𝑛. 𝑠ℎ𝑎𝑝𝑒, 𝑌_𝑡𝑟𝑎𝑖𝑛. 𝑠ℎ𝑎𝑝𝑒) → (25000, 120, 120, 3) (25000, ) 
 

In phase 2, the Python, TensorFlow, and Keras libraries are imported into the Jupyter framework. 

Python constitutes the best programming language in the artificial intelligence (AI) and machine learning (ML) 

fields [18]. It has become the best for developers, it is a great option for ML, data science, and the internet of 

things (IoT) that have been gaining momentum recently [19]. Keras is a powerful tool for developing DL 

models. It wraps the powerful numerical computation libraries Theano and TensorFlow [20]. Keras surpassed 

all libraries used in building and training DL models because of its features that made it at the forefront [21]. 

TensorFlow is a comprehensive system of tools and libraries that greatly ease and accelerate the application of 

neural network models [22]. Jupyter framework was used in DL projects because it is a great environment in 

which to develop code and communicate results. The primary programming languages that Jupyter supports 

are Julia (Ju), Python (Py), and R [23]. Jupyter Notebook has many features that have made it a popular 

application in the field of DL, which supports over 40 programming languages, notebooks can be shared with 

others, and there is an interactive output feature: hypertext markup language (HTML), images, videos, LaTeX, 

and custom multipurpose internet mail extensions (MIMEs) [24]. The main training parameters are chosen for 

covering different cases. The first parameter is epochs, which takes the following values (10, 20, 40). One 

Epoch is an entire dataset, that is passed forward and backward through the neural network. Epoch is divided 

into several smaller batches. The second parameter is the batch size, which takes the values (64, 128, 256). 

These values match training accuracy and test accuracy, and also reduce training time. Batch size (Bs) is the 

number of training images present in one iteration. When (N) represents the total number of training images, 

and (In) represents the number of iterations needed to complete one epoch, then the number of iterations is 

calculated as shown in (1). 
 

𝐼𝑛 =
𝑁

𝐵𝑠
  (1) 

 

The third parameter is the quality list. The quality list parameter takes the following values (10, 20, 

40, 80, and 100). These values are taken to form a doubling ratio for image quality from 10 to 100. The quality 

value is the complement of the compression ratio. 

In phase 3, the CNN model was created, and the inputs were adjusted (image size and color mode). 

The color mode takes the values 1 for gray and 3 for color, based on the number of arrays representing each 

mode. Then the model was compiled and become ready to do the training process. Neural network is a machine 

learning (ML) technique that is inspired by the human nervous system and the structure of the brain. It was 

structured from artificial neurons, called nodes. These nodes are stacked in three layers: the input layer, the 

hidden layer(s), and the output layer. Inputs are provided to each node. The node multiplies the inputs with 

random weights, calculates them, and adds a bias. Finally, activation functions (nonlinear functions) are applied 

to determine which neuron to fire to get the output, through the (2) [25]. 
 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 ((𝑤𝑒𝑖𝑔ℎ𝑡𝑠 .  𝑖𝑛𝑝𝑢𝑡𝑠) + 𝑏𝑖𝑎𝑠)   (2) 

 

Bias value allows shifting of the activation function left or right, to be more flexible about the features 

that will be learned. Each layer needs a single bias node. A bias node can add at the first few layers and not at 

the last ones [26]. Bias affects output values only; so, the role of bias is to help ensure that the output fits the 

incoming input better. Biases are typically configured to be zero, as the fraction of inconsistency is provided 

by small random numbers in the weights [27]. The previous process is shown in Figure 2. 

A CNN model was developed by using the Keras library. The model involves stacking convolutional 

layers with small 3×3 filters followed by a max-pooling layer. Together, these layers form a block, and these 

blocks can be repeated where the number of filters in each block is increased with the depth of the network 

such as 32, 64, and 128 for the three blocks of the model. The rectified linear unit (ReLU) activation function 

was used in each layer. As shown in (3) Shows the abbreviated mathematical expression for a ReLU function; 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5607-5616 

5612 

where for negative values of x, the value of the ReLU functions is zero, and for positive values of x, the value 

of the ReLU functions is x [28]: 

 

𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥)   (3) 

 

 

 
 

Figure 2. Data processing in neural network architecture 

 

 

The most commonly used activation functions are: linear activation function, sigmoid activation 

function, tanh function, ReLU function, SoftMax activation function [28]. The researchers suggest that the 

CNN model can benefit from regularization techniques, such as Dropout [17]. This technique drops some 

weights to reduce the time required to train the model. The classification task here is a binary classification 

task, requiring the prediction of one value of either 0 “dog” or 1 “cat”. An output layer with 1 node and a 

sigmoid activation function has been used. In compile process, the CNN model has been optimized using the 

Adam optimizer and the binary cross-entropy loss function. 

In phase 4, the images dataset was divided into the training dataset which contains 23,000 images for 

dogs and cats, and the testing dataset which contains 2,000 images for dogs and cats. Then the training/testing 

dataset is divided into images and labels. Then the part of the image for each dataset is converted to a Python 

array. Now, the images' Python array must reshape for each dataset to make it ready to use in the training/testing 

process. Also, the part of the label for each training/testing dataset must be transferred into the Python array 

but reshaping is not made. The model was trained on the training dataset according to (batch size, and number 

of epochs), then the training time was obtained. In phase 5, the images dataset of testing and its set of labels 

were passed to the model during the evaluation process to obtain the classification accuracy. 

In phase 6, the results were printed on the screen and saved to a file. Printed and saved results included 

scenario name, file name, file creation time, image size, epochs, batch size, image quality, model training time, 

and classification accuracy. Phases 4-6 were repeated; so that the training, evaluating, printing, and saving 

processes were repeated for all compressed image datasets according to different compression ratios (10, 20, 

40, 80, and 100). The main programming of the developed approach according to the previous six phases was 

explained in the pseudocode in Figure 3. 

 

2.2. The executed scenarios 

After preparing the images dataset within the folders, the programming code that is necessary to 

perform all scenarios on this data was created. The scenarios were divided to include all the possibilities of the 

variables used in this study. The scenarios were divided into several groups. Dataset within these groups is 

processed according to multiple variables, such as the image size (80×80, 120×120), the batch size (64, 128, 

256), and the image quality if it is original or gray, whether it is color compressed (10, 20, 40, 60, 100), or gray 

compressed (10, 20, 40, 60, 100), and according to the number of epochs (10, 20, 40). Thus, the number of 

groups used in performing the developed approach on the image’s dataset was 12, and the number of scenarios 

that have been implemented was 112. The training period for the DL model on these scenarios took 289 training 

hours. Summary of groups and scenarios are shown in the following sections. 

 

2.2.1. Colored image with original quality 

9 scenarios are implemented for a size 80×80, where epochs take the values (10, 20, 40), then each 

one of these values takes three values of the batch size (64, 128, 256). The training time is nearly doubled due 

to the increase in the number of epochs. Note that the size of the original dataset on the hard disk was remained 

546 MB in each scenario. In addition, for size 120×120, this includes 9 scenarios, the training time increases 

dramatically. Note that the size of the original dataset on the hard disk was remained 546 MB in each scenario. 
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Figure 3. Pseudocode of the deep learning algorithm of the developed approach in this study 

 

 

2.2.2. Gray image with original quality 

9 scenarios are implemented for a size 80×80, where epochs take the values (10, 20, 40), then each 

one of these values takes three values of the batch size (64, 128, 256). The training time is nearly doubled due 

to the increase in the number of epochs. Note that the size of the original gray pattern dataset on the hard disk 

is 941 MB. This is illogical since the size of gray images should be less than the size of the color images. In 

addition, for size 120×120, this includes 9 scenarios, the training time increases dramatically. Note that the size 

of the original gray pattern dataset on the hard disk is 941 MB. This is illogical since the size of gray images 

should be less than the size of the color images. 

 

2.2.3. Compressed gray, size 80x80, different qualities 

This includes 15 scenarios for epochs is 10 and the image quality (which is a complement to the 

compression ratio) is doubled (10, 20, 40, 80, 100), which means that it is compressed in the following ratios 

(90%, 80%, 60%, 20%, 0%) respectively. Then each one of quality values takes three values of the batch size 

(64, 128, 256), bringing the total to 15 scenarios. Note that the size of compressed data of the gray pattern on 

the hard disk varies according to the image quality (142, 211, 317, 594 and 1,180 MB) respectively. When the 

epochs are 20, this includes 15 scenarios, the training time doubles due to the increase in the number of epochs. 

A case of epochs is 40 and the batch size is 64, this includes 5 scenarios (each quality takes one scenario), still 

the training time doubles due to the increase in the number of epochs. 

 

2.2.4. Compressed gray, size 120x120, different qualities 

This includes 15 scenarios for epochs is 10 and the image quality is doubled (10, 20, 40, 80, 100). 

Then each one of quality values takes three values of the batch size (64, 128, 256), bringing the total to 15 

scenarios. When increasing the image size from 80×80 to 120×120, the training time increases dramatically. 

Note that the size of compressed data of the gray pattern on the hard disk varies according to the image quality 

(142, 211, 317, 594 and 1,180 MB) respectively. In case epochs is 20, bringing the total to 15 scenarios, the 

training time doubles due to the increase in the number of epochs. A case of epochs is 40 and the batch size is 

64, this includes 5 scenarios (each quality takes one scenario), the training time doubles due to the increase in 

the number of epochs. 

 

START 

1. Preparing a folder to contain the original images dataset 

2. Divide the folder into two sub-folders: Cats, Dogs  

3. Copy the original images to the sub folders according to the label 

4. Preparing the folders to contain the compressed images  

5. Divide each folder into two sub-folders: Cats, Dogs  

6. Compress images according to the required ratio and copy them to the desired folder 

7. IMPORT Python, TensorFlow, Keras 

8. SET image size TO (80X80) or (120X120) 

9. SET epochs TO 10 or 20 or 40 

10. SET batch size TO 64 or 128 or 256 

11. SET quality list TO (10, 20, 40, 60, 100) 

       DO 

1. Prepare the training/testing dataset and divide it into images and labels. 

2. CONVERT the images for each dataset to Python array. 

3. RESHAPE Python array for each dataset 

4. CONVERT labels for the training/testing dataset to Python array 

5. CREATE the CNN model and adjust inputs according to the given image size 

6. COMPILE the model 

7. TRAIN the model on the training dataset according to batch size, epochs 

8. GET training time 

9. EVALUATE the model with the testing dataset  

10. GET classification accuracy 

11. PRINT image size, epochs, batch size, quality, training time, classification accuracy 

12. SAVE image size, epochs, batch size, quality, training time, classification accuracy TO 

file 

WHILE quality list NOT empty  

END 
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2.2.5. Compressed color, size 80x80, quality 40 

This includes 3 scenarios for epochs is 10 and the batch size was changed with (64, 128, 256) (each 

batch size takes one scenario). Note that the size of the compressed gray on the hard disk according to the 

image quality 40 is 317 MB. For size 120×120, increasing the image size from 80×80 to 120×120, the training 

time increases dramatically. 

 

 

3. RESULTS AND DISCUSSION  

In principle, the number of epochs is affecting the training time, while the image compression ratio is 

affecting the classification accuracy. Therefore, scenarios that give too long training time and scenarios that 

give low classification accuracy will be excluded. The scenarios that fulfill the three study objectives will be 

weighed together to obtain the best possible scenario. In this study, 112 scenarios were applied to the image’s 

dataset, which took approximately 289 hours of training CNN models. The following variables and its values 

are used for each scenario: image size (80×80 and 120×120), number of epochs (10, 20, 40), batch size (64, 

128, 256), image quality (original color, original gray, compressed color images quality (10, 20, 40, 80, 100), 

compressed gray images quality (10, 20, 40, 80, 100)). Therefore, the scenario is expressed in the following 

way: scenario (number) (image size, number of epochs, batch size, image quality). The following abbreviations 

are used: cc to represent the compressed color image quality and cg to represent the compressed grayscale 

image quality. The following scenario: Scenario (37) (80, 10, 64, 10 cg); means the scenario number is 37, the 

image size is 80×80, the number of epochs is 10, the batch size is 64, and the quality value is 10 (90% 

compression ratio) with compressed grayscale image. 
 

3.1.  The tested scenarios  

When scenarios were analyzed, it is noticed that the training time is divided into four categories, which 

are (50 minutes, one hour and a half, three hours and a half, seven hours and a half). The highest classification 

accuracy in each category is as follows: 86.4, 88.2, 89.4, and 89.5, respectively. The difference in the previous 

four classification accuracy values is not significant value, because obtain the highest accuracy is not from the 

aims of the study. Therefore, the first training time category was chosen because it achieves one of the study 

objectives, which is to reduce the training time (not to exceed 50 minutes).  

Within this category, it is noted that the scenario that achieves the highest possible accuracy is the 

following scenario: Scenario (39) (80, 10, 64, 40 cg); images dataset quality is 40, compressed gray (cg). This 

gave 48 minutes of training time, a classification accuracy of 86%, and image dataset size of 317 MB on the 

storage device. This size makes up 58% of the original images dataset size and saves 42% of storage space. 

Note that when image resizing is made for the gray compressed images dataset on the storage device to 80×80, 

the size of the dataset becomes 123 MB, which is approximately 23% of the original dataset size and saves 

77% of the storage space. 
 

3.2.  Results summary 

In the research papers reviewed in this paper, which on developing deep learning, although they have 

made great progress in improving deep learning algorithms and developing high-performance training systems, 

these have not made big attention in images dataset size-which are used in the training process-on the storage 

device, nor at the training time. The proposed approach in this paper reduces the size of the dataset by 

compressing it while preserving the image quality, thus reduces the required training time and improves the 

classification accuracy. Table 1 is showing a comparison between seven scenarios; the best five scenarios that 

achieve the study objectives, and the best- and worst-case scenarios at all, sorted in ascending order according 

to the classification accuracy. Figure 4 is showing the best five scenarios that achieved the study objectives, 

which the training time does not exceed the 50-minutes, sorted in ascending order according to the 

classification accuracy. 

 

 

Table 1. The best five scenarios that achieve the study objectives, and the best- and worst-case scenarios at 

all, sorted in ascending order according to the classification accuracy 
Scenario 

no. 

Image size Epochs Batch size Quality Training 

time 

Classification accuracy Dataset size 

on HD (MB) 

43 80×80 10 128 20 (C. GRAY) 0:45:33 48.6 211 

39 80×80 10 64 40 (C. GRAY) 0:48:28 86.0 317 

41 80×80 10 64 100 (C. GRAY) 0:45:16 86.2 1180 
20 80×80 10 128 (O. GRAY) 0:46:25 86.3 941 

1 80×80 10 64 (O. COLOR) 0:48:50 86.3 546 

108 80×80 10 128 40 (C. COLOR) 0:49:56 86.4 317 

17 120×120 40 128 (O. COLOR) 7:46:02 89.5 546 
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Figure 4. The best five scenarios that achieved the study objectives, which the training time does not exceed 

the 50-minutes, sorted in ascending order according to the classification accuracy 

 

 

4. CONCLUSION  

In this study, the Dogs vs. Cats image dataset from Kaggle Corporation was used, which contains 

25,000 color images. 112 scenarios were applied in both the color and gray patterns. These scenarios took 289 

training hours of CNN models. From this study, it was found that the best scenario that gives very good and 

acceptable classification accuracy is Scenario (39) (80, 10, 64, 40 cg). The training time of this scenario is  

48 minutes, and the classification accuracy is 86%, and the image dataset size 317 MB. This size makes up 

58% of the original images dataset size and saves 42% of storage space. Note that when image resizing is made 

for the gray compressed images dataset to 80×80, the size of the dataset becomes 123 MB, which is 

approximately 23% of the original dataset size and saves 77% of the storage space. 

 

 

REFERENCES 
[1] L. Alam, P. K. Dhar, M. A. F. M. R. Hasan, M. G. B. Sarwar, and G. M. Daiyan, “An improved JPEG image compression algorithm 

by modifying luminance quantization table,” IJCSNS International Journal of Computer Science and Network Security, vol. 17,  

no. 1, pp. 200–208, 2017. 

[2] A. Shawahna, M. E. Haque, and A. Amin, “JPEG image compression using the discrete cosine transform: An overview, applications, 
and hardware implementation,” Prepr. arXiv1912.10789, Nov. 2019. 

[3] V. Tyagi, Understanding digital image processing. CRC Press, 2018. 

[4] N. O. Mahony et al., Advances in computer vision, vol. 943. Cham: Springer International Publishing, 2020. 
[5] S. Pouyanfar et al., “A survey on deep learning: Algorithms, techniques, and applications,” ACM Computing Surveys, vol. 51,  

no. 5, pp. 1–36, Sep. 2019, doi: 10.1145/3234150. 

[6] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to convolutional neural networks for computer vision,” Synthesis 
Lectures on Computer Vision, vol. 8, no. 1, pp. 1–207, Feb. 2018, doi: 10.2200/S00822ED1V01Y201712COV015. 

[7] Š. Balogh, “Knowledge and datasets as a resource for improving artificial intelligence,” in Proceedings of the Computational 

Methods in Systems and Software, 2021, pp. 828–837. 
[8] B. Aggarwal, A. Acharya, and A. Laghari, “A survey on image datasets for computer vision and deep learning convolutional neural 

network tasks,” Department of Electrical and Electronics Engineering, 2020, doi: 10.13140/RG.2.2.22391.44966. 

[9] M. Gogoi and S. A. Begum, “Progressive 3-layered block architecture for image classification,” International Journal of Advanced 

Computer Science and Applications, vol. 13, no. 3, pp. 499–508, 2022, doi: 10.14569/IJACSA.2022.0130360. 

[10] M. Dejean-Servières, K. Desnos, K. Abdelouahab, W. Hamidouche, L. Morin, and M. Pelcat, “Study of the impact of standard 

image compression techniques on performance of image classification with a convolutional neural network,” Internship Report, 
IETR-Vaader, 2018. 

[11] S. P. Kannojia and G. Jaiswal, “Effects of varying resolution on performance of CNN based image classification an experimental 

study,” International Journal of Computer Sciences and Engineering, vol. 6, no. 9, pp. 451–456, Sep. 2018, doi: 
10.26438/ijcse/v6i9.451456. 

[12] A. Caliskan, M. E. Yuksel, H. Badem, and A. Basturk, “Performance improvement of deep neural network classifiers by a simple 

training strategy,” Engineering Applications of Artificial Intelligence, vol. 67, pp. 14–23, Jan. 2018, doi: 
10.1016/j.engappai.2017.09.002. 

[13] L. Gueguen, A. Sergeev, B. Kadlec, R. Liu, and J. Yosinski, “Faster neural networks straight from JPEG,” in Advances in Neural 

Information Processing Systems, 2018, vol. 31. 
[14] N. Becherer, J. Pecarina, S. Nykl, and K. Hopkinson, “Improving optimization of convolutional neural networks through parameter 

fine-tuning,” Neural Computing and Applications, vol. 31, no. 8, pp. 3469–3479, Aug. 2019, doi: 10.1007/s00521-017-3285-0. 

[15] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression and acceleration for deep neural networks,” Prepr. 
arXiv1710.09282, 2017. 

[16] Y. Jiang, “New convolutional neural network topology with compressed information to enhance accuracy for image classification 

task,” M.S. thesis of Applied Science, Waterloo, Ontario, Canada, 2019. 

[17] X. Jia et al., “Highly scalable deep learning training system with mixed-precision: training ImageNet in four minutes,” Prepr. 

arXiv1807.11205, 2018. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5607-5616 

5616 

[18] S. Saabith, V. Thangarajah, and M. M. M. Fareez, “Popular python libraries and their application domains,” International Journal 

of Advance Engineering and Research Development, vol. 7, no. 11, pp. 18–26, 2020. 
[19] P. N. S. Jyothi and R. Yamaganti, “A review on python for data science, machine learning and IoT,” International Journal of 

Scientific & Engineering Research, vol. 10, no. 12, pp. 1–8, 2019. 

[20] B. T. Chicho and A. B. Sallow, “A comprehensive survey of deep learning models based on keras framework,” Journal of Soft 
Computing and Data Mining, vol. 2, no. 2, pp. 49–62, 2021. 

[21] B. J. Erickson, P. Korfiatis, Z. Akkus, T. Kline, and K. Philbrick, “Toolkits and libraries for deep learning,” Journal of Digital 

Imaging, vol. 30, no. 4, pp. 400–405, Aug. 2017, doi: 10.1007/s10278-017-9965-6. 
[22] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with TensorFlow: a review,” Journal of Educational and Behavioral Statistics, 

vol. 45, no. 2, pp. 227–248, Apr. 2020, doi: 10.3102/1076998619872761. 

[23] J. M. Perkel, “By jupyter, it all makes sense,” Nature Journal, vol. 563, pp. 145–146, 2018. 
[24] A. Davies, F. Hooley, P. Causey-Freeman, I. Eleftheriou, and G. Moulton, “Using interactive digital notebooks for bioscience and 

informatics education,” PLOS Computational Biology, vol. 16, no. 11, Nov. 2020, doi: 10.1371/journal.pcbi.1008326. 

[25] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architectures,” IEEE Access, vol. 7, pp. 53040–53065, 
2019, doi: 10.1109/ACCESS.2019.2912200. 

[26] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network 

applications: A survey,” Heliyon, vol. 4, no. 11, Nov. 2018, doi: 10.1016/j.heliyon.2018.e00938. 
[27] J. Collis, “Glossary of deep learning: Bias,” medium.com. [Online]. Available: https://medium.com/deeper-learning/glossary-of-

deep-learning-bias-cf49d9c895e2 (accessed: Jun. 26, 2022). 

[28] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks,” International Journal of Engineering Applied 
Sciences and Technology, vol. 4, no. 12, pp. 310–316, 2020. 

 

 

BIOGRAPHIES OF AUTHORS   

 

 

Raed Altabeiri     got his master’s degree in Computer and Networks Engineering 

from Al-Hussein Bin Talal University in 2021, and he got the bachelor’s degree in Computer 

Science from Mutah University in 1992. Raed served as a teacher of Computer skills course in 

the Ministry of Education in Jordan from 1992 to 2022. He can be contacted at email:  

raedtbeery2017@gmail.com. 

  

 

Moath Alsafasfeh     earned his Ph.D. in 2017 at Western Michigan University 

(WMU) with excellent evaluation. He is currently an Associate Professor of Electrical and 

Computer Engineering at Al-Hussein Bin Talal University (AHU), Jordan. The current research 

of Alsafasfeh is going in using computer vision and machine learning to operate, monitor, 

maintain, and control the different systems in an efficient processing time. Dr. Alsafasfeh was 

awarded several national prizes, and scholarships to get Ph.D. and bachelor’s degrees. He has 

strong relationships with different local, regional, and international researchers and he is 

involved in many different international research and capacity-building projects. He can be 

contacted at email: moath.alsafasfeh@ahu.edu.jo. 

  

 

Mohanad Alhasanat    was born in Jordan in 1981. He received his Ph.D. from 

Islamic Science University of Malaysia (USIM) in 2016. Currently, he is an Associate Professor 

in networks at the Department of Computer Engineering, Al-Hussein Bin Talal University 

(Jordan). His research focuses on Computer Networks including enhancing TCP congestion 

control mechanism over wireless networks. In addition, he has research interest in Delay 

Tolerant Networks, Artificial Intelligence, Computer Vision, and Deep Machin learning. He can 

be contacted at email: mohanadhasanat@ahu.edu.jo. 

 

 

 

https://orcid.org/0000-0002-0068-0400
https://orcid.org/0000-0002-3370-2928
https://scholar.google.com/citations?user=haLxLnkAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57193874004
https://orcid.org/0000-0003-2095-017X?fbclid=IwAR0jqV5VmzT10LfyDJUFytjv3qOsVOh4jX0bP1dg53TD7Ie1IffQLMyff78
https://scholar.google.com/citations?hl=en&user=whSh2QwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57205765685

