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 Mesh-based 3-dimensional (3D) shape generation from a 2-dimensional 

(2D) image using a convolution neural network (CNN) framework is an 

open problem in the computer graphics and vision domains. Most existing 

CNN-based frameworks lack robust algorithms that can scale well without 

combining different shape parts. Also, most CNN-based algorithms lack 

suitable 3D data representations that can fit into CNN without 

modification(s) to produce high-quality 3D shapes. This paper presents an 

approach that integrates a variational autoencoder (VAE) and a generative 

adversarial network (GAN) called 3 dimensional variational autoencoder 

signed distance function generative adversarial network (3D-VAE-

SDFGAN) to create a 3D shape from a 2D image that considerably improves 

scalability and visual quality. The proposed method only feeds a single 2D 

image into the network to produce a mesh-based 3D shape. The network 

encodes a 2D image of the 3D object into the latent representations, and 

implicit surface representations of 3D objects corresponding to those 2D 

images are subsequently generated. Hence, a signed distance function (SDF) 

is proposed to maintain object inside-outside information in the implicit 

surface representation. Polygon mesh surfaces are then produced using the 

marching cubes algorithm. The ShapeNet dataset was used in the 

experiments to evaluate the proposed 3D-VAE-SDFGAN. The experimental 

results show that 3D-VAE-SDFGAN outperforms other state-of-the-art 

models. 
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1. INTRODUCTION 

The urgent need to automatically generate new three-dimensional (3D) mesh-based shapes to 

populate a virtual world appeals to computer graphics (CG) and computer vision (CV) specialists. Advances 

in robotics, artificial intelligence (AI), game, virtual, and augmented reality have boosted the 3D model 

generation via 3D deep learning due to the high demand of real-time shape analysis and synthesis in CV 

domain. In the last decade, many approaches have emerged to alleviate this problem, especially in the 

computer graphics domain. However, majority of these works were assembly-based 3D modeling [1]–[3] 

which used a database of 3D models to synthesize new shapes from various parts of existing models. Though 

these techniques achieved impressive results, the model generation pipelines focused on a single mode, 

which caused their models not to be robust. In addition, these techniques are not able to capture more 

https://creativecommons.org/licenses/by-sa/4.0/
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complex variability of geometric features. Furthermore, techniques used heuristic methods and generate new 

3D shapes using browning parts from existing 3D model databases, and thereby, fail to produce realistic 

results.  

Success of two dimensional (2D) deep generative networks [4]–[9], [10]–[12] in handling 

generative tasks with 2D images encourage researchers to extend generative adversarial network (GAN), 

variational auto-encoder (VAE) and VAE-GAN with 3D convolutional neural network (CNN) to perform 3D 

generative tasks. 3D deep learning data representation [13] allows researchers to take advantage of various 

available 3D data representations to perform end-to-end learning tasks. This has inspired researchers to 

explore learning object representation based on voxel [13]–[15] and point cloud [16], [17]. Furthermore, 

recent 3D deep learning algorithms take advantage of the advancements in deep learning proposed in [18]. 

Therefore, generative modelling algorithms such as GAN, VAE, and auto-decoder (AD) were implemented 

with 3D-CNN to generate 3D shapes. 

This progress inspired Wu et al. [13] to extend generative adversarial nets (2D GAN) [4] to create 

3D voxel-based shapes with low resolution, and large memory footprint, except for a tessellated grid that 

leveraged the octrees approach for high-resolution 3D voxel shapes [19]. Other works [15], [20] also follow 

the similar 3D shape generation pipeline of [13] to create 3D voxel-based shapes. Furthermore, point-cloud 

and mesh data representations were also used as input to 3D-GAN and 3D-VAE [17], [21], [22] to generate 

3D shapes with high resolution, compact, and computationally less expensive. However, the irregularity in 

organization structure and disorderliness characteristics make it unfit for the learning process with CNN. In 

addition, their implementations are not as easy as voxels data representation with deep convolutional neural 

networks. 

Later on, some works [13]–[15] infer latent vectors from observations by mapping a 2D image to 

the latent representation in GAN to enhance the recovery of a 3D object corresponding to the 2D image. The 

results obtained were impressive for shape generation tasks using deep generative networks because voxel 

grids fit the learning process and convolution is used for its rendering. However, the output shapes are coarse 

in nature. Furthermore, the current mesh-oriented algorithms cannot process voxel-based geometries [23].  

Considering recent advances in CG and CV, we propose an efficient deep learning approach to 

generate realistic 3D mesh shapes from a 2D image leveraging the signed distance function (SDF)-based 

VAE-GAN framework, referred to as 3D-VAE-SDFGAN. We seek to produce an SDF field on the gridded 

domain similar to [23], [24]. Deconvolution layers are employed to encourage a polygon mesh surface 

reconstruction for a higher quality 3D shape generation. This work will give some contributions such as:  

− The integration of VAE and GAN learns to encode, generate, and compare data simultaneously. Our 

proposed network explicitly learns the latent spaces of 2D images. These latent spaces are used to 

produce corresponding signed distance functions of objects, which are then reconstructed into 3D  

mesh-based shapes. 

− The proposed 3D-VAE-SDFGAN model manages to generate a high-quality 3D shape from its 

corresponding 2D image. 

− The performance of the proposed method is evaluated qualitatively and quantitatively. From the 

experiment results, the proposed 3D-SDF-VAE-GAN outperforms state-of-the-art 3D shape generative 

methods. 

Related works are presented in section 2. The concept of the SDF, data pre-processing, and model 

architecture for the proposed solution are discussed in section 3. Section 4 describes the training procedure 

and the results of the experiment. Finally, we conclude this work in section 5. 

 

 

2. RELATED WORK 

2.1.  3D shapes modeling and generation 

A 3D shape generation is a challenging problem in CG and CV. Wu et al. [13] have attempted to 

develop or learn 3D object representations based on meshes and skeletons. Many of these non-parametric-

based synthesis algorithms create new objects by collecting and combining shapes and shape parts from the 

database. Chaudhuri et al. [1] proposed a 3D model generation system that leverages a probabilistic graphical 

model capable of encoding semantic and geometric links between shape parts to produce a 3D model. The 

3D shapes generated semantically and physically resemble the objects from the database. Huang et al. [25] 

investigated the generation of 3D shapes using pre-trained templates, which produced both the object 

structure and surface geometry. However, these cited works are naturally incapable of creating conceptually 

unique shapes or providing a better representation of these shapes. In contrast, our proposed approach 

generates 3D mesh-based shapes without the need to collect and combine shapes and shape parts from a 

database in an unsupervised manner. Also, our proposed method can generate novel 3D shapes from 2D 

images. 
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2.2.  Three-dimensional shape generation via deep learning approaches 

Following the successes recorded in the 2D domain with deep learning, deep learning has gradually 

moved to the 3D domain for 3D shape generation tasks. Many researchers have investigated part-based deep 

learning 3D shape generation systems to produce plausible 3D shapes. For example, Li et al. [26] proposed 

the first part-based deep generative model that produces plausible 3D shapes. The work used a recursive 

neural network autoencoder to attain hierarchical encoding and decoding of components and relations.  

Li et al. [27] proposed a PARANet leveraging an array of per-part VAE-GANs to generate semantic parts of 

a complete shape. Later, transform and assemble the produced semantic parts into a plausible 3D shape using 

a part assembly module. Also, a recurrent neural network-based 3D shape generation system was proposed 

by Zou et al. [28] to learn sequential part creation, which only generates cuboids and is not geometrically 

precise. Furuya et al. [29] proposed HMF-Nets leveraging blocks of token-mixing layers and weighted 

chamfer distance (WCD) loss to train hyperplane patches to reconstruct better 3D shape details from the 2D 

image. However, their model requires a robust encoder network to produce richer latent 3D shape 

characteristics. Also, the model’s output is full of holes compared to our proposed model’s results. Though 

the cited works were deep learning-based approaches, they combined many shape parts to produce 3D 

shapes. Such a combination limits their results from being realistic compared to our proposed method. The 

generated 3D shapes were of low quality, and the results lacked detailed geometry compared to our proposed 

approach.  

Recently, 3D data representation, classification, and generation tasks using deep learning have been 

extensively studied. Various 3D data representations have been used to generate 3D shapes. Examples of 

such data representations are voxel-based, point cloud-based, mesh-based, multi-view images, or depth-

images. Balashova et al. [30] proposed a 3D shape generation approach that leverages a structure-aware loss 

function. Their framework consists of a shape encoder, a shape generator, and structure detector networks. 

The model incorporates structural information into its training pipeline in an end-to-end manner to impose 

structural limitations and provide uniformity and structure throughout the entire manifold. However, their 

model fails to capture complex data information compared to our proposed method. Their model only 

generates coarse 3D shapes. Zhirong et al. [18] performed 3D shape completion and recognition tasks using 

volumetric data representation as an input. 3D shape generation from a probabilistic latent space proposed by 

Wu et al. [13] using generative adversarial networks (GAN). PrGANs [31] used a GANs framework to train 

a projector. Their discriminator network was trained to discriminate projected images of a real sample from 

those projected samples from generative models, while their generator network learned to generate 3D 

models. Zhu et al. [14] constructed an architecture on the GANs framework and incorporated 2D image 

enhancer network that feeds high-level image information into a 3D model generator network for effective 

model training. The architecture was trained on both 2D images and 3D models simultaneously. The output is 

a voxel-based 3D shape, which is computationally expensive with a large memory footprint. In contrast with 

these models, our proposed model produces mesh-based 3D shapes instead of voxels with a similar 

framework. The generated 3D shape achieves better quality and is computationally less expensive with a 

smaller memory footprint. To date, no work has directly mapped 2D images using the VAE-GAN framework 

to 3D mesh-based shapes. 

 

2.3.  3D shape generation with signed distance functions 

CV and CG researchers have recently adopted the signed distance function (SDF) as an alternative 

for 3D data representations in 3D shape generation. SDF overcomes the limitations such as the large memory 

footprint, irregular nature, unstructured, and disorderliness characteristics as found in other typical 3D data 

representations (voxels, point-cloud, and mesh). This has made it a suitable mechanism for mesh-based 3D 

shape generation tasks. SDF learning is an implicit function learning that expresses the structural relationship 

distance on the 3D surface. 

Wu et al. [32] leveraged sequential part assembly and proposed PQ-NET, a variant of deep neural 

network (DNN) for 3D shape generation. The part-features representation was used as input to the seq2seq 

autoencoder network to generate a fixed-length latent vector that encourages many generative tasks. The 

decoder network reconstructs 3D shape as an SDF data representation using the latent vector and 3D point 

that enables high-quality 3D shapes. However, the approach fails to learn part relations for structure 

understanding and does not encourage a topology-altering interpolation scheme for shapes with distinct parts. 

Part structure and geometry were encoded randomly and inter-twisted, affecting the learned latent space 

quality. Zheng et al. [33] proposed a deep implicit template using the spatial warping long short-term 

memory (LSTM) for 3D shape representation in high quality with dense correspondences to provide semantic 

relationship information across shapes. The model breaks up the conditional-signed distance function into a 

conditional spatial warping function which maps a point (p) coordinate to a new 3D coordinate and returns 

SDF values at the new 3D coordinate. The model achieves an ideal prototype that portrays objects with a 

standard structure for shape generalization. Xu et al. [34] proposed a deep implicit surface network (DISN) 
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capable of capturing holes and thin structures of 3D shapes from single-view images to generate high-quality 

3D shapes. It combined global and local image features to predict an improved and accurate signed distance 

field for 3D shapes. Liu et al. [35] proposed an IMLSNet that uses an octree-based autoencoder to implement 

3D shape generation. IMLSNet used the Octree structure, SDF, moving least-squares (MLS) point repulsion, 

projection smoothness, and radius smoothness losses to fit the sampled SDF. The methods cited above are 

autoencoder-based deep generative networks with autoencoder-based limitations. Hence, it does not generate 

a new instance of an object as our proposed approach does. 

Jiang and Marcus [23] proposed a 3D-GAN-based hierarchical detail enhancing mesh shape 

generation with SDF data representation, and generated SDF fields on a gridded domain to reconstruct 

polygon mesh surfaces with higher quality. Despite the low-frequency generating and high-frequency 

generator networks presented in their architecture, the network was driven by uninformative random vectors 

and trained on only 3D data. Kingkan and Hashimoto [24] proposed a 3D-VAE-GAN-based framework that 

directly maps point clouds to other 3D shape representations. Unlike the two-3D mesh generation  

GAN-based frameworks discussed above, our proposed 3D-VAE-SDFGAN is trained on both 2D images and 

3D models concurrently for enhancing the 3D mesh generation. To date, none of the existing research works 

use the VAE-3D-GAN framework to map 2D directly to 3D mesh-based shapes. 

 

 

3. RESEARCH METHOD  

In this section, signed distance function and 2D images are discussed in detail. In addition, geometry 

processing approaches to prepare the training data are presented. Subsequently, the background information 

on both the variational autoencoder (VAE) [36] and the generative adversarial network (GAN) [4] are 

presented. Then, to establish a mapping between 2D images and signed distance functions, we introduce our 

proposed network, which leverages VAE with GAN algorithm [5] for 3D shape generation. 

 

3.1.  Two-dimensional image and signed distance function generation 

In the experiments, we use ShapeNet [37] as the dataset. ShapeNet consists of 55 common objects 

with 51,300 3D models. To create our image dataset used in training, we collected images provided in  

Choy et al. [38] work, which comprised rendered images of ShapeNet 3D models from 23 different views. 

The top row of Figure 1 shows some examples of 2D images from our 2D image dataset. 

Also, for the 3D SDF field preprocessing, we highlighted the transformation procedure of 3D 

meshes into SDFs [39]. Motivated by [23], [24], the output of our network is signed distance functions. An 

SDF is a subset of implicit functions that assigns a 3D point to a real value rather than a likelihood, 

expressing the structural relationship and distance to the 3D surface. SDFs data representation is a suitable 

representation that uses signed values to represent a mesh object’s inside-outside characteristics. SDF data 

representation becomes popular for mesh generation with deep convolutional neural networks because its 

presentation is not limited by fixed topology as applicable to mesh and point clouds. It also has a higher 

resolution when compared with voxel resolution. Given a spatial point 𝑝 𝜖 𝑅3, the sign distance function 

𝑘(𝑝)  ∈ 𝑅, encodes the point’s distance to its closest surface point, where 𝑝 lies inside (–) or (+) of the 

object. Alternatively, given a set Ω in a 3D Euclidean space where Ω is a non-zero volume open set with an 

enclosed smooth piece-wise boundary 𝛿Ω, a signed distance function 𝑘 is defined as: 

 

𝑘(𝑥) = {
dis(x, 𝛿Ω) , if x ϵ Ω

0,               if x ϵ 𝛿Ω     
−dis(x, 𝛿Ω) , if x ϵ Ωc

  (1) 

 

where 𝛿Ω stands for the boundary of Ω. The distance from a point 𝑥, where 𝑥 belongs to 3D Euclidean space 

to the boundary 𝛿Ω is defined as (2): 

 

𝑑𝑖𝑠(𝑥, 𝛿Ω) = (𝑥, 𝑦)𝑦𝜖𝛿Ω
𝑖𝑛𝑓

 (2) 

 

and 

 

sign(x, 𝛿Ω) = {
1  if x ∈ Ω

0    if x ∈  𝛿Ω
−1 if x ∈ Ωc

 (3) 

 

The SDF in (1), which is the product of (2) and (3) can also be written as (4): 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Three-dimensional shape generation via variational autoencoder generative … (Ebenezer Akinyemi Ajayi) 

4013 

𝑘(𝑥) = 𝑑𝑖𝑠(𝑥, 𝛿Ω) . 𝑠𝑖𝑔𝑛(𝑥, 𝛿Ω) (4) 

 

To produce SDF from a triangular mesh, we center and normalize the triangular mesh first. Then, 

we establish around the geometry a 3D unit grid with a resolution of 643. Furthermore, we compute the 

point-to-mesh distance using an axis-aligned bounding box (AABB) tree to calculate the distance at each 

point in the grid. The winding number of each point is computed to provide the sign at each point in the grid. 

 

 

 
 

Figure 1. Examples of 2D images and the transformation of 3D meshes into signed distance functions (SDFs) 

 

 

3.2.  VAE, GAN, and VAE-GAN 

A VAE is an extended version of an autoencoder network that imposes additional restrictions on 

latent variables. The restriction turns the network into an algorithm that learns its input information from a 

latent variable model. VAE learns the parameters that model the data from the probability distribution [40]. 

The VAE network comprises encoder and decoder networks. The encoder network serves as an inference 

network that compresses the input data over the latent distribution 𝑝(𝑧) regulated by prior into a latent 

representation [24]. A decoder network, which can also be called a generator network, generates a new 

instance of input data from the latent representation. The VAE’s weights are trained simultaneously by 

improving the reconstruction loss and Kullback-Leibler divergence between the latent distribution learned 

and a prior. 

A GAN is a generative modeling algorithm used in an unsupervised manner to generate a new 

instance of data in an unsupervised manner from a random vector of a Gaussian probability distribution. 

GAN comprises a generator network and a discriminator network. The generator network is a neural network 

that uses random vectors drawn from a Gaussian probability distribution as input and produces a new data 

sample different from the training dataset but possesses the same characteristics as the training dataset. On 

the other hand, the discriminative neural network accepts both generated data and the training dataset as 

input. It evaluates if the sample data is from the dataset or generated. The generator network attempts to 

generate data similar to the training dataset. On the other hand, the discriminator network attempts to 

distinguish between the generated data and the training dataset. 

Also, to improve the quality of data generation, some works combined VAE and GAN. However, it 

is less computationally expensive, and combining the loss functions from both networks is easy.  

Larsen et al. [5] was the first work to propose a VAE-GAN framework to acquire feature representation and 

similarity standards for an improved 2D image synthesis task. The combination yielded a good result 

compared to GAN-based and VAE-based algorithms alone. Wu et al. [13] combined 3D-VAE-GAN to 

generate a voxel-based 3D model from 2D images. Later, Kingkan and Hashimoto [24] combined  

3D-VAE-GAN to generate SDF from 3D point clouds. Another work by Smith and Merger [15] combined 

3D-VAE-IWGAN to perform voxel-based 3D model generation, 3D model reconstruction, and 3D shape 

completion from a 2D image. In view of the advantages of both VAE and GAN, we employed a similar 

framework to learn the latent spaces of 2D images and map 2D images to their respective SDFs. 
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3.3.  3D-VAE-SDFGAN framework 

In this work, we propose 3D-VAE-SDFGAN to learn a 2D image’s latent representation from a 2D 

image and produce 3D mesh-based shapes similar to 2D images. Instead of using only random vectors 

sampled from a Gaussian distribution, we fed the learned latent space of a 2D image from 2D-VAE to the 

SDF-generator network to aid better generation. In doing so, our generator network learned to generate 3D 

shapes from both the 2D image and SDF. The overview of the 3D-VAE-SDFGAN framework is shown in 

Figure 2. Our proposed 3D-VAE-SDFGAN comprises 3 components, namely a 2D-image encoder network 

(𝐸) as shown in Figure 2(a), the SDF-generator network (𝐺𝑠𝑑𝑓), as shown in Figure 2(b), and the SDF-

discriminator network (𝐷𝑠𝑑𝑓), as shown in Figure 2(c). Figure 2(a) converts a 2D image into latent spaces; 

Figure 2(b) produces an SDF from a 2D image’s latent vector, and Figure 2(c) evaluates whether inputs are 

either generated or real SDFs. 

 

 

 
 

Figure 2. The proposed 3D-VAE-SDFGAN network comprises of three components (a) the encoder network 

converts a 2D image to latent spaces, (b) the generator network produces an SDF from a 2D image latent 

vector, and (c) the discriminator network evaluates whether inputs are either generated or real SDFs 

 

 

3.3.1. 2D image encoder network (𝑬) 

The encoder network contains five convolution layers with the following numbers of channels  

{64, 128, 256, 512, 400}, a kernel with the size of {11, 5, 5, 5, 8}, and strides {4, 2, 2, 2, 1}. In between the 

convolution layers, the network consists of both rectified linear unit (ReLU) and batch normalization layers. 

The last convolution layer of the image encoder network output a latent vector of 400-dimension describing a 

Gaussian distribution of a 200-dimension mean latent vector and a 200-dimension of variance latent vector. 

A sampling layer present in the encoder network helps to sample 200-dimension latent vector input that 

guides the SDF-generator network to produce SDF similar to the 2D image from Gaussian distribution. The 

loss function of the 2D image encoder network (𝐿𝐸) consists of KL divergence loss (𝐿𝐾𝐿) and reconstruction 

loss (𝐿𝑅) as (5), (6): 

 

𝐿𝐾𝐿 = 𝐷𝐾𝐿 (𝑞(𝑧𝑖𝑚𝑔|𝑖𝑚𝑔)‖𝑝(𝑧)) (5) 

 

𝐿𝑅 = ‖𝐺(𝐸(𝑖𝑚𝑔))  − 𝑠𝑑𝑓𝑟𝑒𝑎𝑙‖
2
 (6) 

 

where 𝐿𝐾𝐿 is divergence loss between the prior distribution 𝑝(𝑧) from a uniform distribution over [−1,1] and 

the learned latent distribution (𝑧𝑖𝑚𝑔), 𝑠𝑑𝑓𝑟𝑒𝑎𝑙  is a SDF of 3D shape from the training set, 𝑖𝑚𝑔 is the 

corresponding 2D image, 𝑞(𝑧𝑖𝑚𝑔|𝑖𝑚𝑔) denotes the variational distribution of latent representation. To allow 

the SDF-generator network to draw 𝑧𝑖𝑚𝑔 from the exact distribution as 𝑝(𝑧), KL divergence is used to limit 

𝑞(𝑧𝑖𝑚𝑔|𝑖𝑚𝑔) to be as similar to 𝑝(𝑧) as possible. 

 

3.3.2. SDF-generator and SDF-discriminator networks 

SDF-generator network (𝐺𝑠𝑑𝑓) comprises five transpose convolution layers with channel numbers 

{512, 256, 128, 64, 1} with the kernel sizes of {4, 4, 4, 4, 4}, and strides of {1, 2, 2, 2, 2}. ReLU and batch 

normalization layers are used between the transpose convolution layers, except the last layer that uses a Tanh 

function to map output into [−1, 1]. The generator network output is an SDF of 643 matrix, with values in 

[−1, 1]. Triangular mesh surfaces are then obtained from this matrix using the marching cubes algorithm 

(MCA) [41]. 
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SDF-discriminator network (𝐷𝑠𝑑𝑓) mirrors the SDF-generator network with leaky ReLU as 

activation function. Sigmoid function is used at the final layer to squash the output to [0, 1]. It composes of 

five 3D-convolution layers with channel numbers {64, 128, 256, 512, 1} with kernel sizes of {4, 4, 4, 4, 4}, 

and strides of {2, 2, 2, 2, 1}. The loss function for SDFGAN is:  

 

𝐿𝑆𝐷𝐹𝐺𝐴𝑁 = log 𝐷(𝑠𝑑𝑓𝑟𝑒𝑎𝑙)  + log (1 − 𝐷(𝐺(𝑧)))  + log (1 − 𝐷 (𝐺(𝑧𝑖𝑚𝑔))) (7) 

 

The total loss 𝐿𝑡𝑜𝑡𝑎𝑙  function used in our 3D-VAE-SDFGAN framework consists of the sum of three 

components: reconstruction loss 𝐿𝑅, a cross-entropy 𝐿𝑆𝐷𝐹𝐺𝐴𝑁, and KL divergence 𝐿𝐾𝐿 to impose a limit on 

the distribution of the output of the 2D encoder network. 

 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑆𝐷𝐹𝐺𝐴𝑁 + 𝛾1𝐿𝐾𝐿  + 𝛾2𝐿𝑅   (8) 

 

where 𝛾1 and 𝛾2 are weights of 𝐿𝐾𝐿 and 𝐿𝑅 respectively. 

 

 

4. EXPERIMENTS 

In this section, the training procedure is first discussed. Then, we compare our proposed  

3D-VAE-SDFGAN with several state-of-the-art generative models. The qualitative and quantitative results 

are also presented. 

 

4.1.  Training procedure  

The proposed 3D-VAE-SDFGAN framework is trained with a pair of {𝑖𝑚𝑔𝑖 , 𝑠𝑑𝑓𝑟𝑒𝑎𝑙𝑖
} drawn from 

the training dataset, where 𝑖𝑚𝑔𝑖 is the 2D image, and 𝑠𝑑𝑓𝑟𝑒𝑎𝑙𝑖
 is the corresponding signed distance function 

of the 3D object. During training, the image encoder encodes a 2D image 𝑖𝑚𝑔𝑖 into a latent representation 

(𝑧𝑖𝑚𝑔) representing the image feature. The SDF generator network receives 𝑧𝑖𝑚𝑔 which is a 200-dimension 

vector as input and generates 𝑠𝑑𝑓𝑖𝑚𝑔 as output. We sample a random vector 𝑧 from a uniform distribution 

𝑝(𝑧), and fed it to the SDF-generator network to produce 𝑠𝑑𝑓𝑧. Both generated SDFs (𝑠𝑑𝑓𝑖𝑚𝑔 , 𝑠𝑑𝑓𝑧) with 

𝑠𝑑𝑓𝑟𝑒𝑎𝑙  serve as input to the SDF-discriminator network for classification purposes. The SDF-discriminator 

network distinguishes SDFs and determines if the SDF is generated from the SDF-generator network or if it 

is the real SDF from the dataset. Learning rates with the values of 10−5, 10−3, 10−3 are used during training 

for the discriminator network, the generator network, and the encoder network, respectively. Adam optimizer 

with 𝛽 = 0.5 is used for optimization purposes. Our network is trained separately on each class of objects, 

with a batch size of 64. We assign 1 and 100 to 𝛾1 and 𝛾2 respectively during the experiment. The proposed 

3D-VAE-SDFGAN is trained on the ShapeNet dataset with chair, table, car, lamp, sofa, and cabinet 

categories for 2,000 epochs. The following loss functions are used to update our encoder, generator, and 

discriminator networks parameters during training. 

 

𝐿𝐸 = 𝛾1𝐿𝐾𝐿  + 𝛾2𝐿𝑅   (9) 

 

𝐿𝐺 = log (1 − 𝐷(𝐺(𝑧)))  + log (1 − 𝐷 (𝐺(𝑧𝑖𝑚𝑔))) + 𝛾2𝐿𝑅   (10) 

 

𝐿𝐷 = 𝐿𝑆𝐷𝐹𝐺𝐴𝑁   (11) 

 

The parameters of the discriminator network are updated when the accuracy is less than 0.8 in each batch. 

 

4.2.  Performance evaluation  

In this paper, we proposed a framework which can infer a 3D shape from its associated 2D image, 

named 3D VAE-SDFGAN. Figure 3 shows the results of our proposed model, which learns to build SDFs of 

the chair, table, car, lamb, and sofa from their associated 2D images. Figure 3(a) shows an example of a 2D 

image used to build SDFs for our proposed model, and Figure 3(b) shows the SDFs built from its associated 

2D image. We extracted the triangular surfaces from SDFs with the marching cubes algorithm [41] and the 

surfaces were smoothed using Laplacian smoothing. The generated chair, table, car, and sofa from its SDFs 

are shown in Figure 3(c). We compared our 3D-VAE-SDFGAN with several state-of-the-art models and also 

followed the evaluation procedure in [42] by converting the volumetric results of 3D-R2N2 using the 

Marching cubes algorithm to a mesh model to compare the quality of the model generated with our proposed 
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solution. The chamfer distance (CD) [42] between the generated and ground truth 3D mesh is used as an 

evaluation parameter to assess the accuracy of our model. Table 1 shows the result of the evaluation.  

We computed the CD for six categories in Table 1 to evaluate the performance of generated objects. 

From the experiment results, our proposed 3D-VAE-SDFGAN outperforms the state-of-the-art methods in all 

categories except the chair category in the MeshSDF [43] model and the car category in DISN [34] model. 

The performance in the chair category of the MeshSDF model occurs due to the adoption of the continuous 

model expressed in terms of how signed distance function perturbations impact surface geometry. The 

MeshSDF method encourages appealing results in a reconstruction task, which does not promote the creation 

of a new instance of an object like our 3D-VAE-SDFGAN. Also, our 3D-VAE-SDFGAN model outperformed 

the MeshSDF model in other evaluated object categories. The performance in the car category of the DISN 

model occurred because of the combination of global image features and local features at the projected 

location for each 3D point used in their model. Also, the DISN model combined two decoders to generate the 

SDF in their work. However, the model only performed reconstruction tasks and not generation tasks. Our 

3D-VAE-SDFGAN CD results are better than DISN CD results in the remaining object categories evaluated. 

 

 

   
(a) (b) (c) 

 

Figure 3. Results of our proposed model (a) examples of the 2D images and (b) SDFs of objects, and  

(c) the generated mesh-based  

 

 

Table 1. Performance comparison of the proposed method with state-of-the-arts on ShapeNet dataset 
Category 3D-R2N2 [38] SIF [43] N3MR [44] MeshSDF [45] DISN [35] Ours 

Chair 1.432 1.540 2.084 0.590 0.754 0.746 

Table 1.116 1.570 2.383 1.070 1.329 0.710 

Car 0.845 1.080 2.298 0.960 0.492 0.736 
Lamb 4.009 3.420 3.013 1.490 2.273 0.767 

Sofa 1.135 0.800 3.512 0.780 0.871 0.644 

Cabinet 0.750 1.100 2.555 0.780 1.130 0.499 
Average 1.548 1.585 2.641 0.945 1.142 0.684 

 

 

Our proposed 3D-VAE-SDFGAN achieves the best average CD score because our model learns to 

generate new data similar to the existing data. With the generative power of our proposed model, it manages 

to create an object with details that are not possible with 3D-R2N2 with a different model’s views [38]. In 

addition, our model can generate an object with various topologies that were lacking in the neural 3D mesh 

renderer (N3MR) approach [44]. Furthermore, our proposed model can represent the detailed structure of an 

object with SDF data representation which was one of the main problems associated with the structured 

implicit functions (SIF) method [43]. Figure 4 shows the qualitative comparison of our proposed model 

generated samples and learned representations with other 3D GAN-based models for visual evaluation. The 

chair and table in Figure 4(a), and the car, chair, and table in Figures 4(b) to (e) were duplicated and 

displayed for comparison. Smooth mesh surfaces recovered from signed distance function fields powered by 

the VAE-GAN framework and 2D image features in our work obtain higher-qualitative performance. We 
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compared the results of our simple but efficient proposed model in Figure 4(f) with the results of Jiang and 

Marcus [23] in Figure 4(d). Our proposed model, trained in an end-to-end manner, manages to produce 

appealing results with a low-cost 2D image, while Jiang and Marcus [23] model is a computationally 

expensive two-stage model implementation. The first model (low-frequency generator (LFG) network) 

generates SDF and passes it through a low-filter network to reduce noise in the high-frequency domain. The 

output was later used as an input in the second model (high-frequency generator (HFG) network) to generate 

high-resolution SDF. These processes are time-consuming and computationally expensive. 

Also, the generated output of our proposed model in Figure 4(f) is comparable with the results of 

Kingkan and Hashimoto [24] in Figure 4(e), despite the complete 3D data used in their work. It implies that 

our low-cost 2D images, readily available with corresponding SDFs, are better dataset options for training. 

Moreover, the combination of 2D images with the SDFs dataset aids a better mesh-based 3D shape 

generation with a 3D VAE-SDFGAN model compared to more expensive 3D point-cloud data that requires 

specialized algorithms to make it fit for CNN-based architecture. 

 

 

      
(a) (b) (c) (d) (e) (f) 

 

Figure 4. Qualitative comparison of our proposed model generated samples and learned representations with 

other 3D GAN-based models for visual evaluation (a) a sample of chair and table generated by Smith and 

Meger [15], and the sample of cars, chairs, and tables generated by (b) Zhu et al. [14], (c) Wu et al. [13],  

(d) Jiang and Marcus [23], (e) Kingkan and Hashimoto [24], and (f) by our model 

 

 

5. CONCLUSION 

In this paper, an architecture for learning 2D image latent spaces and mapping them to 3D shapes is 

proposed. The corresponding object’s signed distance function (SDF) is created directly from the 2D image. 

We showed that the 2D images’ latent space influences the network’s performance and determines how much 

information can be transmitted from the 2D image encoder network to the SDF-generator network. Our 

proposed 3D VAE-SDFGAN model manages to successfully generate the corresponding SDF with smooth 

surface attributes using features from the 2D image. The experiment results show that the proposed model 

outperforms other existing state-of-the-art methods quantitatively and qualitatively. 
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