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ABSTRACT

In last decade, numerous meta-heuristic algorithms have been proposed for deal-
ing the complexity and difficulty of numerical optimization problems in the real-
world which is growing continuously recently, but only a few algorithms have
caught researchers’ attention. In this study, a new swarm-based meta-heuristic
algorithm called Rhizostoma optimization algorithm (ROA) is proposed for
solving the optimization problems based on simulating the social movement of
Rhizostoma octopus (barrel jellyfish) in the ocean. ROA is intended to mitigate
the two optimization problems of trapping in local optima and slow convergence.
ROA is proposed with three different movement strategies (simulated annealing
(SA), fast simulated annealing (FSA), and Levy walk (LW)) and tested with
23 standard mathematical benchmark functions, two classical engineering prob-
lems, and various real-world datasets including three widely used datasets to pre-
dict the students’ performance. Comparing the ROA algorithm with the latest
meta-heuristic optimization algorithms and a recent published research proves
that ROA is a very competitive algorithm with a high ability in optimization
performance with respect to local optima avoidance, the speed of convergence
and the exploration/exploitation balance rate, as it is effectively applicable for
performing optimization tasks.
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1. INTRODUCTION
Over the last few decades meta-heuristic optimization techniques became very popular. Algorithms

such as the grey wolf optimizer (GWO) [1], the whale optimization algorithm (WOA) [2], the Jellyfish search
(JS) [3], the ant lion optimizer (ALO) [4], the archimedes optimization algorithm (AOA) [5], and particle
swarm optimization (PSO) [6] are successful examples for these techniques which used efficiently in scientific
research. Five main reasons make the meta-heuristics remarkably common [7]: simplicity because of the
very simple concepts their inspiration based on, flexibility because of the stability in their structure with the
applicability in different issues, derivation-free mechanism because of the random solution(s) their process
starts with [8], and finding the optimum do not need any calculations to derive the search spaces, local optima
avoidance due to their stochastic nature which allows them to avoid falling into local solutions and getting to
the global solution, beside the ease of their implementation [3]. These make meta-heuristics considering as
highly suitable and a good option for real problems.
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Any meta-heuristic algorithm based on two main processes: exploration and exploitation. Exploration
is the process that performed by an algorithm to evaluate the selected solutions. This process aims at falling
into the local optimum trap. Exploitation is performing a search in the space close to the current solution(s). It
can be figured as a local search. The way in which the meta-heuristics balance these two main processes is the
challenge that differentiate a meta-heuristic from another [7]. The main aim of this study is to develop a novel
meta-heuristic by inspiring the social behavior of Rhizostoma octopus in the ocean, including their food search-
ing, and their moves inside the swarm. This algorithm provides an improvement for exploration/exploitation
balance, local optima avoidance, and and the speed rate of convergence, compared to the latest algorithms.

This research paper is arranged as follows. A literature review on meta-heuristic optimization algo-
rithms is presented in section 2. Section 3 describes the proposed artificial Rhizostoma optimizer and explains
how to implement it in detail. Section 4 verifies the efficiency of the proposed algorithm by solving various
benchmark functions. Section 5 describes Rhizostoma optimization algorithm (ROA) in solving two classical
engineering problems. Section 6 describes the ROA in real problems. The last section expresses conclusions.

2. LITERATURE REVIEW
There are about more than 1,000 publications on meta-heuristics in the last 33 years, and the proposal

of swarm intelligence (SI) concepts was firstly appeared in 1993 [2]. All meta-heuristics are categorized into
two groups. The first group consists of the algorithms that mimic physical or biological phenomena which can
be classified into three subgroups, The first is evolution-based which is inspired by the laws of natural evolution.
The most popular evolution-inspired method is genetic algorithms (GA) which based on the Darwinian evolu-
tion simulation. Other popular algorithms are evolution strategy (ES), probability-based incremental learning
(PBIL) and others [2]. The second subgroup is physics-based that imitates the physical rules in the universe.
The most popular algorithms in this subgroup are simulated annealing (SA) [9], big-bang big-crunch (BBBC)
[10], black hole (BH) algorithm and others. The third subgroup is swarm-based methods [11] that mimic the
social behavior of the groups of animals. The most popular algorithm of this subgroup is PSO [6] that is
inspired by the social behavior of bird flocking, monkey search (MS), firefly algorithm (FA) [12], grasshop-
per optimization algorithm (GOA) [13], bat-inspired algorithm (BA) [14], ALO [4], ant colony optimization
(ACO), GWO, AOA, giza pyramids construction (GPC) [15], The WOA [2], heap based optimizer (HBO) [16]
and political optimizer (PO) [17]. The second category [2] contains those are inspired by human phenomena,
social-based algorithm (SBA), harmony search (HS), group counselling optimization (GCO) algorithm, and the
exchange market algorithm (EMA) are some of the most popular algorithms of this category.

The search process in meta-heuristic algorithms is divided into two bands [18]: exploration and ex-
ploitation. Operators are vital for any optimizer to globally explore the search space: in this band (exploration),
movements should be randomized. The second band is exploitation, it can be defined as the process in which
the promising area (s) of the search space which is (are) investigated in details. Exploitation hence related
to the capability of searching locally in the design space’ promising regions which exists in the exploration
phase. Searching to find the appropriate balance ratio between the exploration and the exploitation is the most
challenging problem in the development stage of any meta-heuristic algorithm because of the stochastic nature
of the optimization’ process [19].

Many SI techniques are proposed so far, which are inspired by behaviors of hunting and search. For
our information so far, however, there is no SI technique in this literature review that mimics the movement
and food search for Rhizostoma Pulmo. This motivated us to propose a new SI artificial algorithm inspired by
Rhizostoma octopus called ROA and explore its abilities to solve the benchmark equations, both exploration
and exploitation are considered in our algorithm. In the beginning, we describe the Rhizostoma dive pattern in
the exploration for the maximum concentration of prey in the water column. Over time, Rhizostoma Pulmo’s
movements switch to forming a swarm and searching food moving inside swarms for exploitation.

3. ARTIFICIAL RHIZOSTOMA OPTIMIZER
This section describes the Rhizostoma octopus optimization algorithm inspiration. The mathematical

model which describes his movement in the ocean is provided. Also, his way of choosing the best place to find
his food, especially because he eats a lot of food.
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3.1. Inspiration
Barrel jellyfish found in the southern and western shores of the British Isles in summer months, they

are solid with a thick, mushroom-shaped bell which diameter can grow up to 1 m with 8 frilly arms beneath
its surface, hence they have the former name: Rhizostoma octopus, giants of the jellyfish world, they are
referred to as “dustbin-lid jellyfish” or “frilly-mouthed jellyfish” and so large that small crabs and young fish
are looking for a protective shelter in their tentacles. Despite their large size, humans have little to worry about
from Rhizostoma pulmo. Their sting causes no ill effects because it is so mild even some people do not feel it.

Jellyfish methods of feeding vary, some of them bring food to their mouths using their tentacles
whereas filter-feeding is used by others [20], so they eat whichever the current brings. Rhizostoma pulmo
vigorously hunts prey and freezes them via the sting by their tentacles. R. Octopus have features that enable
them to control their movements, whereas other species of jellyfish which mostly drift in the water depending
on currents and tides. Rhizostoma octopus (R. octopus) has the capability of active swim against localized cur-
rents because its unusually large weighing 27 kg or more Figure 1 shows its size. A rising sea temperature and
amount of food help the formation of their swarms which are called blooms because they survive better than the
other ocean animals under such circumstances as high salinity and low oxygen concentrations. Through study-
ing the R. octopus, Reynolds [21] found that it uses different strategies for searching to find huge quantities of
plankton in large levels of concentration. Three those unique strategies are proposed in this work.

Figure 1. Effects of selecting different switching under dynamic condition

The first is based on SA which is a local search method invented to avoid local minima and converges
to global optimum. the second is based on a Levy walk (LW) where an agent searches for something in the
nearby areas then it makes random jumps to more faraway places if there is nothing locally, another random
jump will make a farther distance away. Scientists have found that this strategy is used by other animals,
such as honeybees and sharks, to gain big effect because it results in rapidly finding one of several possible
suitable prey species. But because R. octopus is more discerning about finding prey it makes a sudden up
or down movements in the water if there is a food present and if not, returns to its past position. Reynolds
pointing out that as a form of fast SA-a kind of LW search pattern and it is very effective when used for quickly
finding a specific target in a large search space in a block of noise. R. octopus consumes huge quantities of
plankton regularly enough to meet its needs and Its uniqueness comes from its techniques which have never
been observed in any other animal [21].

The quality of food varies in the ocean; thus, R. octopus is using more than one powerful stochastic
search algorithm so, it has the ability to locate a global maximum (best resource) that is hidden through multiple
poorer local maxima (poorer resources) in the search space. Therefore, we developed a new algorithm that
is inspired by the search behavior and movement of R. octopus in the ocean model, the algorithm iteration
represented in Figure 2. In the next subsection, the behavior and movements of R. octopus in the ocean are
simulated and introduced as a mathematical model and the optimization algorithm that is driven from this
mathematical simulation is also introduced.

3.2. Mathematical model for ROA
The proposed algorithm is based on three basic rules: i) exploration and exploitation bands: Rhizos-

toma pulmo moves in the ocean searching for the best food locations (plankton in vast amounts) using more
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than one random searching algorithm then form a swarm with forming swarm and feeding motion. In the
artificial ROA the two main bands of a meta-heuristic algorithm are considered. The first type of motion is
exploration, and the second type of motion inside the swarm is exploitation; ii) Rhizostoma searches for food
or moves inside the swarm, and a “motion control factor” governs the switching between these types of move-
ments; and iii) the quality of food found (current solution) is measured by the current location and its associated
objective function.

Figure 2. ROA iteration cycle

3.2.1. Population initialization and boundary conditions
The population of R. octopus is randomly initialized.

x∗
i = λxi(1− xi), 0 ≤ x0 ≤ 1 (1)

The location value of the i-th R. octopus is xi; x0 is the generated initial population of R. octopus, x0 belongs
to 0 and 1, x0 /∈ {0, 0.25, 0.5, 0.75, 1} and parameter λ is set to 4.0 when a R. octopus exceeds the boundaries
of the search area, it will re-enter the opposite bound. In (2) illustrates this returning process.

X∗
i,d =

{
(xi,d − Ubd) + Lbd, ifxi,d > Ubd

(xi,d − Lbd) + Ubd, ifxi,d < Lbd
(2)

xi,d is the R. octopus’ location in the d-th dimension; x∗
i,d is the location updated after checking the constraints

of boundary. respectively, Ubd and Lbd are the upper and lower bounds of the d-th dimension in the search
spaces.

3.2.2. Food searching strategies
According to [21] the movement pattern of R. octopus changes over time, he proposed fast simulated

annealing (FSA) for its pattern while scientists thought he was moving using LW like sharks and honeybees,
in all types of this food searching patterns the generative function exists and directs the way of updating the
variables in each search attempt. In our proposal we introduce ROA based on three different stochastic search
algorithms: LW, fast simulated annealing (food searching strategies), and SA then compare results to find the
best strategy for its motion. The first strategy is levy flight which is named after the French mathematician
Paul Levy, [14] it is a random walk in which the lengths of steps have a fibrous distribution. When defined as
a walk in a space of greater than one dimension, the taken steps are in random, rival directions. Where xi is
the R. octopus currently with the best location, xj is the new location of R. octopus. If f(xj) > f(xi) The R.
octopus at xi will take a step toward the point xj , This step satisfies a heavy-tailed Lévy distribution, which
can be represented by a clear power-law as (3):
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L(s) ≈ |s|1−β , where 0 < β ≤ 2 (3)

where s is random Lévy step length which can be calculated by s = u/|v|1/β where u and v are drawn from
normal distributions. The position-updating with maximum consideration of food can be formulated as (4).

xnext = xi + µ× rand(0, 1) (4)

where µ is the step length, rand is a random number distributed uniformly between (0, 1) and µ × rand(0, 1)
is the actual random walks or flights drawn from Levy distribution. Second motion strategy is fast simulated
annealing algorithm (FSA) [22] it is kind of LW where a cost function, e.g., the prey density f(x) e.g., the
density of prey, at x (the current position), is compared with f(y), which is the cost function at another position
y, while from a Cauchy distribution, the step length, s = |y − x|, is randomly drawn as (5).

p(s) = 1/π × T/(s2 + T 2) (5)

where T is the temperature which measures of the size of the fluctuations in step-length. The accepted proba-
bility value required to accept the new position is calculated as (6),

P = min{1, exp(∆f/T )} (6)

where ∆f = f(y)−f(x) is the change in cost between the two positions current and previous. The acceptance
condition the new position is that it has to be better than the previous position, i.e., if ∆f > 0 will be accepted
only if the new position is the worse, then R. octopus returns to its previous position. In [17] showed that FSA
is converging to the global optima (maximum) if the annealing is scheduled in terms of T (k) = T0/k, where
the initial temperature is T0 and the step counter is k.

Third R. octopus motion strategy is SA different kind of LW search pattern where the length of each
step is generated randomly from a Gaussian distribution.

g(s) = (2πT )−D/2e(∆X2)/2T (7)

where D is dimension of the search space (number of variables in the cost function) and ∆x shows the rate of
change of X (variables’ vector). So xnext = xi +∆x where xi denotes the current state and xnext shows the
next state of variables.

3.2.3. R. Octopus swarm
In Rhizostoma swarm, there are two types of motions when the swarm is just formed the first type is

feeding motion and the second type is forming swarm [21]. R. octopus is moving with the first type when the
swarm has just been formed. Over time, they change to the second type of motion [23], [24].

The first type of motion is the motion of R. octopus around their own locations and the corresponding
updated location of each one of them is given by (8).

xi(t+ 1) = xi(t) + β × rand(0, 1)× (ub− lb) (8)

where ub and lb are the upper bound and lower bound of search spaces, respectively; and β > 0 is a motion
coefficient, according to the analysis results of the evaluation experiments we found that the best result of ROA
is obtained when β = 0.1, it is depends on the motion’ length around R. octopus locations.

To simulate the second type of motion,Rj , Ri random and for determining the direction of movement,
a vector from Ri to Rj is used. When the food’ quantity at the Rj location exceeds the Ri location, Ri moves
toward Rj ; if the available food’ quantity to the selected Rj is lower than the quantity available to Ri it moves
away from it directly. So, each one moves toward the best direction to forming a swarm. The updated location
of a R. octopus and its direction of motion is simulated in (9):

S⃗ = x
(t+1)
i − xt

i (9)

WhereS⃗ = rand(0, 1)× D⃗ (10)
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S⃗ =

{
xt
j − xt

i if f(xi) ≥ f(xj)

xt
i − xt

j if f(xi) < f(xj)
(11)

where f is an objective function of location x, S⃗ is the step, and D⃗ is the direction. Hence,

x
(t+1)
i = xt

i + S⃗ (12)

3.2.4. Motion control factor
A motion control factor is used to determine the type of motion. It controls not only the two types

of swarm motions but also the searching food strategies of R. octopus. Rhizostoma pulmo is attracted to the
locations that have a huge quantity of planktons, over time, more than one closed together and forming a swarm
with the two types of motions that we introduced before.

The motion control factor is introduced to regulate this situation that includes a motion control func-
tion M(f) is a constant that varies randomly from 0 to 1. m0 is a constant equal to 0.5 which is the mean of
zero and one when the value of M(f) is less than m0 the R. octopus follow one food search strategy. Else, they
move inside the swarm.

M(f) = |1− exp((t− 1)/tmax)(2× rand(0, 1)− 1)| (13)

where t is the iteration number and tmax is the maximum number of iterations, which is an initialized pa-
rameter. The pseudocode of ROA represented in Figure 3. Exploration/exploitation balance can be obtained
by the adaptive values of M(f) that allows ROA to transit smoothly between the exploration process and the
exploitation process and equally divide the iterations between the two processes.

Figure 3. Pseudocode of ROA

4. RESULTS AND PERFORMANCE EVALUATION
A strong optimization algorithm should be able to (1) explore the search space, the (2) exploit the

promising areas, and (3) presents a good balance between (1) and (2), (4) converge to the best solution quickly.
The optimization efficiency of the proposed ROA algorithm was tested in this study by using 23 classical
mathematics benchmark functions [25], [12] which are usually classified to three groups uni, multi, and fixed-
dimension multi-modal. The summarizes of the test problems reporting the cost function number, variation
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range of the variables of optimization and the optimal value mentioned in literature fmin, note that “Dim”
represents the counted design variables can be found in detailed in [2]. For each algorithm in our experiments,
30 is the population size used and 500 is the maximum iteration that has been utilized.

The proposed ROA and the other algorithms were run 30 times per each benchmark function, starting
from different random populations then, the average statistical results (cost function and the associated standard
deviation) are recorded in Tables 1 to 7 ROA was compared with latest optimization algorithms PSO, SA, JS
[3], GWO [1], WOA [2], AOA [5], HBO [16], GPC [15] and PO [17]. note that PSO, GWO, and WOA results
are taken from [1], [2]. For any pair of compared algorithms, the better results are highlighted in bold.

Table 1. Set internal parameter values for comparison with metaheuristic algorithms
Algorithm Parameters

ROA n =30; tmax = 500; M(f) from corresponding equations
GWO n =30; tmax = 500; problem dimension; search domain

SA n =30; tmax = 500; temperature (t) decreasing with time
JS n=30; tmax = 500

WOA n =30; tmax = 500;
AOA C1 = 2; C2 = 6;C3 = 2 and C4 = 0.5

(CEC and engineering problems)
GPC n=30;tmax = 500;Gravity=9.8; Angle of ramp=10;

Initial velocity=rand(0,1); Minimum Friction=1;
Maximum Friction=10; Substitution Probability=0.5

PSO n =30; tmax = 500; Inertia weight = 0.5;
Personal learning coefficient = 2.05;

Inertia weight damping ratio= 0.99; Global learning coefficient = 2.05
HBO n=30; [C, p1, p2] from corresponding equations.
PO n=30

Table 2. The compared optimization results for F1:F4 mathematical functions
Algorithm F1 F2 F3 F4

Ave Std Ave Std Ave Std Ave Std
ROA-SA 0 0 0 0 0 0 0 0

ROA-FSA 1.259e-90 3.9276e-90 0.021236 5.4714e-05 0.0001136 4.238e-07 0.0094079 0.0014109
ROA-LW 0.0011344 0.0026719 0.087454 0.099995 3.3713 10.0688 0.28624 0.5239898e-4

GWO 6.59E-28 6.34E-05 7.18E-17 0.029014 3.29E-06 79.14958 5.61E-07 1.315088
SA 7.366e-7 4.0345e-6 2.216e-7 1.2139e-6 2.576e-7 1.4113e-6 3.541e-5 1.9398e-4
JS 3.8532e-30 6.3139e-30 4.1282e-13 9.9390e-13 1.0924 2.1761 2.9258e-18 3.2299e-18

WOA 1.41e-30 4.91e-30 1.06E21 2.39E21 5.39E07 2.93E06 0.072581 0.39747
AOA 5.8259e-85 1.8423e-84 2.4433e-48 7.4123e-48 7.4123e-48 8.7804e-71 2.7766e-70 1.0139e-40
GPC 2.4615e-24 1.3482e-23 5.8742e-13 3.2174e-12 4.1289e-23 2.2615e-22 2.9608e-13 1.6217e-12
PSO 0.000136 0.000202 0.042144 0.045421 70.12562 22.11924 1.086481 0.317039
HBO 3.9645e-06 1.1644e-05 4.0886e-06 2.9734e-06 25435.9324 8466.5845 13.7876 4.1238
PO 2.0212e-32 3.8288e-32 1.6587e-17 3.1293e-17 8.099e-23 2.4476e-22 1.1124e-14 2.8893e-14

Table 3. The compared optimization results for F5:F8 mathematical functions
Algorithm F5 F6 F7 F8

Ave Std Ave Std Ave Std Ave Std
ROA-SA 3.2831e-24 8.0155e-24 .5309e-07 1.1422e-06 6.7809e-05 5.812e-05 -12569.4853 0.0023895

ROA-FSA 0 0 0.26078 6.8948e-05 N/A N/A N/A N/A
ROA-LW 5.5138 7.9698 6.2351e-07 6.9182e-7 0.0063961 0.0050955 -12565.538 2.5028

GWO 26.81258 69.90499 0.816579 0.000126 0.002213 0.100286 -6123.1 -4087.44
SA 1.719e-4 9.4183e-4 4.0111e-5 2.1970e-04 0.1322 0.7242 -395.9531 2.1687e+03
JS 0.1629 0.3146 5.8572e-07 6.8134e-07 4.7949e-04 3.4541e-04 -9.3256e+3 1.2873e+03

WOA 27.86558 0.763626 3.116266 0.532429 0.001425 0.001149 5080.76 695.7968
AOA 28.8790 0.0591 42.14912 10.32415 47.01694 7.427119 46.28484 9.35206
GPC 0.96104 5.2638 0.21498 1.1775 2.0868e-06 1.143e-05 -1.333 7.3013
PSO 96.71832 60.11559 0.000102 8.28E05 0.122854 0.044957 4841.29 1152.814
HBO 102.29 107.6586 5.8736e-07 1.0638e-06 0.033578 0.008506 -11709.1053 345.0109
PO 1.4333e-27 2.8463e-27 308.2064 720.8046 0.0013103 0.0010812 -12214.1716 1123.6047
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Unimodal functions F1 to F7 have one global minimum. These functions are used sufficiently for
testing the rate of convergence and the exploitation ability of optimization algorithms. Results in Tables 2 and
3 shows that the proposed ROA has a high competitiveness with other method used in the comparison. In
particular, for F1 to F5, only ROA is able to provide the exact optimum value. Moreover, the ROA algorithm
is the most efficient optimizer for functions F6 and F7 in terms of average and standard deviation. As a result,
the ROA algorithm has a superior exploitation capability.

Table 4. The compared optimization results for F9:F12 mathematical functions
Algorithm F9 F10 F11 F12

Ave Std Ave Std Ave Std Ave Std
ROA-SA 0 0 8.8818e-16 0 0 0 1.5705e-32 2.885e-48

ROA-FSA N/A N/A 0.014692 0.0040639 1.117e-05 4.5231e-06 0.007692 0.004922
ROA-LW 17.8287 19.7396 0.049404 0.11383 0.090238 0.22451 1.7396e-07 3.3397e-7

GWO 0.310521 47.35612 1.06E-13 0.077835 0.004485 0.006659 0.053438 0.020734
SA 1.3598 7.4478 1.5507e-05 8.4936e-05 3.2927e-04 0.0018 4.1038e-10 2.2477e-09
JS 0.0031 0.0034 1.723e-14 2.285e-14 0 0 4.1615e-9 4.7539e-9

WOA 0 0 7.4043 9.897572 0.000289 0.001586 0.339676 0.214864
AOA 37.71428 7.8072005 45.94354 12.735777 0 0 0.832024 0.1679651
GPC 0 0 5.6755e-14 3.1086e-13 0 0 0.040501 0.22183
PSO 46.70423 11.62938 0.276015 0.5090 0.009215 0.007724 0.006917 0.026301
HBO 13.2669 6.5803 0.00011683 4.3068e-05 0.0027127 0.0045679 0.010367 0.032783
PO 5.6843e-15 1.7975e-14 1.2434e-15 1.1235e-15 0 0 0.634 1.3369

The multimodal functions F8 to F13 differ from the unimodal functions, in that they have a large
number of local minima. As a result, these kinds of benchmark functions are better for testing the exploration
capability and avoidance of local optima of algorithms. Fixed-dimensional multimodal functions F14 to F23
have a pre-defined number of design variables and provide different search areas compared to the multimodal
functions. Tables 4 to 7 show that ROA provides the exact optimum value for multimodal F9, F11 and F18.
Moreover, the ROA algorithm is the most efficient optimizer for functions F8, F10, F12 and F15 in terms of
average and standard deviation. For the rest functions ROA is competitive with algorithms that achieved the
better performance. Thus, ROA has also a high exploration capability which leads this algorithm to explore the
promising regions without any disruption. The convergence curves of the ROA with GWO, WOA, PO, HBO,
JS and GPC algorithms for some of the functions by considering the maximum number of iterations=500 are
shown in Figures 4, 5, and 6, and Table 1. represents each other internal parameters used in these examples.
The iterations are shown on the horizontal axis while the average function values are shown on the vertical axis.
As can be observed, our proposal ROA algorithm can escape from the local optima and converges faster to the
optimal solution with the best balance between exploration and exploitation as compared to other optimization
algorithms.

Table 5. The compared optimization results for F13:F16 mathematical functions
Algorithm F13 F14 F15 F16

Ave Std Ave Std Ave Std Ave Std
ROA-SA 1.3498e-32 2.885e-48 0.998 1.282e-16 0.0003075 2.8303e-08 -1.0316 1.282e-16

ROA-FSA 5.0621e-06 6.327e-06 12.6705 2.0512e-15 N/A N/A N/A N/A
ROA-LW 0.0083598 0.01481 0.998 1.855e-11 0.00031724 1.9206e-5 -1.0316 1.480e-16

GWO 0.654464 0.004474 4.042493 4.252799 0.000337 0.000625 -1.0316 -1.03163
SA 8.0455e-09 4.4067e-08 0.0333 0.1822 1.0250e-05 5.6139e-05 -0.0344 0.1883
JS 3.0149e-8 3.0230e-8 0.998 0 3.075e-04 8.5140e-8 -1.0316 1.046e-16

WOA 1.889015 0.266088 2.111973 2.498594 0.000572 0.000324 -1.0316 4.2E07
AOA 2.925065 0.0332898 1.25662 0.445446 8.0972e-04 2.5216e-04 -1.0314 0.0004611
GPC 0.087356 0.47847 0.42235 2.3133 1.8111e-05 9.9197e-05 -0.034341 0.18809
PSO 0.006675 0.008907 3.627168 2.560828 0.000577 0.000222 -1.0316 6.25E16
HBO 3.2871e-07 4.8869e-07 0.998 0 0.00070161 0.00011168 -1.0316 7.4015e-17
PO 1.3498e-32 2.885e-48 0.998 7.4015e-17 0.00031082 4.7609e-06 -1.0316 2.2676e-12
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Table 6. The compared optimization results for F17:F20 mathematical functions
Algorithm F17 F18 F19 F20

Ave Std Ave Std Ave Std Ave Std
ROA-SA 0.39789 0 3 1.819e-15 -0.30048 7.4908e-08 -3.322 5.1672e-07

ROA-FSA N/A N/A N/A N/A N/A N/A N/A N/A
ROA-LW 0.39789 0 3 1.594e-15 -0.30048 2.7102e-8 -3.322 7.4907e-8

GWO 0.397889 0.397887 3.000028 3 -3.86263 -3.86278 -3.28654 -3.25056
SA N/A N/A 0.1000 0.5477 -0.1288 0.7052 -0.1107 0.6065

WOA 0.397914 2.7E05 3 4.22E15 3.85616 0.002706 2.98105 0.376653
JS 0.3979 0 3 1.247e-15 -0.3005 0 -3.3220 3.1727e-5

AOA N/A N/A 3.779 1.9483 -3.841 0.030059 -2.977 0.20285
GPC 0.019086 0.10454 0.1 0.54772 -0.11137 0.60998 -0.03138 0.17188
PSO 0.397887 0 3 1.33E15 3.86278 2.58E15 3.26634 0.060516
HBO 0.39789 0 3 4.9096e-16 -3.8628 9.3622e-16 -3.322 4.6811e-16
PO 0.39789 2.3231e-13 7.6612 8.7635 -3.8628 3.7695e-08 -3.2982 0.050127

Table 7. The compared optimization results for F21:F23 mathematical functions
Algorithm F21 F22 F23

Ave Std Ave Std Ave Std
ROA-SA -10.1532 1.0447e-07 -10.4029 1.0431e-06 -10.5364 4.3607e-07

ROA-FSA -9.6872 0.63502 -10.1141 0.34647 -10.2505 0.36433
ROA-LW -10.1501 0.0054771 -10.3873 0.042422 -10.5328 0.0091774

GWO -10.1514 -9.14015 -10.4015 -8.58441 -10.5343 -8.55899
SA -0.3384 1.8537 -0.3468 1.8993 -0.3512 1.9237
JS -10.1532 3.0903e-6 -10.4029 1.963e-15 -10.5364 9.030e-12

WOA 7.04918 3.629551 8.18178 3.829202 9.34238 2.414737
AOA -5.6074 2.2714 -6.5904 2.5396 -6.8493 2.36
GPC -0.033799 0.18513 -0.039591 0.21685 -0.094438 0.51726
PSO 6.8651 3.019644 -8.45653 3.087094 -9.95291 1.782786
HBO -9.2346 1.8725 -10.4029 2.1349e-15 -10.5364 2.581e-15
PO -10.1532 1.2713e-13 -10.4029 2.1289e-11 -10.5364 1.224e-11

Figure 4. 3D and 2D representation of the unimodel benchmark functions
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Figure 5. 3D and 2D representation of the multimodal benchmark functions

Figure 6. 2D and 3D representation of the fixed-dimension multimodal benchmark functions
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5. EXPERIMENTS
The effectiveness of the proposed ROA algorithm is tested using two classical engineering problems

then it applied on data classification by performing three experiments. The experiments were conducted regard-
ing the data reduction. The first experiment proves the superiority of ROA against three other latest optimization
algorithms AOA, GWO and WOA by applying data reduction for different 12 datasets obtained from KEEL
repository [26]. In the second experiment a recent published paper [27], [28] were used in a comparison with
our proposed algorithm. The last experiment was conducted on three student performance prediction data as a
real-life application.

5.1. ROA for classical engineering problems
Pressure vessel designs and speed reducer designs are two restricted engineering design issues that

are used in this part. Because these problems involve several equality and inequality constraints, the ROA code
needs be updated (without changing the algorithm’s mechanism) to deal with such constrained optimization
problems more accurately. it can be seen that the different actions in this code are based on boolean algebra.
in order to solve the above problems and to get the most efficient design for each case, it is vital to apply the
ROA algorithm to be able to better deal with the inequality constraints.

5.1.1. Speed reducer design problem
Speed reducer design is a generalized geometric programming problem in which the main goal is to

find the optimal design by minimizing the total weight of a speed reducer under constraints [29]. The speed
reducer is a part of the gear box of mechanical system. Seven variables are involved in the design of the
speed reducer. As presented in Figure 7, the speed reducer is considered with x1 the width of the face, x2 the
teeth module, x3 the teeth number on pinion, x4, x5 are the length of first and second shaft between bearings
respectively, and x6, x7 are the first and second shaft diameters, respectively. Another schematic of the speed
reducer is presented in Figure 8. This problem is associated with 11 constraints. These formulated as follows:

F (x) = 0.7854 ∗ x1 ∗ x2
2 ∗ (3.3333 ∗ x2

3 + 14.9334 ∗ x3 − 43.0934)

− 1.508 ∗ x1 ∗ (x2
6 + x2

7) + 7.4777 ∗ (x3
6 + x3

7)

+ 0.7854 ∗ (x4 ∗ x2
6 + x5 ∗ x2

7)

subjectto :

g(1) = 27/(x1 ∗ x2
2 ∗ x3)− 1 ≤ 0

g(2) = 397.5/(x1 ∗ x2
2 ∗ x2

3)− 1 ≤ 0

g(3) = (1.93 ∗ x3
4)/(x2 ∗ x3 ∗ x4

6)− 1 ≤ 0

g(4) = (1.93 ∗ x3
5)/(x2 ∗ x3 ∗ x4

7)− 1 ≤ 0

g(5) = ((sqrt(((745 ∗ x4)/(x2 ∗ x3))
2 + 16.9e6))/(110 ∗ x3

6))

− 1 ≤ 0

g(6) = ((sqrt(((745 ∗ x5)/(x2 ∗ x3))
2 + 157.5 exp 6))/(85 ∗ x3

7))

− 1 ≤ 0

g(7) = ((x2 ∗ x3)/40)− 1 ≤ 0

g(8) = (5 ∗ x2/x1)− 1 ≤ 0

g(9) = (x1/12 ∗ x2)− 1 ≤ 0

g(10) = ((1.5 ∗ x6 + 1.9)/x4)− 1 ≤ 0

g(11) = ((1.1 ∗ x7 + 1.9)/x5)− 1 ≤ 0

where

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9

5.0 ≤ x7 ≤ 5.5
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The statistical results and the best solution obtained by four algorithms water cycle algorithm (WCA) [30],
GWO, JS, and AOA were compared with the proposed ROA-SA in Table 8 while ROA-FSA and ROA-LW
solutions are NA. The JS is the worst while others performed well as shown. The results show that ROA
performs well than the competitive algorithms. ROA presents a high performance in solving this kind of
problems and shows a good rate in avoiding local optima and can quickly converge towards the optimum while
satisfying all constraints.

Figure 7. The speed reducer design

Figure 8. The speed reducer (schematic view)

Table 8. Comparison of solutions obtained for the speed reducer problem
Variables ROA-SA WCA GWO JS AOA

x1 3.50065 3.500000 3.50892 3.5764 3.4976
x2 0.700031 0.700000 0.7 0.715613 0.7
x3 17 17 17 18.4192 17
x4 7.33066 7.300000 7.37782 7.31221 7.3
x5 7.72448 7.715319 7.90736 8.29388 7.8
x6 3.35038 3.350214 3.35432 3.78292 3.3501
x7 5.28697 5.286654 5.28679 5.49218 5.2857

F(x) 2994.5882 2994.471066 3004.0097 1.5213e+12 3.00E+03
Mean 2994.6126 2994.474392 3.0085e+03 1.5213e+12 3.00E+03
SD 0.38847 7.4E-03 2.9074 1.9620e+12 1.22E-12

5.1.2. Pressure vessel design problem
This design problem aims to find the minimum whole cost including welding, forming, and the ma-

terial of a cylindrical vessel as in Figure 9 [31].This problem has four constraints where thickness of the shell
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(Ts), thickness of the head (Th), inner radius (R ), and length of the cylindrical section without considering the
head (L). This problem and constraints are formulated as [31]:

F (x) = 0.6224 ∗ x1 ∗ x3 ∗ x4 + 1.7781 ∗ x2 ∗ x2
3 + 3.1661

x2
1 ∗ x4 + 19.84 ∗ x2

1 ∗ x3;

subjectto :

g(1) = −x1 + 0.0193 ∗ x3 ≤ 0

g(2) = −x2 + 0.00954 ∗ x3 ≤ 0

g(3)− pi ∗ x2
3 ∗ x4 − (4/3) ∗ pi ∗ x3

3 + 1296000 ≤ 0

g(4) = x4 − 240 ≤ 0

where

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99

10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200

The experimental results obtained for this problem are listed in Table 9 which clearly illustrates that the ROA
has the ability to reach the optimal design that has the best optimum cost with the best mean and stranded devi-
ation and minimum F(x), while WCA comes in second place. In summary, ROA proves that it can performed
highly in solving these challenging problems. ROA avoids local optima successfully and converges quickly to
the optimum with high convergence rate satisfying all constraints.

Figure 9. The pressure vessel (schematic view)

Table 9. Comparison of solutions obtained for the pressure vessel problem
Variables ROA-SA WCA GWO JS AOA

x1 0.7877859 0.7781 0.812500 14.04208 0.7900
x2 0.3900009 0.3846 0.434500 10.58337 0.3899
x3 40.81198 40.3196 42.089181 71.07832 41.0226
x4 193.3671 -200.0000 176.758731 107.3518 190.4405

F(x) 5906.9382 5885.3327 6051.5639 506841.0511 5.90E+03
Mean 5909.4435 6230.4247 6038.01 5.7317e+05 6.52E+03
SD 9.0077 338.7300 249.6246 5.7024e+05 4.31E+02

5.2. ROA for improving data classification
5.2.1. ROA for data reduction

The operation on collecting data from different data-warehouses this causes difficulty in the analysis
because of the huge amount of data. This is why data reducion is very important to decrease the volume of
data and save memory resources and reduce time consumption without any effect of the result obtained from
data mining that means the result obtained from data mining before data reduction and after data reduction is
almost the same (or even better) which means that there will be no loss of information and the same quality of
information can be obtained without data reduction. Analyzing a large amount of data without data reduction
will result in very poor quality analysis duo to slow processing time and reduced menory availability, as a result
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the quality ana quantity of data that is obtained will be limited. Data reduction will also improve the quality of
data analysis since only the necessary data will be analyzed, resulting in improved analysis with fewer errors.

The ROA algorithm is applied for data reduction on different (balanced and imbalanced) real-world
datasets. The application of ROA for data reduction issue performed by searching for the optimal subset of
examples in the training set using the capability of the ROA algorithm to optimally reduce the data. The
algorithm starts the search with a search variables generated randomly. The binary encoding type is used in the
proposed algorithm as its representation scheme to select the optimal reduced training set. In binary encoding,
each search variable is represented by a binary vector, and the examples of training data are considered as either
existed “1” or not existed “0”. The ones represent the remained examples while zeros represent the removed
examples. The search variables in ROA are evaluated by the accuracy and F-measure, as fitness value.

Figure 10 presents the ROA flowchart that shows its implication in the problem of the data reduction
for the real-world datasets. As the figure shows, the original used data set is divided into three subsets: testing,
training and validation. Our proposal focuses on finding the best abbreviated subset from the training set first
and then, is tested via the validation set. If one of the criteria for termination is met, the best search variable is
considered as converged to the global optimum and this search variable which has the best value of F-measure
is decoded and recorded as the solution that consists the reduced training set.

Figure 10. Flowchart for ROA in data reduction

The first experiment on data reduction is conducted by comparing our algorithm ROA with other
latest optimization algorithms AOA, WOA and GWO. The compared algorithms are applied on 12 datasets
which their statistics are listed in Table 10 and evaluate the performance with both accuracy and F-measure, the
results listed in Table 11. This table generally views the performance of each algorithm in term of accuracy and
F-measure measures. Additionally, the original dataset results before reduction are provided for references.

To get the best fair comparison, the non-parametric statistical hypothesis Wilcoxon signed-rank test
[32] was used to analyze the results statistically and draw fairly effective conclusions. All used algorithms
were compared with ROA for each dataset. For each two compared optimization algorithms,the differences
were ranked in ascending order from 1 to 12 after their calculation and the negative differences of the ranks
were assigned a sign. After summing up all the positive and negative ranks separately, they assigned as R+
and R- respectively. A significance level alpha=0.1 was used in the comparison of the T value, with 17 used
as a critical value for 12 datasets where T equals minR+,R-. The null hypothesis which was only rejected if
the critical value T ¡ or = 17 was assumed to be that all differences in performance between any couple of
compared algorithms may occur by chance.
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Table 10. Statistics of 12 experimental datasets
Datasets Features Instances Positive Negative

breastEW 30 569 212 357
glass5 9 214 70 144
pima 8 768 268 500

Tic-tac-toe 9 958 332 626
Transfusion 4 748 174 574

vehicle1 18 846 217 629
Vowel(3-others) 10 528 48 480
Wine(1-others) 13 178 59 119

Wine (2-to other) 13 178 71 107
Wisconsin 9 683 239 444

yeast3 8 1484 163 1321
yeast6 8 1484 35 1449

Table 11. Performance of original data, ROA, AOA, GWO and WOA of the 12 datasets
Datasets Matrices Original ROA SA ROA FSA ROA LW AOA GWO WOA

breastEW
Acc 96.48 96.48 95.77 97.89 97.18 94.37 95.07

F-measure 95.41 95.41 94.55 97.2 96.23 92.86 93.58

glass5
Acc 96.23 98.11 98.11 98.11 98.11 96.23 98.11

F-measure 50 66.67 66.67 66.67 66.67 NaN 66.67

pima
Acc 69.27 70.31 68.75 69.27 69.27 70.31 67.71

F-measure 46.85 52.89 45.45 47.37 46.96 51.28 52.24

Tic-tac-toe
Acc 98.74 98.74 98.74 98.74 98.33 98.74 98.33

F-measure 98.16 98.16 98.16 98.16 97.53 98.16 97.53

Transfusion
Acc 75.4 75.4 75.4 74.33 74.33 73.26 75.4

F-measure 23.33 23.33 23.33 22.58 22.58 19.35 23.33

vehicle1
Acc 76.3 76.78 76.3 75.83 76.3 76.3 74.88

F-measure 35.9 39.51 35.9 35.44 35.9 35.9 27.4

Vowel(3-others)
Acc 99.24 98.48 99.24 99.24 98.48 99.24 97.73

F-measure 95.65 90.91 95.65 95.65 90.91 95.65 85.71

Wine(1-others)
Acc 84.09 93.18 81.82 84.09 84.09 86.36 79.55

F-measure 69.57 90.32 63.64 69.57 69.57 75 57.14

Wine(2-to other)
Acc 81.82 81.82 81.82 81.82 77.27 70.45 81.82

F-measure 73.33 73.33 73.33 73.33 66.67 58.06 73.33

wisconsin
Acc 94.71 95.88 95.29 94.71 95.29 95.88 94.71

F-measure 92.44 94.21 93.33 92.44 93.33 94.21 92.44

yeast3
Acc 94.34 94.07 94.88 94.34 94.07 93.53 93.26

F-measure 69.57 68.57 72.46 70.42 68.57 65.71 63.77

yeast6
Acc 98.11 98.11 98.11 98.38 97.84 98.11 98.11

F-measure 36.36 36.36 46.15 50 20 36.36 36.36

Comparison of accuracy: Table 12 shows the average accuracy as a result of the significance test
for ROA SA vs. WOA, GWO and AOA in case of the support vector machines (SVM) with and radial basis
function (RBF) kernel. For AOA and GWO with the SVM classifier, ROA SA is better - +ve difference- for 11
datasets, while AOA and GWO is better (-ve difference) than ROA SA in only one dataset. While in case of
ROA SA vs. WOA our proposal is better in all datasets. After calculating R+ = 67 (all +ve ranks summation)
and R- = 8 (all -ve ranks summation) in ROA SA vs. AOA, R+ = 65 (all +ve ranks) and R- = 7 in ROA SA vs.
GWO, and R+ = 72 (all +ve ranks summation) and R- = 0 (all -ve ranks summation) in ROA SA vs. WOA. It
can be concluded that ROA SA can outperform AOA statistically as T = min{R+, R} = min{67, 8} = 8 <
17. ROA SA can outperform the GWO statistically as T = min{65, 7} = 7 < 17. ROA SA can outperform
the WOA statistically as T = min{72, 0} = 0 < 17.

The same procedures are followed to perform the test for ROA FSA and ROA LW and the results are
as follows: the average accuracy as a result of the significance test for ROA FSA vs. WOA, GWO and AOA
in case of SVM with rbf kernel. For AOA and GWO with the SVM classifier, ROA FSA is better (positive
difference) for 9 datasets, while AOA and GWO is better - -ve difference- than ROA FSA for 3 datasets. In
case of ROA FSA vs. WOA our proposal is better in all datasets. After calculating R+ = 48 (all +ve ranks
summation) and R- = 27 (all -ve ranks summation) in ROA FSA vs. AOA, R+ = 48 and R- = 24 in ROA FSA
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vs. GWO, and R+ = 72 and R- = 0 in ROA FSA vs. WOA.As 12 datasets were used, the T value at the level of
0.1 should be¡ or = 17 to reject our null hypothesis, returning to the critical table. It can be concluded that as
T = min{72, 0} = 0 < 17.

Regarding the average accuracy as a result of the significance test for ROA LW vs. WOA ,GWO and
AOA in case of SVM with rbf kernel. For AOA with the SVM classifier, ROA LW is better, +ve difference,
for 10 datasets, while AOA is better, -ve difference, than ROA LW in 2 datasets, whereas in case of GWO with
SVM, ROA LW is better, +ve difference, for 8 datasets, while GWO is better, -ve difference, than ROA LW in
4 datasets, Whereas in case of ROA LW vs. WOA our proposal is better in 11 datasets, while WOA is better,
-ve difference, than ROA LW for only one dataset. After calculating R+ = 56 (all +ve ranks summation) and R-
= 16 (all -ve ranks summation) in ROA LW vs. AOA, R+ = 49 and R- = 28 in ROA LW vs. GWO, and R+ = 68
and R- = 7 in ROA LW vs. WOA. It can be concluded that ROA LW cannot outperform GWO statistically but,
ROA LW can outperform the AOA statistically as T = min{56, 16} = 16 < 17, ROA LW can statistically
outperform the WOA as T = min{68, 7} = 7 < 17.

Table 12. Results of average Accuracy for ROA SA vs. WOA, GWO and AOA
Dataset ROA SA AOA Difference Rank GWO Difference Rank WOA Difference Rank

breastEW 96.48 97.18 -0.7 -8 94.37 2.11 9 95.07 1.41 9
glass5 98.11 98.11 0 1 96.23 1.88 8 98.11 0 1
pima 70.31 69.27 1.04 9 70.31 0 1 67.71 2.6 11

Tic-tac-toe 98.74 98.33 0.41 5 98.74 0 1 98.33 0.41 5
Transfusion 75.4 74.33 1.07 10 73.26 2.14 10 75.4 0 1

vehicle1 76.78 76.3 0.48 6 76.3 0.48 5 74.88 1.9 10
Vowel(3-others) 98.48 98.48 0 1 99.24 -0.76 -7 97.73 0.75 6
Wine(1-others) 93.18 84.09 9.09 12 86.36 6.82 11 79.55 13.63 12

Wine (2-to other) 81.82 77.27 4.55 11 70.45 11.37 12 81.82 0 1
Wisconsin 95.88 95.29 0.59 7 95.88 0 1 94.71 1.17 8

yeast3 94.07 94.07 0 1 93.53 0.54 6 93.26 0.81 7
yeast6 98.11 97.84 0.27 4 98.11 0 1 98.11 0 1

T = min{67, 8} = 8 T = min{65, 7} = 7 T = min{72, 0} = 0

Comparison of f-measure: Table 13 shows the average f-measure as a result of the significance test for
ROA SA vs. WOA, GWO, and AOA in the case of SVM with an RBF kernel. For AOA and GWO with the SVM
classifier, ROA SA is better, +ve difference, for 11 datasets, while AOA and GWO is a better, -ve difference,
than ROA SA for only one dataset. While in the case of ROA SA vs. WOA our proposal is better in all datasets.
After calculating R+ = 69 (all +ve ranks summation) and R- = 6 (all -ve ranks summation) in ROA SA vs. AOA,
R+ = 54 and R- = 9 in ROA SA vs. GWO, and R+ = 72 and R- = 0 in ROA SA vs. WOA. It can be concluded
that ROA SA can outperform AOA statistically as T = min{R+, R} = min{69, 6} = 6 < 17. ROA SA can
statistically outperform the GWO as T = min{54, 9} = 9 < 17. ROA SA can statistically outperform the
WOA as T = min{72, 0} = 0 < 17.

Table 13. Results of average F-measure for ROA SA vs. WOA, GWO and AOA
Dataset ROA SA AOA Difference Rank GWO Difference Rank WOA Difference Rank

breastEW 95.41 96.23 -0.82 -6 92.86 2.55 5 93.58 1.83 8
glass5 66.67 66.67 0 1 NaN 67.67 0 66.67 0 1
pima 52.89 46.96 5.93 9 51.28 1.61 4 52.24 0.65 6

Tic-tac-toe 98.16 97.53 0.63 4 98.16 0 1 97.53 0.63 5
Transfusion 23.33 22.58 0.75 5 19.35 3.98 8 23.33 0 1

vehicle1 39.51 35.9 3.61 8 35.9 3.61 7 27.4 12.11 11
Vowel(3-others) 90.91 90.91 0 1 95.65 -4.74 -9 85.71 5.2 10
Wine(1-others) 90.32 69.57 20.75 12 75 15.32 11 57.14 33.18 12

Wine (2-to other) 73.33 66.67 6.66 10 58.06 15.27 10 73.33 0 1
Wisconsin 94.21 93.33 0.88 7 94.21 0 1 92.44 1.77 7

yeast3 68.57 68.57 0 1 65.71 2.86 6 63.77 4.8 9
yeast6 36.36 20 16.36 11 36.36 0 1 36.36 0 1

T = min{69, 6} = 6 T = min{54, 9} = 9 T = min{72, 0} = 0
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Same way the average f-measure as a result of the significance test for ROA FSA vs. WOA, GWO, and
AOA in case of SVM with RBF kernel. For AOA and GWO with the SVM classifier, ROA FSA is better, +ve
difference, for 9 datasets, AOA and GWO is a better, -ve difference, than ROA FSA for 3 datasets. In the case
of ROA FSA vs. WOA, ROA FSA is better, +ve difference, for 11 datasets, while WOA is better, -ve difference,
than ROA FSA for one dataset. In case of ROA FSA vs. WOA , ROA FSA is better - +ve difference- for 11
datasets, while WOA is better - -ve difference- than ROA FSA for one dataset. After calculating R+ = 52 (all
+ve ranks summation) and R- = 23 (all -ve ranks summation) in ROA FSA vs. AOA, R+ = 42 and R- = 21 in
ROA FSA vs. GWO, and R+ = 67 and R- = 8 in ROA FSA vs. WOA. It can be concluded that ROA FSA can
outperform WOA statistically as T = min{R+, R} = min{67, 8} = 8 < 17. ROA FSA cannot statistically
outperform in case of AOA and GWO.

Same way the average f-measure as a result of the significance test for ROA LW vs. WOA, GWO
and AOA In case of SVM with RBF kernel. For AOA and WOA with the SVM classifier, ROA LW is better,
+ve difference, for 10 datasets, while AOA and WOA is better, -ve difference, than ROA LW for 2 datasets.
While in case of ROA LW vs. GWO, ROA LW is better, +ve difference, for 8 datasets, while GWO is better,
-ve difference, than ROA LW for 4 datasets. After calculating R+ = 63 (all +ve ranks summation) and R- =
12 (all -ve ranks summation) in ROA LW vs. AOA, R+ = 44 and R- = 22 in ROA LW vs. GWO, and R+ =
63 and R- = 12 in ROA LW vs. WOA. It can be concluded that ROA LW can outperform AOA statistically
as T = min{R+, R} = min{63, 12} = 12 < 17. ROA LW can statistically outperform the WOA as
T = min{63, 12} = 12 < 17. ROA LW cannot statistically outperform in case of the GWO.

5.2.2. ROA for class imbalance problem
Class imbalance problem cases is a difficulty in classification learning algorithms in pattern. The

article [27] proposed a new oversampling technique to increase the efficiency of the learning classification al-
gorithms based on a fuzzy representativeness difference-based oversampling technique, using affinity propaga-
tion and the chromosome theory of inheritance (FRDOAC). We used our meta-heuristic optimization technique
ROA for data reduction on 16 imbalanced datasets which were used in [27] as a comparison with recent pub-
lished research in the second experiment. For more details for the 16 benchmark datasets and for performance
evaluation matrices see [27].

We use F-measure (F M), G-mean (G M) and area under curve (AUC) to evaluate the performance
of the proposal to be fair since this is the metrics that have been used in [27] and more details about these
measures can be found in the same reference because the experiment is on imbalanced datasets and the metrics
accuracy is not fair enough. Random forest (RF) classifier used for this comparation with cross validation for
5-fold like the previous paper, 5 run times and take the averages for the results of (F-measure, G-mean, and
AUC). The results of the performance shown in Table 14.

The results showed that after applied our meta-heuristic optimization algorithm on the 16 benchmark
imbalanced datasets the performance of evaluation matrices improved compared with the FRDOAC method
which mention in [27] article in F-measure and G-mean matrices and for AUC metric our proposal not better
than FRDOAC method but it is still better than original data. Figure 11 represents box plot that is summarizing
the set of data and it gives a clear and qualitative description of the performance of the used classifier. From
this figure, the box plot of FRDOAC is visibly lower than ROA types in both F-measure and G-mean so that
they more directly demonstrate the advantages of ROA algorithm. We got the better results on imbalance
data without increasing the number of instances in datasets with any pre-processing oversampling techniques
which produced the results of reducing the complexity and processing time, so our proposal is outperformed on
oversampling algorithm that mentioned in the compared article [27] for dealing with imbalanced data problem.

5.2.3. ROA in real life problem
For more validation for our proposal, last comparison has been conducted as an application on real

life problem; where three popular students performance prediction datasets used to compare between ROA and
latest optimization algorithms SA, AOA, GWO, and WOA with respect to data reduction. The first dataset
contains 649 instances and 33 attributes, this dataset which addresses the students performance is collected
from two secondary schools of Portuguese (Mousinho da Silveira (MS) and Gabriel Pereira (GP)). The dataset
includes student’s attributes like academic grades, demographic attributes, social attributes, and school-related
attributes. School reports and questionnaires are used for collecting data from the student [33]. The second
dataset was collected from three different colleges, Doomdooma College, Duliajan College, and Digboi College
of Assam, India are those three colleges. Initially, this data composed of twenty two attributes [34].
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The third dataset was collected in Dibrugarh University from the common entrance conducted by it
in 2013. This data has 12 attributes for students who came for counseling cum admission into Assam medi-
cal colleges [35]. The three datasets suffer from the imbalance problem due to the decline in repetition rate
among students in the compilation places of the database. the descriptions of the used datasets are listed in
Table 15 each dataset split into three parts in which training validation and testing datasets (ratio of 50%: 25%:
25%). We employ ROA and other optimization algorithms (SA, AOA, GWO, and WOA) to choose the optimal
subset for training data and extract utilizable information for student performance to help in understanding
university students’ performance and identifying factors that affect it to help decision-makers. Representation
for the comparison of the results for SVM classifier with data reduction is shown in Table 16 and Figures 12
to 14 respectively. From the previous results we can conclude that ROA is outperformed in both accuracy and
F-measures in the three datasets except for CEE-dataset where SA has the best F-measure value.

Table 14. Averages of performance by different methods on 16 datasets using RF classifier
Datasets Metrics NONE ROA SA ROA FSA ROA LW FRDOAC

Sonar F-M 0.681 0.706 0.766 0.793 0.732
G-m 0.708 0.712 0.783 0.789 0.742
AUC 0.735 0.712 0.786 0.790 0.78

Bupa F-M 0.618 0.727 0.701 0.727 0.658
G-m 0.676 0.705 0.688 0.705 0.693
AUC 0.704 0.717 0.696 0.717 0.734

Pima F-M 0.625 0.723 0.723 0.723 0.666
G-m 0.703 0.705 0.705 0.705 0.742
AUC 0.727 0.716 0.716 0.716 0.764

Glass Identification (GlaId) F-M 0.749 0.815 0.815 0.815 0.782
G-m 0.805 0.812 0.812 0.812 0.852
AUC 0.819 0.815 0.815 0.815 0.862

Verterbral(Verb) F-M 0.726 0.828 0.799 0.820 0.774
G-m 0.793 0.820 0.798 0.812 0.841
AUC 0.805 0.824 0.800 0.816 0.855

Haberman (Hab) F-M 0.377 0.646 0.640 0.690 0.458
G-m 0.512 0.597 0.577 0.664 0.618
AUC 0.592 0.636 0.627 0.685 0.665

Glass F-M 0.886 0.934 0.915 0.934 0.888
G-m 0.927 0.929 0.922 0.929 0.938
AUC 0.93 0.930 0.923 0.930 0.941

Yeast F-M 0.547 0.867 0.869 0.838 0.61
G-m 0.649 0.794 0.832 0.776 0.747
AUC 0.703 0.815 0.845 0.800 0.764

Glass6 (Gla6) F-M 0.876 0.958 0.958 0.958 0.893
G-m 0.906 0.948 0.948 0.948 0.917
AUC 0.911 0.949 0.949 0.949 0.922

Ecoil0675(Ec75) F-M 0.79 0.923 0.923 0.923 0.732
G-m 0.829 0.891 0.891 0.891 0.789
AUC 0.848 0.897 0.897 0.897 0.871

Movement (Move) F-M 0.355 0.905 0.905 0.905 0.863
G-m 0.451 0.839 0.839 0.839 0.828
AUC 0.618 0.852 0.852 0.852 0.852

Ecoil4 (Ec4) F-M 0.704 0.862 0.870 0.905 0.84
G-m 0.743 0.832 0.745 0.855 0.879
AUC 0.784 0.844 0.778 0.865 0.897

Glass5 (Gla5) F-M 0.584 0.794 NaN 0.733 0.739
G-m 0.627 0.577 0.000 0.575 0.788
AUC 0.772 0.667 0.500 0.663 0.877

kddcup-land vs portsweep(Klvp) F-M 0.98 1 1 1 1
G-m 0.909 1 1 1 0.997
AUC 0.99 1 1 1 0.99

Poker-8vs6(Po86) F-M 0 NaN NaN NaN 0.841
G-m 0 0.000 0.000 0.000 0.185
AUC 0.5 0.500 0.500 0.490 0.567

Abalone19(Ab19) F-M 0 0.120 NaN 0.120 0.02
G-m 0 0.350 0.000 0.350 0.045
AUC 0.5 0.560 0.500 0.560 0.508
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Figure 11. Overall performances of all methods obtained by RF classifier

Table 15. Information of student performance datasets
Dataset Instances No. of attributes No. of classes

Pass Fail
Portuguese course (student-port) 649 33 452 197

Sapfile 300 22 224 76
CEE 666 12 509 157

Table 16. Comparison for CEE-dataset, Sapfile, and Student-port datasets
Technique CEE-dataset Sapfile-dataset Student-port-dataset

ACC F-measure ACC F-measure ACC F-measure
Original 66.27 60 73.33 84.62 94.44 96.7
ROA SA 64.46 58.74 76 86.15 96.91 98.2

ROA FSA 66.87 60.43 73.33 84.62 89.51 94.0
ROA LW 66.27 60 73.33 84.62 92.59 95.7

SA 64.66 71.52 75.56 85.79 89.09 93.85
AOA 66.27 60 73.33 84.62 89.51 94.12
GWO 64.46 58.74 73.33 84.62 94.44 96.8
WOA 65.66 58.99 74.67 85.5 94.44 96.7

Figure 12. Comparison for CEE-dataset
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Figure 13. Comparison for Sapfile-dataset

Figure 14. Comparison for student-port-dataset

6. CONCLUSION
The main common considerations regarding the performance and design of any optimization algorithm

are the simplicity, the flexibility, and the robustness. Dealing these features in appropriate manner, makes this
optimization algorithm widely acceptable in the researchers’ community. From this perspective, metaheuristic
algorithms that have been introduced recently, especially the swarm-based inspired algorithms, have produced
very interesting results. This paper proposed a novel swarm-based optimization algorithm inspired by the
simulation of R. octopus social behavior. The proposed method (named as ROA, Rhizostoma optimization
algorithm) with only three operators, to simulate the food search, forming a swarm, and searching for food
in the swarm, to keep the simplicity, and to effectively ensure a good flexibility, three kinds of movement
strategies (SA, FSA, and LW) were proposed and modelled mathematically. ROA not only has the simplicity
and the flexibility, as it holds a few parameters for control and three different movement strategies, but it
also has the robustness. The proposed ROA can generate an objective function with minimum error values
to solve optimization problems and also maintains the ability to avoid the trap of sub optimal solutions. A
comprehensive experiments was performed on 23 mathematical benchmark functions to analyze the balance
between exploration/exploitation processes, the avoidance of local optima rate, and the speed of convergence
rate of the proposed ROA. ROA proved it is enough competitive with other latest meta-heuristic methods
when we apply it on engineering problems and comparing its results with the results of recently published
paper dealing with imbalanced datasets, also after applying ROA for real-world problems, the significance of
Wilcoxon signed-rank test. Also proved the ROA ability to reach the best optimal solutions compared with
other latest optimizers.
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