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 Remotely sensed satellite images have become essential to observe the 

spatial and temporal changes occurring due to either natural phenomenon or 

man-induced changes on the earth’s surface. Real time monitoring of this 

data provides useful information related to changes in extent of urbanization, 

environmental changes, water bodies, and forest. Through the use of remote 

sensing technology and geographic information system tools, it has become 

easier to monitor changes from past to present. In the present scenario, 

choosing a suitable change detection method plays a pivotal role in any 

remote sensing project. Previously, digital change detection was a tedious 

task. With the advent of machine learning techniques, it has become 

comparatively easier to detect changes in the digital images. The study gives 

a brief account of the main techniques of change detection related to land 

use land cover information. An effort is made to compare widely used 

change detection methods used to identify changes and discuss the need for 

development of enhanced change detection methods. 
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1. INTRODUCTION 

The satellites and unmanned aerial vehicles are fast becoming a huge data source. This has paved 

the way for use of remote sensing images to detect changes on the earth’s surface. Change pertaining to the 

surface of earth have become important for monitoring the local, regional and global resources and 

environment. Change detection (CD) has been defined in [1] as “the process of identifying differences in the 

state of an object or phenomena by observing it at different times”. In other words, change detection is the 

process of finding regions that have undergone spatial or spectral modifications and the reasons behind it. A 

change map is constituted from the images captured at different period of time.  

Change detection techniques provide valuable information of the possible transformations a given 

scene has suffered over time. Change detection is complicated by the fact that change can occur in the 

temporal and/or spectral domains [2]. Changes can be due to: a biological action in nature, biological action, 

and human activity. As human and natural forces continue to alter the landscape, various public and private 

agencies are finding it increasingly important to develop monitoring methods to assess these changes. 

Change detection can be used to measure five different types of change [3]: change in the identity of a feature 

over time, change of a feature’s shape over time, change of a feature’s location over time, change in a 

feature’s size over time, and change in the identify of a feature over time. Gong et al. [4] have  

characterized change detection approaches into two broad groups: bi-temporal CD which measures  

https://creativecommons.org/licenses/by-sa/4.0/
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changes based on a ‘two-epoch’ timescale and temporal CD that analyses the changes based on a 

‘continuous’ timescale. 

 

 

2. NEED AND IMPORTANCE OF CHANGE DETECTION 

Availability of satellite images has given rise to the use of these images in monitoring the changes 

occurring on the surface of the earth. Timely and accurate analysis of the detected changes play an important 

role in understanding natural phenomenon and changes occurring due to these. It is also used to understand 

the impact of anthropogenic activities on the environment. The foremost aim of change detection method is 

to identify significant changes occurring at the same location over a period of time. These changes are 

captured in a series of images by a satellite. Popular satellite data for remote sensing applications are Landsat 

multispectral scanner (MSS), thematic mapper (TM), SPOT, and MODIS. Major steps involved in the change 

detection process are [5]: image pre-processing, selection of suitable techniques, and accuracy assessment. 

Figure 1 shows the framework of change detection [6]. The change detection has got its various applications 

few of them are as follows: deforestation, crop monitoring, moisture content of soil, urban planning, and 

water quality.  

 

 

 
 

Figure 1. Change detection framework 

 

 

3. REVIEW OF CHANGE DETECTION TECHNIQUES  

The Earth’s surface marks the presence of different types of landscapes. The selection of proper 

change detection tool is important to analyze changes in these land forms. Image pre-processing plays a 

major role in the outcome change detection process. Depending on the application, there are many 

approaches for change detection of satellite images [7]. Figure 2 shows the different change detection 

methods. A comparative analysis of four of the most commonly used change detection methods namely:  

i) transformation-based CD, ii) classification-based CD, iii) artificial neural network (ANN) based CD, and 

iv) advanced models of CD is presented in this study. 

 

 

 
 

Figure 2. Change detection methods 

 

 

3.1.  Transformation based CD 

Change detection using pixel transformation for detecting the measure of change in the images has 

been extensively studied in the literature. As mentioned in Table 1, these methods are: principal component 

analysis (PCA) [8]–[10], a variant of PCA called Taselled Cap or Kauth-Thomas (KT) transformation [11], 

[12], Gramm-Schmidt transformation and Chi-Square Transform [13]. Table 1 gives details regarding the 

different transformation-based methods and the application areas in which these methods were used. Out of 

all the methods mentioned in the literature, PCA is the most frequently used approach for detecting change or  

no-change information. 
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Principal component analysis is a transformation-based change detection technique. It is a 

dimensionality reduction method in which principal components are computed by performing a change of 

basis. The data in the direction of maximum variance is retained. The reduced features are uncorrelated with 

each other. PCA based land use change detection technique was used in [8] to identify land use changes in 

the Hangzhou City from 2000 to 2003. PCA was used to enhance the change information in the Landsat 

images. A hybrid classifier gave improved accuracy. Based on principal component analysis [9] proposed a 

framework for detecting changes in multidimensional data streams. Their method reduces computational 

costs by using a density estimator. The efforts required to minimize threshold setting is reduced through the 

use of Page-Hinkley test. Chakraborty [14] used MODIS Terra images to detect change in forest areas of the 

Barak Basin of north-eastern India that covers the states of Assam, Manipur, Mizoram, Nagaland and 

Tripura. PCA was applied on enhanced vegetation index (EVI) composite images of 2000 to 2006. The forest 

change map was used to identify hotspots or areas of high disturbance. Robust PCA (RPCA) via principal 

component pursuit (PCP) was used in [15] for change detection in ultrawideband very high-frequency 

synthetic aperture radar (SAR) images of CARABAS-II data set. RPCA refers to the problem of PCA when 

the data may be corrupted by outliers [16]. The main drawback of this approach is, it is difficult to label the 

changed area in an image. 

 

 

Table 1. Detailed survey of transformation-based change detection method 
Author Specific method Dataset Application area 

Fung and Ledrew [8] PCA Landsat Land cover change detection 

Gong [9] PCA Landsat Land cover change detection 

Deng et al. [10] PCA Spot-5 Landsat City expansion 
Solano-Correa et al. [11] Tasseled Cap Transformation Landsat Land cover change detection 

Thakkar et al. [12] Tasseled Cap Transformation Landsat Land cover change detection 

Vazquez-Jimenez et al. [13] Chi-square Quickbird Land cover change detection 
Chakraborty [14] PCA MODIS Forest change detection 

Schwartz et al. [15] RPCA CARABAS-II Land cover change detection 

 

 

3.2.  Classification based CD 

This approach is entirely dependent on the choice of data for change analysis. The methods are 

divided into pre-classification and post-classification. The pre-classification approach is mostly used for 

change and no-change, rate of change, and image enhancement, while the post-classification is mostly used 

for “from-to” change analysis and comparison of individually classified images. Table 2 presents a detail 

study of different classification-based methods along with the application area in which they were used. From 

the study, it was found that post-classification method was the most used in classification-based change 

detection. The pre-classification approach is used in [17] for image enhancement, change and no-change, and 

change rate, while the post-classification is mostly used for “from-to” change analysis and comparison of 

individually classified images. Afify [18] has compared image differencing, post-classification, principal 

component analysis, and image rationing techniques to monitor and assess the extent of land cover changes 

in the city of Burg El-Arab, Egypt. Among these four techniques, the post classification change detection 

technique provided the highest accuracy followed by the image rationing (IR) and image differencing (ID) 

techniques while the PCA technique gave the least accuracy. Urban land cover change of Hurghada in Egypt 

was evaluated by [19]. Of the five change detection techniques applied, post-classification method was found 

to be the most suitable and accurate method. Hossen et al. [20] used unsupervised iso-data clustering, 

Mahalanobis distance, maximum likelihood supervised classification, normalized difference water index, and 

minimum distance supervised classification to evaluate and predict future changes in Manzala Lake, Egypt. 

Maximum likelihood classifier (MLC) achieved highest overall accuracy of 93.33% in comparison to other 

techniques. To predict future changes, linear regression was used. Supervised classification technique 

maximum likelihood algorithm was used to determine changes in the Kupti watershed of Darwha block, 

Maharashtra, India over the period of 15 years from 2000 to 2016 [21]. Classes demarcated on the basis of 

supervised classification: agriculture, forest cover, wasteland, habitation, and waterbody. Historical data from 

Corona dataset was mapped with Landsat data and changes in the forest areas of Virginia-Maryland, United 

States and Mato Grosso-Tocantins-Pará, Brazil were studied by [22]. Corona images were used to detect 

changes in the year 1960 and Landsat images were used for the period 1980 to 2000. Forest changes were 

mapped using the support vector machine (SVM) algorithm [23]. 

SVM was used by [24] to analyze built-up and non-built-up changes in Landsat images of Harare 

Metropolitan Province, Zimbabwe. Halmy et al. [25] mapped the land use/land cover (LULC) distribution of 

the north-western desert of Egypt to study land use/land cover changes of the desert landscape for 1988, 

1999, and 2011. A random forest approach was used to produce the LULC maps with more than 90% 
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accuracy. From their study they found that depending upon the land use, the study area was subjected to 

different types of modifications. Markov-CA was used to project changes in 2023 by extrapolating current 

trends. 

Pre-classification and post-classification change detection techniques were used in [26] on Tanguar 

Haor, Bangladesh images to analyze changes from 1980 to 2010 in. In pre-classification approach: change 

vector analysis, normalized difference vegetation index, and normalized difference water index (NDWI) 

analysis were implemented to assess the change scenario. Maximum likelihood classification technique was 

used to categorize land cover into shallow water, deepwater, vegetation, and settlement. ENVI thematic 

change workflow tool was used as a post classification tool. Combination of these techniques helped to 

understand the direction, dynamics, state, and magnitude of change. 

 Bitemporal change detection to determine the urban growth of Madurai, India with wavelet-based 

post classification change detection technique on two MSS land cover images of 1996 and 2004 was explored 

in [27]. Texture feature vector was given as input to a fuzzy c-means classifier to identify the urban growth of 

the city. The accuracy of the change map was assessed using error matrix analysis which showed the 

superiority of this method as compared to change vector analysis, image differencing, and PCA.  

Vignesh et al. [28] grouped images into clusters and used them as training sets for an unsupervised 

classification algorithm ensemble minimization learning algorithm (EML) for land cover classification. This 

algorithm can classify different vegetation types. A disadvantage is it requires some improvement in 

classification accuracy. 

SVM was used by [24] to analyze built-up and non-built-up changes in Landsat images of Harare 

Metropolitan Province, Zimbabwe. Halmy et al. [25] mapped the LULC distribution of the north-western 

desert of Egypt to study land use/land cover changes of the desert landscape for 1988, 1999, and 2011. A 

random forest approach was used to produce the LULC maps with more than 90% accuracy. From their study 

they found that depending upon the land use, the study area was subjected to different types of modifications. 

Markov-CA was used to project changes in 2023 by extrapolating current trends. 

Pre-classification and post-classification change detection techniques were used in [26] on Tanguar 

Haor, Bangladesh images to analyze changes from 1980 to 2010 in. In pre-classification approach: change 

vector analysis, normalized difference vegetation index, and Normalized Difference Water Index (NDWI) 

analysis were implemented to assess the change scenario. Maximum likelihood classification technique was 

used to categorize land cover into shallow water, deepwater, vegetation, and settlement. ENVI thematic 

change workflow tool was used as a post classification tool. Combination of these techniques helped to 

understand the direction, dynamics, state, and magnitude of change.  

Bitemporal change detection to determine the urban growth of Madurai, India with wavelet-based 

post classification change detection technique on two MSS land cover images of 1996 and 2004 was explored 

in [27]. Texture feature vector was given as input to a fuzzy c-means classifier to identify the urban growth of 

the city. The accuracy of the change map was assessed using error matrix analysis which showed the 

superiority of this method as compared to change vector analysis, image differencing, and PCA.  

Vignesh et al. [28] grouped images into clusters and used them as training sets for an unsupervised 

classification algorithm ensemble minimization learning algorithm (EML) for land cover classification. This 

algorithm can classify different vegetation types. A disadvantage is it requires some improvement in 

classification accuracy. 

 

 

Table 2. Detailed survey of classification-based change detection method 
Author Specific Method Dataset Application area 

Afify [18] Post classification Landsat Urban change detection 

Kamh et al. [19] Post classification Landsat Urban growth 

Hossen et al. [20] MLC, 
Linear regression 

Landsat Future land cover prediction 

Patangray et al. [21] maximum likelihood algorithm Landsat-4 

Google Image 
Landsat-8 

Analyzing changes in the watershed 

area 

Song et al. [22] SVM Corona 

Landsat-5 
Landsat-7 

Forest cover change analysis 

Huang et al. [23] SVM Landsat Forest cover change analysis 

Kamusoko et al. [24] SVM Landsat Urban growth 
Halmy et al. [25] Random forest Landsat Desertification 

Haque and Basak [26] Pre-classification 

Post-classification 

Landsat Landscape change over decades 

Raja et al. [27] Wavelet-based post classification Landsat Urban expansion 

Vignesh et al. [28] Ensemble Minimization Learning algorithm Landsat Rural and urban change detection 

https://www.sciencedirect.com/science/article/pii/S0924271614002305#!
https://www.scirp.org/journal/articles.aspx?searchcode=Courage++Kamusoko&searchfield=authors&page=1
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3.3.  Artificial neural networks-based CD 

The use of artificial intelligence for satellite image processing has increased in recent years. One of 

the earlier mentions of the use of artificial neural networks (ANN) for multi-temporal change analysis is 

found in [29]. Bi-temporal comparison of two images of Wilmington, North Carolina were acquired of 

Landsat TM. A backpropagation training algorithm with four layers was used to detect land changes. Final 

classes were: forest, agriculture or bare or urban, cypress or wet deciduous or marsh, and water. The ANN 

model had an overall accuracy of 95.6% for four class classification schemes whereas the maximum 

likelihood classifier gave an accuracy of 86.5%. In [30] ANN was used to perform vegetation change 

detection on two images of 2003 and 2004. The results were compared with the post-classification method. It 

was observed that combining NDVI differencing method with visual interpretation gives better results. Fkirin 

[31] used two datasets and trained the neural network to detect changes using an improvement factor. Not 

just change detection, but changes in classes like vegetation to water, and desert to vegetation were also 

detected.  

 

3.4.  Advanced models of CD 

In recent times, convolution neural networks and recurrent neural networks have been employed in 

the study of change detection. A detailed study of the use of artificial neural networks and advanced neural 

models for change analysis is presented in Table 3. Morgan et al. [32] used the U-net convolutional neural 

network (CNN) classification algorithm. Results of change in bi-temporal high-resolution images were 

compared with random trees and support vector machine algorithms. Comparisons showed that U-Net 

classifier had an overall accuracy of 92.4% as opposed to SVM with 81.6% and RT with 75.7%.  

Ahangarha et al. [33] trained the U-net CNN model for generating change maps of Hong Kong city 

images from the Onera satellite change detection (OSCD) dataset. This dataset consists of images captured 

using the Sentinel-2 satellite. Overall accuracy was 95% and value of Kappa was close to one. The use of a 

deep belief network for image differencing was studied in [34]. An increase in the difference between 

changed area and a decrease in the not changed area was achieved by tuning the deep belief algorithm 

through a modified backpropagation algorithm. Change detection results are generated through clustering 

analysis of difference images. In [35] CNN was used for semantic segmentation. Their model was able to 

locate places of change in given input images. Zhang and Lu [36] have proposed spectral-spatial joint 

learning network (SSJLN) that contains three parts: spectral-spatial joint representation, feature fusion, and 

discrimination learning. They evaluated the performance of their proposed method on four datasets. Other 

extensions of CNN are also studied. Mou et al. [37] has used a combination of convolutional neural network 

and recurrent neural network, Karandikar [38] have proposed a pixel-based method that uses differencing and 

LSTM as feature fusion, and [39] implemented convolutional neural network under an object-based image 

analysis framework. Pomente et al. [40] pretrained the data with sufficient labeled samples in other domain 

data and used it in the deep feature learning phase of multilevel convolutional neural network. Zhu et al. [41] 

used SegNet, Venugopal [42] used deep lab dilated convolutional neural network (DL-DCNN), Varghese 

[43] used ChangeNet, while in [44] Hopfield neural network was used. In most cases, freely available 

Landsat [45] data is used. [46] discusses the pros and cons of using artificial intelligence in remote sensing. 

Recent studies show the use of advanced models of deep neural networks can improve accuracy of change 

detection [47]–[50]. Use of CNN and RNN has changed the way digital remotely sensed images are 

processed 

 

 

Table 3. Detailed survey of artificial neural network and advanced models of change detection method 
Author Specific Method Dataset Application Area 

Dai and Khorram [29] ANN Landsat Land change analysis 

Zang et al. [30] ANN Landsat Vegetation change detection 
Morgan et al. [32] U-Net NAIP Coastal marsh change detection 

Ahangarha et al. [33] U-Net CNN Onera Satellite 

CD 

Environmental change detection 

Chu et al. [34] Deep Belief Networks -- Land change analysis 

Jong and Bosman [35] CNN Vaihingen Dataset Land change analysis 

Liu et al. [39] CNN Opendata Land change analysis 
Zhu et al. [41] SegNet -- Land change analysis 

Varghese et al. [43] ChangeNet VL-CMU-CD 

Tsunami 
GSV 

Visual change detection 

Ghosh et al. [44] Hopfield type neural 

network 
SOM based neural network 

Landsat-5 

Landsat-7 

Urban change analysis 
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4. CONCLUSION  

New algorithms and methods are developed to overcome the drawbacks of the existing algorithms. 

For case of remotely sensed data, there are many aspects which govern the outcome of any change detection 

algorithm. Some common factors identified from the literature are difficulty in image acquisition, noise, pre-

processing of images, size of images, and computational complexity. Complexity of image pre-processing 

increases if data is captured from different sources. Due to the varying nature of the data collected, there is no 

single technique which is applicable on all types of satellite images. Careful consideration of application area 

is required while selecting a change detection method. Another important factor is the source of satellite data.  

The paper has discussed majorly used methods of change detection found in literature. In 

transformation-based methods, principal component analysis was found to be the most popular. A main 

disadvantage of this method is the difficulty of interpreting and labelling change data on the transformed 

images. In classification-based methods, post classification and maximum likelihood classifier are the 

commonly used techniques. Although classification-based change detection methods are the common choice 

for detecting changes, it is tedious and time consuming to select training samples. This affects the 

classification accuracy and as a result change detection is unsatisfactory. From the past few years, many 

researchers have applied artificial intelligence techniques in change detection. However, there is still no 

efficient way to design and train the neural network and it is still an enduring issue in the field of remote 

sensing. In view of all this, we conclude that a hybrid changes detection framework comprising of individual 

change detection technique improves the overall accuracy 
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