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ABSTRACT

Speech emotion recognition aims to identify the emotion expressed in the speech
by analyzing the audio signals. In this work, data augmentation is first performed
on the audio samples to increase the number of samples for better model learn-
ing. The audio samples are comprehensively encoded as the frequency and tem-
poral domain features. In the classification, a light gradient boosting machine
is leveraged. The hyperparameter tuning of the light gradient boosting machine
is performed to determine the optimal hyperparameter settings. As the speech
emotion recognition datasets are imbalanced, the class weights are regulated
to be inversely proportional to the sample distribution where minority classes
are assigned higher class weights. The experimental results demonstrate that
the proposed method outshines the state-of-the-art methods with 84.91% accu-
racy on the Berlin database of emotional speech (emo-DB) dataset, 67.72% on
the Ryerson audio-visual database of emotional speech and song (RAVDESS)
dataset, and 62.94% on the interactive emotional dyadic motion capture (IEMO-
CAP) dataset.
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1. INTRODUCTION
Speech emotion recognition aims to identify the affective aspects of the audio waveforms regardless

of the content of the utterances. Speech emotion recognition requires knowledge of signal processing and
machine learning. From the perspective of signal processing, the audio waveforms are represented as features
in the temporal and frequency domain. Thereafter, the features are classified into their respective class by
machine learning methods. The performance of the machine learning methods highly relies on the quality of
the features. Apart from that, speech emotion recognition also faces data scarcity problems where there are
limited data samples.

In this work, the audio waveforms are represented by seven discriminative temporal and frequency
features. Besides that, data augmentation techniques are applied to solve data scarcity problems. After the
preprocessing and feature extraction, the features are thereafter classified into the emotion class by the light
gradient boosting machine. As the sample distributions of the emotion classes are skewed, the class weights are
adjusted according to the class distributions to alleviate imbalance dataset problems. In addition, to determine
the optimal settings for the light gradient boosting machine, hyperparameter tuning with a comprehensive grid
search is conducted on all datasets used. The contributions of this paper are as follows. i) Machine learning
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methods generally require large amount of data for learning, therefore, data augmentation techniques, including
time stretching and pitch shifting, are proposed to synthesize more audio samples. With data augmentation,
the machine learning method learns on more data samples, thus reducing the overfitting and improving the
generalization capability of the machine learning method. ii) The raw audio signals are hardly feasible for
emotion recognition. Thus, several discriminative features in the temporal and frequency domains are used
to represent the audio signals. The features include mel-frequency cepstral coefficients, mel spectrogram, root
mean square, chroma features, zero-crossing rate, wavelet transform, and kurtosis. And iii) While deep learning
methods demonstrate high accuracy in many applications, they usually impose enormous computational costs.
In view of this, the light gradient boosting machine is proposed for the classification of speech emotions. The
empirical results show that the light gradient boosting machine can deliver comparable performance at a faster
training speed and lower computational costs compared to deep learning methods.

The existing works in speech emotion recognition [1]–[3] could be categorized into three types: ma-
chine learning, convolutional neural networks (CNNs), and recurrent neural networks (RNNs). In the machine
learning methods, the features are handcrafted to represent the audio signals. Shegokar and Sircar [4] fed the
continuous wavelet transform features into the support vector machines (SVM) classifier. In 2018, Guan et
al. [5] proposed speech emotion recognition by feeding the local dynamic features for the model training. Jin
et al. [6] extracted acoustic and lexical features as the input of the SVM classifier for speech emotion recogni-
tion. Farooq et al. [7] implemented the deep CNN correlation-based feature selection to select the features for
the SVM classifier. Liu et al. [8] proposed a phoneme clustering classification by recognizing the unlabeled
phonemes’ formant characteristics of speech signals. In 2020, Koduru et al. [9] proposed an enhanced feature
extraction algorithm by applying the feature selection for the features and then fed them into the decision tree
classifier. Furthermore, Slimi et al. [10] proposed a one-hidden-layer neural network classification by extract-
ing the log mel-spectrogram features and feeding them into the classifier. Most researchers about the machine
learning methods only considered one dataset except Farooq et al. [7] and Liu et al. [8] who both conducted
experiments on three speech emotion datasets. hgjg

Other than the conventional machine learning methods, CNNs are also widely used for speech emotion
recognition [11]–[13]. Anvarjon et al. [14] proposed a lightweight CNN to overcome the complexity problems
by using only a few parameters. The proposed architecture used rectangular kernels and a modified pooling
strategy to extract the deep frequency features. The proposed model contains eight convolutional layers with
a rectified linear unit (ReLU), three max-pooling layers, batch normalization, and two fully connected layers
with a SoftMax classifier.

Issa et al. [15] proposed CNN classification by using five features. The proposed model contains
one-dimensional convolutional layers with dropout, batch normalization, and activation layers. Badshah et
al. [16] applied the fast fourier transform (FFT) to convert the speech signal into a spectrogram image. The
spectrogram image is then passed to a CNN model for emotion classification. The CNN model consists of
convolutional layers, fully connected layers, and a SoftMax layer. Tripathi et al. [17] extracted the features
by using the center loss and reconstruction as regularization. They used convolution layers with max pooling
layers to extract the features from each parallel convolution path. The extracted features were then fed into
fully connected layers with batch normalization.

Tripathi et al. [18] used speech features and transcriptions to improve the recognition rates. The
speech was represented as spectrograms and mel-frequency cepstral coefficients (MFCC) to retain emotion-
related characteristics. The transcriptions captured the semantic meaning. A multi-channel CNN model was
deployed for emotion recognition. The speech channel alternated between spectrogram and MFCC. The speech
channel consists of four parallel 2D-CNN layers with kernels of different sizes. The transcription channel
takes word embeddings as the input. Outputs from the channels are passed to the fully connected layers and
classification layer. Yenigalla et al. [19] used the spectrogram and phoneme embedding as the input to the
multi-channel CNN model for emotion classification. The phoneme channel received phoneme embedding
followed by four parallel convolution layers of different kernels. The spectrogram channel consists of four
parallel 2D convolution layers with different filter sizes. Both outputs from the phoneme and spectrogram
channel were passed to two fully connected layers and a classification layer.

RNNs are suitable for the classification, processing, and forecasting that involves sequential
data [20], [21]. Unlike feedforward neural networks, RNNs contain feedback connections that allow
the bi-directional passage of information. Chernykh and Prikhodko [22] proposed a connectionist tempo-
ral classification method based on RNNs. The networks classified the sequence of acoustic features into
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speech emotion classes. Lee and Tashev [23] adopted RNNs where the model extracted the high-level
representation features from the temporal dynamics for speech emotion recognition. Moreover, Latif et al. [24]
proposed transfer learning-based deep belief networks for speech emotion recognition. They conducted
cross-language and cross-corpora experiments to investigate the performance of deep belief networks.
Mustaqeem et al. [25] implemented key sequence segment selections based on radial basis function networks
to extract the specific features from the spectrogram. The features were then classified using a bi-directional
long short-term memory model.

2. METHOD
In this section, the proposed speech emotion recognition with light gradient boosting machine (Light-

GBM) is referred to as the emo-LGBM method. The proposed emo-LGBM mainly consists of three steps:
data augmentation, feature extraction, and classification. Firstly, the data samples are resampled at the sam-
pling frequency of 44.1 kHz. Subsequently, two data augmentation techniques, namely time stretching, and
pitch shifting are performed on the data samples to increase the number of samples for the model learning.
After that, seven frequency domain and time domain features are extracted from the augmented audio samples.
Eventually, the extracted features are fed into the LightGBM method to recognize the speech’s emotional state.
Figure 1 depicts the system flow of the proposed emo-LGBM method.

Figure 1. Process flow of speech emotion recognition with LightGBM

2.1. Data augmentation
Data augmentation is usually utilized to synthesize more training samples based on the original sam-

ples. In this work, two data augmentation techniques, namely time stretching and pitch shifting are leveraged.
Both time stretching and pitch shifting are applied at four different factor values: 0.8, 0.9, 1.1, and 1.2, for
synthesizing eight times more training samples than the original number of samples.

2.1.1. Time stretching
Time stretching aims to change the speed of an audio signal to speed up or slow down the audio

signal. In the time stretching process, the duration of the audio signal will be scaled and modified. Increasing
the speed of the audio signal diminishes the output of the audio signal where some audio segments are deleted
and respliced to shorten the duration of the audio signal. Contrarily, decreasing the speed of the audio signal
extends the output of the audio signal. In order to lengthen the duration of the audio signal, some similar audio
segments are generated and rebuilt together with the existing audio segments.

During the time stretching process, a short-time fourier transform (STFT) is first applied to convert
the audio signal from the time domain into the frequency domain signal. Then, the frequency domain signal
is divided and windowed by discrete fourier transforms (DFT) over the Hanning windows. To calculate the
stretched STFT matrix, the Hanning windows are used to determine the reflection padding from the frame
edges to simplify the time grid of the sample index and frame index. For the stretched output, an inverse STFT
is used to reconstruct the frequency domain signal back to the time domain signal. Figure 2 depicts the sample
waveforms of time stretching with different factor values.

2.1.2. Pitch shifting
Pitch shifting aims to increase or decrease the pitch of the audio signal without changing the total

duration of the signal. In the pitch shifting process, only the pitch of the audio signal is modulated while the
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speed of the signal remains unchanged. The pitch shifting modifies the linear-frequency spectrogram vertically
to reflect the pitch of the audio signal. Pitch shifting involves the phase vocoder shifting the pitch of the audio
signal by taking the sample rate of the audio signal and the given fractional factor value. The fractional factor
value of m determines whether the shifted pitch will become sharper or duller. Given the m value larger than
1, the pitch of the audio signal will be shifted sharper. Inversely, given the m value smaller than 1, the pitch of
the audio signal will be shifted duller. Figure 3 depicts the sample waveforms of pitch shifting with different
factor values. Given the original audio signal lt, the pitch shifting output l′t is defined by (1).

l′t =
lt
m

(1)

Figure 2. Sample waveforms with different time stretching factors

2.2. Feature extraction
Feature extraction plays an important role in finding the representations that best describe the unique

characteristics of the class. Feature extraction encodes the audio signal into an understandable format for model
learning. There are seven features of the audio signals that are extracted as the input for model learning, namely
mel-frequency cepstral coefficients, mel-spectrogram, wavelet transform, kurtosis, root mean square, chroma,
and zero-crossing rate.

In this work, four frequency domain features are leveraged, namely mel-frequency cepstral coeffi-
cients, mel spectrogram, wavelet transform, and kurtosis. The mel-frequency cepstrum captures the short-time
power spectrum of the sound waves. The mel-frequency scale mimics how the human auditory responds to
the frequencies. A mel spectrogram depicts the frequency spectrum of the sound wave in the mel frequency
scale. Wavelet transform is used to divide and convert the continuous time signal into components of different
scales, thus capturing different details of the audio signals. Wavelet transform also provides simultaneous time
and frequency domain localization for speech emotion analysis. Kurtosis is a statistical domain feature used to
calculate the intensity distribution of the audio signal. From the peak and flat distributions, kurtosis helps in
characterizing speech emotions.
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Apart from frequency domain features, time domain features are also adopted. The time domain
features include root mean square, chroma features, and zero-crossing rate. The root mean square calculates
the square root of the arithmetic mean of the squared amplitude values of the audio signal. The root mean
square amplitude values are useful in evaluating the reflectivity in the zone of interest for speech emotion
recognition. The chroma features are compact descriptors that represent the tonal information of an audio
signal. The chroma features encode the profile of the pitch classes into the audio waveform, which is effective
in differentiating the intensity between the audio signals. The zero-crossing rate counts the number of zero
crossings (from positive to negative, and vice versa) of the audio signal within a duration. The zero-crossing
rate is a good basic property of an audio signal to compare the sign of each pair of consecutive samples.
Representing the audio signals in both the frequency domain and temporal domain, it provides a detailed
description of the audio signal, thus improving the performance of speech emotion recognition.

Figure 3. Sample waveforms with different pitch shifting factors

2.3. Classification with light gradient boosting machine
LightGBM [26] is an efficient gradient-boosting method that uses tree-based learning. In the gradient

boosting framework, the trees are built one after another, unlike the random forest where the tree is created for
each sample. One of the advantages of using LightGBM is the faster training speed and higher efficiency to
handle the missing values between the nodes. Moreover, LightGBM uses a leaf-wise tree growth algorithm.
The leaf-wise tree growth algorithm splits the nodes based on the contribution to the global loss. Therefore,
LightGBM can avoid growing into a very deep tree in the architecture. Figure 4 illustrates the leaf-wise tree
growth algorithm.

As the speech emotion datasets are normally imbalanced where some emotion classes may have a
much larger sample size than others, the class weights of the LightGBM classifier are adjusted accordingly.
To reduce the performance degradation caused by the skewed sample distribution, the minority classes are
assigned higher class weights while the class weights of the majority classes are reduced. In doing so, the
LightGBM classifier imposes a higher penalty for the misclassification made by the minority class. By doing
so, the LightGBM classifier focuses more on reducing the errors of the minority class.
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Figure 4. Leaf-wise tree growth algorithm of LightGBM

2.4. Datasets
This section describes the speech emotion datasets that are used to evaluate the performance of the pro-

posed emo-LGBM method. Specifically, the Berlin database of emotional speech (emo-DB), Ryerson audio-
visual database of emotional speech and song (RAVDESS), and interactive emotional dyadic motion capture
(IEMOCAP). To have a fair comparison with the existing works, each speech emotion dataset is divided into
80% training set and 20% testing set.

The emo-DB [27] is a dataset for speech emotion recognition in the German language. Five male and
five female professional speakers took part in the data recording. The dataset consists of 535 utterances with 7
emotions: anger, boredom, anxiety, happiness, sadness, disgust, and neutral.

The Ryerson audio-visual database of emotional speech and song (RAVDESS) [28] comprises 1,440
utterances. There are 8 emotions in the dataset: neutral, calm, happy, sad, angry, fearful, disgusted, and
surprised. The sentences and songs were recorded by twelve male and twelve female professional actors in
English.

The interactive emotional dyadic motion capture (IEMOCAP) [29] dataset consists of 5,507 utterances
recorded by 5 male and 5 female actors. There are mainly 4 emotions that are used in the speech emotion recog-
nition field, namely neutral, happiness, sadness, and anger. In this view, only four emotions were considered in
this work. Table 1 summarizes the datasets with their emotion classes and the total number of samples.

Table 1. Summary of datasets
Datasets Emotions Number of Samples
Emo-DB Anger, Boredom, Anxiety, Happiness, Sadness, Disgust, Neutral 535

RAVDESS Neutral, Calm, Happy, Sad, Angry, Fearful, Disgust, Surprised 1440
IEMOCAP Neutral, Happiness, Sadness, Anger 5507

2.5. Hyperparameter tuning
Hyperparameter tuning is essential to optimize the performance of the classifier. In this work, the

boosting type of the LightGBM model is set to gradient boosting decision trees (GBDT). GBDT is a tradi-
tional method to improve the learning process that minimizes the residuals from previous predictions and a
small learning rate is always preferred to achieve the optimal solution. The tuning of other hyperparameters
is performed by grid search using the MLJAR library integrated with Optuna. The MLJAR library evaluates a
predefined set of values for different hyperparameters, including the learning rate of the model, the maximum
tree leaves for the base learning, the regularization weight value of leaves, the data and frequency of subset
features in each iteration, the minimal number of data in one leaf, and the extra trees evaluating node. The hy-
perparameter tuning is conducted on each speech emotion dataset and the hyperparameter values that yield the
highest test accuracy are selected as the optimal settings. Table 2 presents the summary of the hyperparameter
tuning.

The experimental results of the datasets with and without data augmentation are presented in Table 3.
It is observed that data augmentation has improved the performance of all three datasets. The data augmen-
tation promotes a huge leap in accuracy, specifically 15.10% on the emo-DB dataset. On the RAVDESS
dataset, incorporating data augmentation increases the recognition rate of the proposed emo-LGBM method
from 59.65% to 67.72%. On the IEMOCAP dataset, the data augmentation has improved the accuracy from
61.22% to 62.94%. The enhancements in the performance demonstrate that time stretching and pitch-shifting
techniques are effective in synthesizing more samples for model learning. The improvements also affirm the
significance of data augmentation in boosting the generalization capability of the machine learning method.
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Table 2. Summary of hyperparameter tuning
Hyperparameter Optimal Values

Emo-DB RAVDESS IEMOCAP
learning rate 0.1 0.1 0.05
num leaves 721 1709 538
lambda l1 0.0294555967 0.0000000269 0.0000339968
lambda l2 0.0039221660 0.0000146529 0.0000647275

feature fraction 0.8906030742 0.9178903409 0.6992103133
bagging fraction 0.8872461301 0.9569325817 0.5457987388

bagging freq 3 3 6
min data in leaf 31 30 57

extra trees True True False

Table 3. Experimental results with and without data augmentation
Data Augmentation Accuracy (%)

Emo-DB RAVDESS IEMOCAP
Without Data Augmentation 69.81 59.65 61.22

With Data Augmentation 84.91 67.72 62.94

3. EXPERIMENTS AND ANALYSIS
This section presents the comparison results of the proposed emo-LGBM method with the state-of-

the-art methods. As observed in Table 4, the proposed emo-LGBM method outperforms the existing works
on the Emo-DB, RAVDESS, and IEMOCAP datasets. On the emo-DB dataset, the existing methods recorded
accuracy in the range of 58.86% - 82.73%. In comparison, the proposed emo-LGBM method records a higher
accuracy of 84.91%. Likewise, on the RAVDESS dataset, the best existing method, i.e., CNNs [30] yielded
an accuracy of 65.67% which is 2.05% lower than the proposed emo-LGBM method. The (-) in the results
are due to the RAVDESS dataset not being used in the existing works. The performance of all methods is
inferior on the IEMOCAP due to the relatively large sample size and multi-speaker speech. The existing works
achieved an accuracy of 50.17% - 62.74%. Nevertheless, the proposed emo-LGBM method yields a higher
accuracy of 62.94% despite the large dataset size and multi-speaker challenges. The experimental results
corroborate the performance of the proposed emo-LGBM method. The data augmentation with pitch shifting
and time stretching synthesizes more training samples for better LightGBM model learning, hence improving
the generalization capability of the model.

Table 4. Comparative results on emo-DB, RAVDESS, IEMOCAP dataset
Method Accuracy (%)

Emo-DB RAVDESS IEMOCAP
Phoneme Clustering with RF [8] 71.05 49.20 62.01

Phoneme Clustering with KNN [8] 60.05 43.24 59.28
Phoneme Clustering with MLP [8] 72.91 61.02 61.91

Deep Neural Network [31] 82.73 - 62.74
CNN [30] 58.86 65.67 55.24

LSTM [30] 59.67 53.97 56.99
CNN with LSTM [30] 69.72 53.08 50.17

Emo-LGBM (Proposed) 84.91 67.72 62.94

4. CONCLUSION
In this paper, enhanced speech emotion recognition with LightGBM is presented. The method first

performs data augmentation by time stretching and pitch shifting to increase the sample size for better model
learning. The augmented audio samples are thereafter encoded as the frequency and temporal domain features,
including Mel-frequency Cepstral Coefficients, Mel spectrogram, Wavelet transform, Kurtosis, Chroma, Root
Mean Square, and Zero-Crossing rate. The extracted features are finally passed to the LightGBM method
for speech emotion recognition. As the datasets are imbalanced, the class weights are adjusted to assign more
weights to the minority class. Not only that, hyperparameter tuning is also performed on the LightGBM method
to determine the optimal hyperparameter settings. The empirical results demonstrate that the proposed emo-
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LGBM method outshines the existing methods with the highest accuracy of 84.91%, 67.72%, and 62.94% on
the emo-DB, RAVDESS, and IEMOCAP datasets, respectively.
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