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 Compressive speech enhancement is based on the compressive sensing (CS) 

sampling theory and utilizes the sparsity of the signal for its enhancement. 

To improve the performance of the discrete wavelet transform (DWT) basis-

function based compressive speech enhancement algorithm, this study 

presents a semi-soft thresholding approach suggesting improved threshold 

estimation and threshold rescaling parameters. The semi-soft thresholding 

approach utilizes two thresholds, one threshold value is an improved 

universal threshold and the other is calculated based on the initial-silence-

region of the signal. This study suggests that thresholding should be applied 

to both detail coefficients and approximation coefficients to remove noise 

effectively. The performances of the hard, soft, garrote and semi-soft 

thresholding approaches are compared based on objective quality and speech 

intelligibility measures. The normalized covariance measure is introduced as 

an effective intelligibility measure as it has a strong correlation with the 

intelligibility of the speech signal. A visual inspection of the output signal is 

used to verify the results. Experiments were conducted on the noisy speech 

corpus (NOIZEUS) speech database. The experimental results indicate that 

the proposed method of semi-soft thresholding using improved threshold 

estimation provides better enhancement compared to the other thresholding 

approaches. 
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1. INTRODUCTION 

The quality and intelligibility of a speech signal are severely impaired in noisy environments and 

may increase listener fatigue. In this study, the focus is on enhancing the quality of a speech signal that is 

corrupted by common additive background noises coming from noisy environments such as streets, airports, 

and restaurants. Compressive sensing (CS) is a new sampling approach, which enables us to reconstruct the 

signal using significantly less samples compared to the Nyquist sampling process [1]–[4]. In this way, CS 

saves memory as well as processing time. The three important aspects of CS are sparsity [5], incoherence [6] 

and restricted isometry property [7]. Low et al. [8] suggests that CS enhances the speech signal by utilizing 

its sparse nature and the non-sparse nature of the noise, in the time-frequency domain. Thus, compressive 

speech enhancement allows us to utilize resources optimally [9]. Future communication systems would be 

required to sense signals rapidly. In this way, CS will be the revolution in the field of next-generation 

communication systems [10]–[14]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The effectiveness of compressive speech enhancement lies in the correct choice of sensing matrices, 

the transform domain to ensure signal sparsity and the recovery algorithm [15]–[17]. Gaussian random 

matrix was selected as the sensing matrix because it satisfies the restricted isometry property of CS, in the 

most probabilistic sense [18]. Pilastri et al. [19] presents the effectiveness of basis pursuit (𝑙1 minimization) 

reconstruction algorithm compared to the orthogonal matching pursuit-based algorithms in CS, as applied to 

images. Thus, 𝑙1 minimization is chosen as the reconstruction algorithm [20], [21]. Our previous work has 

shown the effectiveness of the discrete wavelet transform (DWT) based basis function for compressive 

speech enhancement [22]–[24]. This study concluded that the Fejér-Korovkin wavelet, with a vanishing 

moment N=22 (fk22), was the optimal basis function, for compressive speech enhancement.  

This work applies different threshold functions and analyzes the results for compressive speech 

enhancement using DWT as the basis function. Donoho [25] suggested two threshold functions; hard and 

soft. The hard threshold function creates signal discontinuity near the threshold points. The soft threshold 

function solves the signal discontinuity issue, but it causes the constant difference between the input signal 

and the output signal. To overcome the shortcomings of the hard and soft threshold functions, Gao [26] 

proposed the garrote threshold function. The denoising effect of the garrote threshold is better, but it does not 

resolve the constant deviation issue. Thus, the threshold functions should be improved to achieve a better 

denoising effect. Jing-Yi et al. [27] presents the basic principles and structure of wavelet threshold functions 

and their application for denoising. Jain and Tiwari [28] proposed an adaptive nonlinear mid-threshold 

function along with a new threshold estimation method for wavelet-based denoising of phonocardiogram 

signals.  

In this paper, a semi-soft thresholding approach is proposed for compressive speech enhancement, 

which is based on the nonlinear mid-threshold function. In addition, improved threshold estimation and 

threshold rescaling parameters to achieve a better enhancement have been proposed. The effectiveness of the 

proposed semi-soft threshold function is compared with the hard, soft and garrote threshold function based on 

five performance measures: signal-to-noise ratio (SNR), segmental signal-to-noise ratio (SegSNR), root 

mean square error (RMSE), perceptual evaluation of speech quality (PESQ) and normalized covariance 

metrics measure (NCM) [29]. The obtained results show that, with the proposed method, better enhancement 

has been achieved compared to the other three threshold functions, when applied for compressive speech 

enhancement. 

The remaining paper has been organized as: section 2 provides a brief description of the 

compressive speech enhancement process using the DWT basis function. Section 3 presents the wavelet 

threshold functions. Section 4 presents the semi-soft thresholding approach and the proposed methods. 

Section 5 describes the experimental settings, performance evaluation indices, results, and discussions. 

Section 6 summarizes the conclusions of this study. 

 

 

2. COMPRESSIVE SPEECH ENHANCEMENT USING DWT BASIS FUNCTION 

The compressive sensing approach involves four main steps: sparse representation, measurement of 

the signal using a sensing matrix, sparse recovery, and reverse sparsity [30]–[33]. The input signal is 

sparsified using the basis function. The sparse output is then measured into a small set of samples using the 

sensing matrices. Finally, the signal is reconstructed by reversing the sparsity followed by the sparse 

recovery algorithms. 

Figure 1 presents the step-by-step process of compressive sensing. In the first step, namely ‘sparse 

representation’, the signal is projected onto a suitable basis function. During the second step ‘measurement’, 

the sparse signal 𝑥 ∈  𝑅𝑁  is multiplied with the sensing matrix 𝜙 ∈ 𝑅𝑀×𝑁. Thus, only M number of 

measurements 𝑦 ∈  𝑅𝑀  (M ≪ 𝑁) are taken from the sparse signal 𝑥. The set of under-sampled measurements 

𝑦 is called the observation vector. The third step, ‘sparse recovery’, is a problem of an underdetermined 

system of linear equations. But sparse recovery is possible as the signal is sufficiently sparse, and the sensing 

matrix complies with the restricted isometry property (RIP) [7]. The sparsest solution amongst all the 

possible solutions is to be found using 𝑙1 minimization. In the last step, the clean signal is recovered by 

reversing the sparsity [34]. 

Previous work by the authors suggested that the DWT basis function is the optimal basis function 

for compressive speech enhancement [23]. Orthogonal wavelets support signal denoising and Fejér-Korovkin 

(fk22) wavelet was chosen as the optimal basis function. Earlier studies in the DWT basis-function based 

compressive speech enhancement process, suggest that a one-level wavelet decomposition be applied to the 

signal. Then the detail coefficients are processed using the CS approach and the approximation coefficients 

are used at the reconstruction stage.  
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Figure 1. Compressive sensing process 

 

 

3. WAVELET THRESHOLD FUNCTIONS 

Wavelet denoising approaches diminish the noise by thresholding the wavelet decomposition 

coefficients according to the threshold functions. The two important factors for wavelet denoising are the 

threshold value and the threshold function, based on which the wavelet decomposition coefficients are shrunk 

or scaled. Donoho [35] suggested a universal threshold function as given in (1). 

 

𝑇ℎ = 𝜎√2 log 𝑁 (1) 

 

where 𝜎 denotes the noise variance and 𝑁 is the signal length. This threshold helps to reduce noise to a large 

extent and preserves the information in the input signal. 𝜎 is calculated as shown in (2). 

 

𝜎 = 𝑀𝐴𝐷 (|𝑥|)/0.6745 (2) 

 

where 𝑀𝐴𝐷 is the median absolute deviation and is calculated as shown in (3): 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)|) (3) 

 

The two most common threshold functions are the ones proposed by Donoho [25] and they are the hard 

threshold and soft threshold. 

Hard threshold: this approach sets the value of the coefficients that are below the threshold value to 

zero, and the coefficients that are above the threshold value remain the same. The hard threshold function is 

given by (4). 

 

𝑇𝐻𝑅𝐻(𝑥, 𝑇ℎ) = {
𝑥,     |𝑥| ≥ 𝑇ℎ
0,      |𝑥| < 𝑇ℎ 

 (4) 

 

where 𝑥 is the input signal of length 𝑁 and 𝑇ℎ denotes the threshold value. Hard thresholding does not affect 

the signal energy significantly, but it causes signal discontinuities. 

Soft Threshold: This approach sets the value below the thresholds to zero and performs amplitude 

subtraction of the coefficients above the threshold [25]. The soft threshold function is given by (5). 

 

𝑇𝐻𝑅𝑆(𝑥, 𝑇ℎ) = {
𝑆𝑔𝑛(𝑥)(|𝑥| − 𝑇ℎ),     |𝑥| ≥ 𝑇ℎ

0,                                      |𝑥| < 𝑇ℎ 
 (5) 

 

where 𝑥 is the input signal of length 𝑁, 𝑇ℎ denotes the threshold value and 𝑆𝑔𝑛(. ) represents the signum 

function and it gives the sign of 𝑥. The soft thresholding approach attenuates the high-frequency coefficients 

of the signal, which makes the signal very smooth. Due to this, high-frequency information is lost and there 

is a constant difference between the input signal and output signal. 
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Garrote Threshold: The garrote threshold is an intermediate threshold function between the hard and 

soft threshold functions as it performs hard thresholding of large data values and soft thresholding of small 

data values using the Garrotte shrinkage function given by (6). 

 

𝑇𝐻𝑅𝐺(𝑥, 𝑇ℎ) = {
(𝑥 − 𝑇ℎ2/𝑥),   |𝑥| ≥ 𝑇ℎ

0,                          |𝑥| < 𝑇ℎ 
 (6) 

 

where 𝑥 is the input signal of length 𝑁 and 𝑇ℎ denotes the threshold value. Garrote threshold also attenuates 

the signal and causes constant deviation in the output signal with respect to the input signal [36]. 

 

 
4. SEMI-SOFT THRESHOLDING AND PROPOSED METHODS 

4.1.  Semi-soft threshold function 

In order to resolve the issues caused by the hard, soft and Garrotte thresholds, this work explored the 

non-linear mid function suggested by Jain and Tiwari [28]. A semi-soft thresholding approach, for 

compressive speech enhancement using the DWT basis function, is being proposed here. This approach 

performs thresholding in three parts: i) retaining the high-frequency coefficients, ii) setting small value 

coefficients to zero, and iii) shrinking the moderate value coefficients according to the nonlinear shrinkage 

function given by (7). 

 

𝑇𝐻𝑅𝑆𝑆(𝑥, 𝑇ℎ𝐿 , 𝑇ℎ𝑈) = {

 𝑥,                                        |𝑥| > 𝑇ℎ𝑈

𝑥3/𝑇ℎ𝑈
2               𝑇ℎ𝐿 ≤ |𝑥| ≤ 𝑇ℎ𝑈

0,                                         |𝑥| < 𝑇ℎ𝐿

 (7) 

 

where, 𝑇ℎ𝐿  and 𝑇ℎ𝑈  are lower and upper threshold values respectively. The output response for the given 

threshold functions, for a linear test input, was generated. The threshold values selected were: 𝑇ℎ𝐿 = 4 and 

𝑇ℎ𝑈 = 4.5.  

The performance of the threshold functions can be seen in Figure 2. As evident from Figure 2(a), 

there is a sharp discontinuity at the threshold point for the hard threshold function. Figure 2(b) shows that 

there is a constant deviation between the input and the output response in the case of the soft threshold 

function. Figure 2(c) shows that the garrote threshold tries to solve the discontinuity problem of the hard 

threshold as well as to decrease the difference between the output and input response. Figure 2(d) displays 

that the proposed semi-soft threshold function does not show sharp discontinuities and the output response 

gradually reaches zero at the threshold points. Thus, the semi-soft threshold function overcomes the signal 

discontinuity issue of the hard threshold function as well as the constant deviation issue of the soft and 

garrote threshold functions. 

 

4.2.  Wavelet decomposition and proposed method of thresholding the coefficients  

The wavelet decomposition process decomposes the signal into low-frequency coefficients 

(approximation coefficients) and high-frequency coefficients (detail coefficients) [37], [38]. In the case of 

wavelet denoising multilevel wavelet decomposition, wavelet transform is applied to the noisy input, which 

generates the noisy wavelet coefficients to the level 𝑁. The detail coefficients are thresholded for each level 

from level 1 to 𝑁, while the approximation coefficients are used at the wavelet reconstruction stage [39].  

Previous work was related to compressive speech enhancement and suggested the use of only one 

level wavelet decomposition. Thus, the detail, as well as the approximation coefficients, were quite noisy. If 

thresholding is only applied to detail coefficients, the noise present in the low-frequency region will not be 

reduced and a noisy output is obtained. Hence, this work suggests the application of the proposed semi-soft 

thresholding to both the detail and approximation coefficients, for compressive speech enhancement using 

the DWT basis function.  

 

4.3.  Threshold estimation 

As thresholding is being applied to both the detail and the approximation coefficients, the 

effectiveness of the semi-soft thresholding is solely dependent on the selection of the threshold value. A large 

threshold value results in a noisy output and a low threshold value will not be effective for noise suppression. 

In this work, we propose two threshold estimation approaches based on the universal threshold suggested by 

Donoho and Johnstone [40]. The first one is an improved universal threshold 𝑇ℎ1 calculated according to (8). 

 

𝑇ℎ1 = 𝑠√2 log 𝑁 (8) 
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where 𝑠 represents the standard deviation of the detail coefficients and 𝑁 represents the length of the detail 

coefficients. The reason for this is that the standard deviation is useful for describing the variability of the 

coefficients and it remains on the same scale as the input coefficients. In the case of the universal threshold 

(𝑇ℎ = 𝜎√2 log 𝑁 ) suggested in [40], 𝜎 is the noise variance of the signal.  

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 2. Output responses resulting from (a) hard, (b) soft, (c) garrote, and (d) semi-soft threshold functions, 

for linear test input 

 

 

The second threshold is an initial-silence-region based universal threshold 𝑇ℎ2. When the speech 

signal is recorded or analysed, there is a period of silence before the utterance of a syllable. This region is 

called the initial-silence region, as the speaker takes some time to speak before uttering the first letter or 

word. The initial-silence region shows the signal having very little energy, which is equivalent to low noise. 

Thus, we can estimate the variance of the noise using this region. The initial-silence-region based universal 

threshold 𝑇ℎ2 is calculated as shown in (9). 

 

𝑇ℎ2 = 𝜎𝑖√2 log 𝑁𝑖 (9) 

 

where, 𝜎𝑖 and 𝑁𝑖 are noise variance and length of the initial-silence-region respectively. Noise variance 𝜎𝑖 is 

calculated as: 

 

𝜎𝑖 = 𝑀𝐴𝐷 (|𝑥𝑖|)/0.6745 (10) 

 

where 𝑀𝐴𝐷 is the median absolute deviation and is calculated as given in (11): 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑖)|) (11) 
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4.4.  Threshold rescaling 

Threshold rescaling refers to the optimization of threshold values as they affect the operating range 

of the threshold functions. It was found that if we applied the threshold directly, there was some noise residue 

present in the enhanced output signal. Thus, threshold rescaling is an important aspect to be considered for 

improving the performance of the semi-soft thresholding approach. The rescaled threshold values are given 

as (12) and (13): 

 

𝑇1 = 𝛼 × 𝑇ℎ1 (12) 

 

𝑇2 = 𝛽 ×  𝑇ℎ2 (13) 

 

α and β are rescaling constants ranging from 1 to 1.5 and α > β. Based on the performance comparison for 

different values of α and β, it was found that the value of α should be 1.5 so that the rescaled threshold 

allows the removal of a large range of noise residue. The optimum value of rescaling constant β was found to 

be 1.3. By rescaling the threshold values, the operating range of the non-linear mid function is increased. The 

higher of the two threshold values is considered as the upper threshold 𝑇ℎU and the lower is considered as the 

lower threshold 𝑇ℎL. 

 

4.5.  Method 

The experimental steps for the DWT basis-function based compressive speech enhancement are as:  

- The noisy speech signal 𝑥 is taken as the input. 

- Framing is essential as we do not process the entire signal in one go when using compressive sensing. The 

frame size should not be very small as the frames are further decomposed using DWT. The frame size 

should not be very large also as it may increase processing time. Thus, the input speech signal is divided 

into non-overlapping frames of 1024 samples each. 

- Gaussian random matrix is defined as sensing matrix 𝜙. 

- One-level DWT 𝜓 is applied to the framed input. We will get the high-frequency coefficients vector 𝑐𝐷 

and low-frequency coefficients vector 𝑐𝐴.  

- The improved universal threshold 𝑇ℎ1 and initial-silence region-based threshold 𝑇ℎ2 are calculated. After 

threshold rescaling, the values of 𝑇ℎU and 𝑇ℎL are determined. 

- Semi-soft thresholding is implemented on the detail as well as the approximation coefficients using the 

upper and lower thresholds, 𝑇ℎU 𝑎𝑛𝑑 𝑇ℎL. The thresholded coefficients 𝑐𝐷𝑇  and 𝑐𝐴𝑇 are obtained. 

- The observation vector obtained is given in (14). 

 

𝑦 = 𝜙 ∗ 𝑐𝐷𝑇  (14) 

 

- The reconstruction algorithm is applied to 𝑦 to get 𝑐𝐷𝑇
′ . 

- One-level IDWT is applied to the reconstructed high-frequency coefficients vector 𝑐𝐷𝑇
′  and the 

thresholded low-frequency coefficients vector 𝑐𝐴𝑇 to reverse sparsity. 

- The processed frames are merged to form the enhanced speech signal 𝑥′. 

 

 

5. EXPERIMENTAL RESULTS 

sp04.wav (male), sp07.wav (male), sp15.wav (female) and sp30.wav (female) were taken from the 

noisy speech corpus (NOIZEUS) speech database [41]. These signals were distorted by babble, street, and 

airport noises; at 5 dB, 10 dB and 15 dB input SNR. The sampling frequency was 8 kHz. The input signal 

which is the original speech signal distorted by one of the above-mentioned noises was framed into non-

overlapping frames of 1,024 samples for compressive speech enhancement process. For the initial-silence-

region based threshold calculation an initial, 500 samples were taken. The compression ratio was chosen to 

be 50%. A Gaussian random matrix was selected for the sensing matrix. 𝑙1 minimization was applied as a 

recovery algorithm, for sparse recovery. Objective quality measures, as well as speech intelligibility 

measures, were used for the performance assessment of the reconstructed signals. 

 

5.1.  Performance evaluation indices  

Performance evaluation indices are the parameters which are used to test the effectiveness of the 

algorithms. Threshold function performance was assessed with the aid of three objective quality measures: 

SNR, SegSNR, RMSE. Two speech intelligibility measures: PESQ and NCM [29], [42]. 
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SNR is the ratio between the power of a signal and the power of the background noise. SNR is 

expressed in decibels. Higher SNR represents that signal is more than the noise. It is expressed in (15), 

where x(n) represents the input signal, while x^' (n) represents the enhanced signal. 

 

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10
∑ 𝑥2(𝑛)

∑(𝑥(𝑛)−𝑥′(𝑛))
2 (15) 

 

where 𝑥(𝑛) represents the input signal, while 𝑥′(𝑛) represents the enhanced signal. 

Segmental SNR is the mean of SNRs of all frames of the speech signal. SegSNR is calculated  

using (16). 
 

𝑆𝑒𝑔𝑆𝑁𝑅 =
10

𝑀
∑ log10

∑ 𝑥2(𝑛)𝑁𝑚+𝑁−1
𝑛=𝑁𝑚

∑ (𝑥(𝑛)−𝑥′((𝑛))2𝑁𝑚+𝑁−1
𝑛=𝑁𝑚

𝑀−1
𝑚=0  (16) 

 

where 𝑥(𝑛) represents the input signal, 𝑥′(𝑛) represents the enhanced signal, 𝑁 gives the length of the frame 

and 𝑀 gives the number of frames in the signal. 

RMSE is the most commonly used objective measure, which indicates the difference between the 

clean signal and the enhanced signal. It is calculated using (17). 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥(𝑛) − 𝑥′(𝑛))2𝑁

𝑛=1  (17) 

 

where N is signal length, 𝑥(𝑛) represents the input signal and 𝑥′(𝑛) represents the enhanced signal. 

The ITU-T P.862 standard defines the perceptual evaluation of speech quality (PESQ), which 

denotes the overall speech quality score. PESQ models the mean opinion score (MOS); it covers a signal 

quality scale from 1 (bad) to 5 (excellent) [43]–[45]. The NCM measure relies on the covariance between the 

envelope of the input and output signals [46]. It calculates the correlation coefficient equation between the 

input and output signal envelopes and maps it to the NCM index. This value of this parameter indicates the 

intelligibility of the speech signal. A higher value indicates higher intelligibility. 

 

5.2.  Results and discussions 

In the case of the wavelet threshold denoising approach, the reconstructed signal quality is also 

related to the number of decomposition levels apart from the selection of threshold value and threshold 

function. More decomposition levels are required to achieve better denoising, which will increase the 

computation as well as the processing time. At each decomposition level, thresholding is applied to quantify 

the detail coefficients. This may lead to the reconstruction error being too large and may reduce signal 

quality. While in the case of the proposed compressive speech enhancement process, only one level of 

wavelet decomposition is required, and thresholding is applied to both the detail as well as approximation 

coefficients, which reduces the complexity of the process as well as provides better enhancement. 

In the CS based speech enhancement process, threshold functions were applied to the sparsified 

signal, obtained using the DWT basis function, Experiments were performed on two male speech signals 

(sp04.wav, sp07.wav) and two female speech signals (sp15.wav, sp30.wav). The performance was observed 

for three input SNRs 5, 10, and 15 dB, for three background noises (babble, street, and airport). The 

effectiveness of the proposed algorithm has been presented here for one male speech signal (sp04.wav) and 

one female speech wave (sp15.wav) distorted by two noises babble and street. 

 

5.2.1. Performance analysis of the threshold functions for compressive speech enhancement of signal 

‘sp04.wav’ distorted by babble and street noise 

Table 1 shows the comparative assessment of the threshold functions for the CS based enhancement 

of speech signal sp04.wav (male) corrupted by babble noise and street noise. It may be noted from the table 

that the performance of the proposed method of semi-soft thresholding approach is consistently better than 

that of the hard, soft and garrote threshold functions in terms of all five performance measures, regardless of 

the input SNR and noise type. 

Figures 3(a)-(f) to 5(a)-(f) show the comparative examination of threshold functions for compressive 

speech enhancement of signal sp04.wav distorted by babble noise and street noise at 5, 10, and 15 dB 

respectively. Figures 3(a), 4(a) and 5(a) shows the clean input signal sp04.wav, while the Figures 3(b), 4(b) 

and 5(b) shows the noisy speech signal. Figures 3(c), 4(c) and 5(c) shows the compressive speech enhanced 

signal using the hard threshold function. Similarly, subfigures (d), (e) and (f) shows the compressive speech 

enhanced signal for soft, garrote and semi-soft threshold functions respectively. By visual inspection of the 

figures, it is seen that signals were clipped off near the transition regions in the case of the hard threshold. For 
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the soft and garrote threshold, there is a constant deviation compared to the input signal. This makes the 

signal very smooth, due to which high-frequency information is lost. In the case of semi-soft thresholding, 

some noise residue was observed for low input SNR, but results were good in terms of performance 

parameter values and there was little or no signal clipping. Thus, the signal intelligibility is good and the 

same is suggested by the values obtained for parameters PESQ and NCM. 

 

 

Table 1. Comparison of threshold functions for compressive speech enhancement of sp04.wav distorted by 

babble noise and street noise 
Threshold Functions Performance Measures Babble Noise Street Noise 

Input SNR (dB) Input SNR (dB) 

5 10 15 5 10 15 

Hard SNR (dB) 6.9491 8.1201 9.1320 7.5599 8.1063 9.0085 
SegSNR(dB) 4.1646 3.7549 3.8061 4.8692 3.9199 3.8125 

RMSE 0.0233 0.0186 0.0160 0.0217 0.0186 0.0163 

PESQ 1.6769 0.9745 1.2795 1.2590 1.5589 1.7168 

NCM 0.7414 0.7786 0.8092 0.8249 0.8201 0.8130 

Soft SNR (dB) 3.9215 4.6263 5.0013 4.2819 4.7131 5.0352 

SegSNR(dB) 1.8617 1.7906 1.8104 2.2255 1.8954 1.8463 
RMSE 0.0330 0.0278 0.0258 0.0316 0.0275 0.0257 

PESQ 1.2387 1.0403 1.3169 1.5810 1.6334 1.7556 
NCM 0.6556 0.6889 0.7063 0.7408 0.7239 0.7180 

Garrote SNR (dB) 5.3171 6.3278 6.9272 5.7635 6.3590 6.9219 

SegSNR(dB) 2.7757 2.6424 2.6665 3.2921 2.7703 2.7041 
RMSE 0.0281 0.0229 0.0207 0.0267 0.0228 0.0207 

PESQ 1.3195 1.0564 1.3403 1.6056 1.6528 1.7632 

NCM 0.6771 0.7137 0.7351 0.7719 0.7549 0.7487 
Semi-soft SNR (dB) 8.7336 12.2407 16.4597 8.6220 11.0462 15.4204 

SegSNR(dB) 5.8638 7.3360 9.4517 5.8721 6.3690 8.5403 

RMSE 0.0190 0.0116 0.0069 0.0192 0.0133 0.0078 
PESQ 2.5864 2.8241 3.0337 1.8169 2.5004 2.8296 

NCM 0.8030 0.9036 0.9488 0.8543 0.9012 0.9452 

 

 

  
(a) (a) 

  
(b) (b) 
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(d)  (d) 
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Figure 3. Compressive speech enhancement results using different threshold functions for sp04.wav distorted 

by babble and street noise at 5 dB input SNR (a) clean input signal (sp04.wav), (b) noisy signal  

(5 dB input SNR), (c) hard (d) soft, (e) garrote, and (f) semi-soft threshold function 
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Figure 4. Compressive speech enhancement results using different threshold functions for sp04.wav distorted 

by babble and street noise at 10 dB input SNR (a) clean input signal (sp04.wav), (b) noisy signal  

(10 dB input SNR), (c) hard (d) soft, (e) garrote, and (f) semi-soft threshold function 
 

 

  

  

  

  

  

  
 

Figure 5. Compressive speech enhancement results using different threshold functions for sp04.wav distorted 

by babble and street noise at 15 dB input SNR (a) clean input signal (sp04.wav), (b) noisy signal  

(15 dB input SNR), (c) hard (d) soft, (e) garrote, and (f) semi-soft threshold function 

 

 

5.2.2. Performance analysis of threshold functions for compressive speech enhancement of signal 

‘sp15.wav’ distorted by babble and street noise 

Table 2 shows the comparative assessment of the threshold functions for the CS based enhancement 

of the speech signal, sp15.wav (female), corrupted by babble noise and street noise. It can be observed from 

the table that the proposed method of semi-soft thresholding, using the proposed threshold estimation, shows 

quantitative effectiveness in terms of the higher values of the SNR, SegSNR, PESQ and NCM parameters 

and lower MSE value. 
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Table 2. Comparison of threshold functions for compressive speech enhancement of sp15.wav distorted 

by babble noise and street noise 
Threshold 

Functions  

Performance 

Measures 

Babble Noise Street Noise 

Input SNR (dB) Input SNR (dB) 

5 10 15 5 10 15 

Hard SNR (dB) 7.8635 8.8808 9.7073 9.4812 9.3760 9.8832 

SegSNR(dB) 5.6624 5.3251 5.2789 7.1728 5.7113 5.4088 

RMSE 0.0208 0.0169 0.0148 0.0172 0.0159 0.0145 

PESQ 2.2321 1.3001 1.4766 1.7410 1.6008 1.6650 

NCM 0.6825 0.7080 0.7525 0.8082 0.7917 0.7925 

Soft SNR (dB) 4.3485 5.1686 5.6220 5.3405 5.5184 5.7358 

SegSNR(dB) 2.4894 2.4740 2.4992 3.2411 2.6910 2.5653 

RMSE 0.0311 0.0259 0.0238 0.0277 0.0248 0.0234 

PESQ 1.7105 1.2487 1.3984 1.8705 1.6022 1.6415 

NCM 0.5756 0.6121 0.6460 0.6909 0.6844 0.6800 

Garrote SNR (dB) 5.9068 6.9653 7.6281 7.2461 7.4180 7.7768 

SegSNR(dB) 3.7312 3.6766 3.7040 4.8633 3.9898 3.7943 

RMSE 0.0260 0.0210 0.0189 0.0222 0.0199 0.0185 

PESQ 1.8389 1.2812 1.4363 1.9168 1.6350 1.6638 

NCM 0.6071 0.6426 0.6795 0.7292 0.7226 0.7175 

Semi-soft SNR (dB) 9.5422 12.8414 17.1266 10.1959 11.4555 15.5869 

SegSNR(dB) 7.3188 9.1442 12.0443 7.8726 7.6667 10.4260 

RMSE 0.0171 0.0107 0.0063 0.0158 0.0125 0.0075 

PESQ 2.7847 3.0169 3.1815 1.9917 2.2616 2.7882 

NCM 0.7667 0.8579 0.9198 0.8292 0.8690 0.9244 

 

 

Figures 6(a)-(f) to 8(a)-(f) show the comparative results of threshold functions for compressive 

speech enhancement of the signal sp15.wav distorted due to babble noise and street noise at 5, 10, and 15 dB 

respectively. Figures 6(a), 7(a) and 8(a) shows the clean input signal sp15.wav. Figures 6(b), 7(b) and 8(b) 

shows the noisy speech signal. Figures 6(c), 7(c) and 8(c) shows the compressive speech enhanced signal 

using the hard threshold function. Similarly, Subfigures (d), (e) and (f) shows the compressive speech 

enhanced signal for soft, garrote and semi-soft threshold functions respectively. It can be observed from the 

figures that the proposed method of semi-soft thresholding, performs effective noise suppression without any 

significant signal loss. Thus, the proposed approach overcomes the signal discontinuity issue caused by hard 

thresholding and constant deviation issues caused by soft and garrote thresholding. 

 

 

  

  

  

  

  

  
 

Figure 6. Compressive speech enhancement results using different threshold functions for sp15.wav distorted 

by babble and street noise at 5 dB input SNR (a) clean input signal (sp15.wav), (b) noisy signal  

(5 dB input SNR), (c) hard (d) soft, (e) garrote, and (f) semi-soft threshold function 
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Figure 7. Compressive speech enhancement results using different threshold functions for sp15.wav distorted 

by babble and street noise at 10 dB input SNR (a) clean input signal (sp15.wav), (b) noisy signal  

(10 dB input SNR), (c) hard (d) soft, (e) garrote, and (f) semi-soft threshold function 

 

 

  

  

  

  

  

  
 

Figure 8. Compressive speech enhancement results using different threshold functions for sp15.wav distorted 

by babble and street noise at 15 dB input SNR (a) clean input signal (sp15.wav), (b) noisy signal  

(15 dB input SNR), (c) hard (d) soft, (e) garrote, and (f) semi-soft threshold function 

 

 

6. CONCLUSION 

To improve the performance of the compressive speech enhancement process, this paper analyzes 

the conventional threshold functions and introduces semi-soft thresholding with improved threshold 

estimation. The key contributions of the paper are as: i) this study highlights the problem associated with the 

traditional wavelet threshold functions and suggests a semi-soft threshold function, which is premised on the 

nonlinear mid-threshold function and utilizes two threshold values; ii) improved threshold estimation and 
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threshold rescaling parameters have also been proposed here. One threshold is an improved universal 

threshold, and the other threshold is estimated using the initial-silence-region of the signal; iii) this study 

suggests that thresholding should be applied to both the decomposition coefficients, to achieve effective 

noise reduction, in the case of the one-level wavelet decomposition; and iv) the proposed method of semi-soft 

thresholding with improved threshold estimation resolves the signal discontinuity issue of the hard threshold 

function by using two levels of thresholds. It also retains the large coefficients, thus reducing high-frequency 

information loss and constant signal deviation problems created by soft and garrote thresholding.  

Experimental results and the visual analysis show that the proposed method improves signal quality 

and intelligibility. Thus, it is concluded that the proposed method gives a more accurate threshold estimation 

to achieve better denoising and is more effective and feasible when compared with the conventional 

threshold functions. A visual inspection of the enhanced speech signal indicates the presence of noise residue 

at low SNR, but the parametric analysis suggests that the signal intelligibility is quite good compared to the 

other thresholding approaches. Future work should be directed towards improving the algorithm to obtain 

effective noise reduction even at low SNRs. 
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