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 Heart sound signals, phonocardiography (PCG) signals, allow for the 

automatic diagnosis of potential cardiovascular pathology. Such 

classification task can be tackled using the bidirectional long short-term 

memory (biLSTM) network, trained on features extracted from labeled PCG 

signals. Regarding the non-stationarity of PCG signals, it is recommended to 

extract the features from multiple short-length segments of the signals using 

a sliding window of certain shape and length. However, some window 

contains unfavorable spectral side lobes, which distort the features. 

Accordingly, it is preferable to adapt the window shape and length in terms 

of classification performance. We propose an experimental evaluation for 

three window shapes, each with three window lengths. The biLSTM network 

is trained and tested on statistical features extracted, and the performance is 

reported in terms of the window shapes and lengths. Results show that the 

best performance is obtained when the Gaussian window is used for splitting 

the signals, and the triangular window competes with the Gaussian window 

for a length of 75 ms. Although the rectangular window is a commonly 

offered option, it is the worst choice for splitting the signals. Moreover,  

the classification performance obtained with a 75 ms Gaussian window 

outperforms that of a baseline method. 
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1. INTRODUCTION  

The development of reliable and dynamic noninvasive systems is essential to the successful 

automatic diagnosis of diseases. Cardiologists are accustomed to using a medical stethoscope to listen to the 

heart and assess its health. Although this primitive diagnosis strategy is low-cost and non-invasive, its 

accuracy relays on the hearing experience of the cardiologist, which requires years to acquire [1]. As a result, 

it sparked the idea of using phonocardiography (PCG) signals to conduct an automated check of heart health 

[2]–[5].  

There are several methods for the automation of heart monitoring and examination, including 

electrocardiogram (ECG), which records heart electrical activity, and PPG, which estimates the blood flow 

rate using sensors of light. An assortment of techniques have been developed in the literature for 

computerizing the investigation of ECG and PPG signals [6]–[8]. Besides ECG and PPG signals, the PCG 

signals, which records the acoustic sound signals created by the heart in a cardiovascular cycle, can be 

utilized to proficiently screen and evaluate heart wellbeing. The ECG and PCG signals are more coherent 

than the PPG signal and they also include more information. In comparison to the ECG signals, the PCG 
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signal has a notable benefit in that it records the acoustic features of heart sound signals. These features make 

it easier to identify murmurs, which are irregularities in PCG signals [9]. 

PCG signals are recorded in a quiet room, with the PCG transducer, such as a microphone or 

stethoscope, firmly placed on the chest with a rubber strap. The PCG signal consists of a pair of heartbeats 

called S1 and S2, and two silent time durations between them as shown in Figure 1. This refers to the times 

the heart takes to alternate between contraction and closure. The time duration from the conclusion of the 

heartbeat S1 to the starting of the heartbeat S2 is called the systolic interval, and the diastolic interval is 

defined as the time duration from the conclusion of the heartbeat S2 to the starting of the heartbeat S1. The 

presence of disease is associated with additional audible actions that occur during the silent time durations, 

e.g., murmur is generated when blood continues to flow during the closure of the heart valves. The heartbeat 

S1 is a large magnitude signal with low frequency components, and the heartbeat S2 is a small magnitude 

signal with high frequency components [10]. Many methods have been recently developed for diagnosing 

heart abnormalities based on the analysis of PCG signals [11], [12]. In general, the detection of heart 

abnormality based on training distinct features is more effective than using training raw PCG signals. 

 

 

 
 

Figure 1. A sound recording of normal heart (PCG signal) 

 

 

One of the most difficult aspects for extracting features from PCG signals is that their complex and 

nonstationary nature. They are considered stationary only within short- time intervals, i.e., “quasi-stationary,” 

whereas signal characteristics are nonstationary over longer time intervals. To meet this requirement, features 

should be extracted in short-time intervals. This means that the PCG signal should be divided into  

short-length segments of overlapping/non-overlapping signal samples. This is accomplished by employing a 

sliding temporal window with a specific shape and length [13]. In this sense, the selection of the window 

shape and its length is a critical issue to ensure a successful diagnosis of heart abnormality.  

In this paper, sequences of statistical features extracted from short-length segments of labeled PCG 

signals are exploited for training and testing the bidirectional long short-term memory (biLSTM) classifier. 

Our aim in this work is to experimentally adapt the window shape and length for feature extraction in terms 

of classification of PCG signals. For that purpose, the classification results of conducted experiments are 

reported for three different window shapes and each is investigated with three different lengths. Furthermore, 

we evaluate four different network architectures of the biLSTM classifier.  

The rest of this manuscript is organized. Methods for diagnosing heart diseases are briefly reviewed 

in section 2. In section 3 explains the proposed method. Elaborated classification experiments and 

performance are reported in section 4. The conclusion of this work is drawn in section 5. 

 

 

2. LITERATURE REVIEW 

Classification features can be extracted from different spectro-temporal representations of PCG 

signals. These representations can be obtained using the short-time Fourier transform (STFT) [10], the 

wavelet transform (WT) [14], and the Mel-frequency cepstral coefficients (MFCCs) [15]. Sanei et al. [16] 

conducted a comparative study between these time-frequency representations of PCG signals and the 

temporal analysis of PCG signals. They have obtained a similar frequency and time resolution for the 

detection of the acoustic properties of heart sound signals. Because subspaces spanned by heartbeats and 

murmurs are typically distinct, authors developed a constrained singular spectral analysis method as well as 

an adapted method for subspace selection to separate murmur from PCG signals in [17]. The optimized 
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singular spectral processing method is found to segregate sound signals even when they are overlapped in 

time, as evidenced by low correlation values in almost all murmur types. In [18], the support vector machine 

(SVM) is employed to classify envelopes of PCG signals extracted in the wavelet domain. Hamidi et al. [19] 

perform feature extraction by estimating the parameters of linear predictive coding, and feature classification 

by SVM with a modified optimizer based on cuckoo search. Curve fitting and fractal dimension are exploited 

for producing a couple of feature extraction strategies from PCG signals in [20]. In [21], Ölmez and Dokur 

investigated the classification performance of the k-nearest neighbors (kNNs) with short-time features of 

wavelet and Hilbert transforms, homomorphic filtering, and power spectrum density of PCG signals. The 

extracted features are classified employing kNNs with error distances computed using the second norm for 

multiple cluster numbers. 

Artificial neural networks (ANNs) are utilized to classify PCG signals for the first time in [22]. 

Following that, many scholars focused on diagnosing of heart diseases using various ANNs and features. The 

principal component analysis and the wavelet decomposition are exploited for extraction of distinct features 

from PCG signals in [23], [24]. In [25], short-time features of the wavelet analysis and the time-frequency 

representation of PCG signals were evaluated independently using a multilayer perceptron composed of 

either a single hidden layer or a couple of hidden layers. The feedforward neural network is used in [26], [27] 

to classify PCG signals using features computed from the temporal, spectral, and spectro-temporal 

representations of the signals. The convolutional neural networks (CNNs) have made a rapid progress in the 

classification of PCG signals [28], [29]. PCG signals are classified using CNNs with features of wavelet 

coefficients in [30], and of MFCCs in [31]. In [32], heat maps are created from the energy distribution of 

MFCCs of PCG signals. Authors suggest to combine the heat maps with CNNs to perform such classification 

tasks.  

The recurrent neural networks (RNNs) are combined with MFCCs for the classification of PCG 

signals. The results are reported for four different RNN models, namely long short-term memory (LSTM), 

bidirectional LSTM (biLSTM), gated recurrent unit (GRU), and bidirectional GRU (biGRU) [33].  

Alam et al. [34] describe a combination of two network architectures, namely the CNN and the biLSTM 

networks. They offer to train visible and temporal properties of murmur in PCG signals through the use of 

short-time features of spectrogram and MFCCs. The nonlinear autoregressive network with exogenous inputs 

(NARX) is leveraged for binary the detection of heart abnormality in [35], [36]. This training and testing of 

this network is performed using three different groups of short-length features, namely, temporal, spectral, 

and statistical. Comparative analysis of three algorithms of training the biLSTM network for the purpose of 

PCG signal classification is prepared in [37]. Authors concluded that the network provides the best 

classification performance when it is trained with the stochastic gradient descent (SGD) with momentum 

algorithm. 

 

 

3. PROPOSED METHOD 

Because PCG signals are complex and nonstationary in nature, their analysis is a difficult issue. 

They are only deemed stationary within specific short-time intervals. In the proposed method, we offer to 

split a PCG signal into overlapping short-length segments of samples. This signal dividing step is completed 

using a sliding symmetric temporal window with certain shape and length. The contribution of each sample 

of PCG signals in the segment is defined by the window shape, and different segments are obtained by 

translating the window one sample step. The diagnosing of heart diseases is accomplished by classification of 

PCG which is achieved using the biLSTM network and 10 statistical features calculated independently inside 

each segment. However, some window shapes contain unfavorable spectral sidelobes. These sidelobes 

produce spectral components that interfere with the true spectrum of segments, resulting in distorted features. 

Using distorted classification features reduces the probability of accurate detection of heart abnormality.  

In this proposal, we offer to make a comparison among three different window shapes, each with 

three different lengths. In this sense, we adapt the shape and length of the window in the context of 

classification of PCG signals. Sequences of features are employed for training and testing different biLSTM 

architectures. Figure 2 depicts the flowchart of the proposed method. The sections that follow explain the 

procedure, beginning with signal pre-processing and progressing to feature extraction and feature 

classification. 

 

3.1.  Pre-processing 

Most heart sound recordings obtained with recording instruments are corrupted with noise from the 

surrounding environment. As a result, filtering out the noise becomes critical, but not at the expense of 

omitting information necessary for diagnosing heart disease. To reject distorting noise from the recordings, 

PCG signals are severely filtered. The bandwidth of heartbeat S1 is mainly from 10 to 200 Hz, which is made 
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by the vibrations of heart chambers and valves. After the closure of semilunar valves on aortic and 

pulmonary arteries, the heartbeat S2 is formed with a frequency range from 20 to 250 Hz. The low-frequency 

components of diagnostic information are preserved while high-frequency noise components are rejected 

using a low-pass filter with a 250 Hz cut-off frequency. Following Nyquist theorem, the filtered signals are 

down-sampled before feature extraction to reduce both calculations and computation complexity. 

 

 

 
 

Figure 2. Flowchart of the proposed method 

 

 

3.2.  PCG signal windowing 

An input signal can be divided into L+1 overlapped segments of signal samples. That is, the 

boundaries of subsequent segments overlap, i.e., the last samples of one segment are present in the following 

segment. These overlapping segments are obtained by moving a temporal sliding window along the signal. A 

typical overlap is chosen between one and L samples. In this work, a PCG signal is represented by N 

overlapping segments of samples with the length of overlap to be L. This is achieved for a PCG signal x[n] of 

length N by employing a sliding symmetric window w[n] of length L+1, with L+1<=N, such as (1): 

 

𝑦𝑛[𝑙] = 𝑤[𝑙]𝑥[𝑛 + 𝑙],  |𝑙| ≤
𝐿

2
, (1) 

 

where yn[l] is the nth signal block of length L+1. The shape of the window is selected from widely used 

windows, including the rectangular window, the triangular window, and the Gaussian window. 

 

3.2.1. Sliding symmetric window 

Because the time-domain product of two signals corresponds to the linear convolution of their 

respective spectra, the spectrum of the signal x[n] is convolved with the spectrum of the sliding window w[n] 

to obtain the spectrum of y[n]. As a result, the spectrum of the window influences the resulting spectrum. The 

typical spectral shape of a window consists of a main lobe and many side lobes with decreasing intensity as 

shown in Figure 3. When the signal of interest is sinusoidal, the resulting Fourier transform of the windowed 

signal will be a superposition of two window functions with their main lobes located at the sinusoidal 

signal’s frequency, effectively “smearing” the delta functions. This unfavorable side effect is usually 

characterized by [13]: i) the main-lobe width, ii) the intensity of the first (closest) side-lobe peak, and iii) the 

attenuation of the subsequent side-lobe peaks. Various windows have been offered in the literature to 

optimize these properties for specific use situations, and some of them are studied here for extracting features 

in the context of PCG signal classification. 

 

3.2.2. The rectangular window 

Because signal truncation corresponds to applying the rectangular window, this is the simplest 

window. It is also called the Dirichlet window and defined: 

 

𝑤[𝑙] = 1,  |𝑙| ≤
𝐿

2
. (2) 

 

The spectrum of this window is represented by a sinc function, with the peak of the first side-lobe accounting 

for approximately one-fifth the peak of the main-lobe. 
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Figure 3. Three different symmetric windows and their corresponding spectral shapes with L=20 

 

 

3.2.3. The triangular window 

The linear convolution of two rectangular windows of length L/2 yields a (L+1)-length triangular 

window. Therefore, the spectrum of the triangular window is obviously the Dirichlet kernel squared. This 

window exhibits a nonnegative Fourier transform due to the above discussed convolution property. Its 

mathematical formula is determined by (3). 

 

𝑤[𝑙] = 1 −
|2𝑙|

𝐿
,  |𝑙| ≤

𝐿

2
, (3) 

 

The half width of the main lobe of the triangular window equals twice that of the rectangular window. 

 

3.2.4. The Gaussian window 

It is well known that the spectrum of a Gaussian function is also a Gaussian function. Since this 

function spans an infinity time, it must be trimmed at its ends to be used as a window function. This window 

is represented by (4). 

 

𝑤[𝑙] = 𝑒
−

1

2
(α

𝑙

𝐿/2
)

2

,  |𝑙| ≤
𝐿

2
, (4) 

 

Increasing the value of α results in narrowing the width of the window, which reduces the severity of the 

discontinuity at the edges. However, this will widen the main-lobe and, as a result, diminish the side-lobe 

levels. The most common values of α are 2.5, 3, and 3.5. 

 

3.3.  Feature extraction 

Various measures for describing the statistical properties of signals are widely used. These measures 

can be used as classification features extracted from short-length segments of signal samples. Theoretically, 

the computation of statistical features requires infinite length observations; however, in practical applications, 

short-length segments can be assumed enough if we adapt the window shape and length [38]. The following 

section provides explanations of 10 feature sequences representing each PCG signal of the recording 

database. 

 

3.3.1. Arithmetic mean 

The arithmetic mean is the average value of the short-length segment of signal samples. Assuming 

that the samples of a segment are uniformly distributed, the arithmetic mean is computed by (5). 

 

μ𝑦[𝑛] =
1

𝐿+1
∑ 𝑦𝑛[𝑙]𝐿/2

𝑙=−𝐿/2 . (5) 

 

For a symmetric probability density function (PDF), the arithmetic mean is the position of the symmetric 

axis. When the PDF is not symmetric (a skewed signal), then the calculation of the mean is of limited use.  
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3.3.2. Median 

The median is the value that spatially divides a segment of samples into half. To find the median, 

sort the samples of yn[l] from the smallest value to the largest, and then find the sample with an equal number 

of samples above and below it. Outlier samples have a minor influence on the median. For a signal with 

repeated sample values, the median is of limited use, and the mode takes its place as a measure of the 

average. 

 

3.3.3. Mode 

The mode is the most frequently occurring value in a segment of samples. In other words, the mode 

is the common value that is repeated in samples. A multimodal distribution exists when the samples contain 

multiple values that are linked to the most frequently occurring. If no value repeats, the signal lacks a mode. 

 

3.3.4. Variance 

The variance and standard deviation both measure the spread of the input segment of signal sample 

around its arithmetic mean. The difference is given by (6). 

 

σ𝑦
2 [𝑛] =

1

𝐿+1
∑ (𝑦𝑛[𝑙] − μ𝑦[𝑛])

2𝐿/2
𝑙=−𝐿/2 . (6) 

 

For μ𝑦[𝑛] = 0, the variance equals the power of the observed segment of signal samples. The standard 

deviation σ𝑦[𝑛] can be computed directly from the variance, σ𝑦[𝑛] = √σ𝑦
2 [𝑛]. 

 

3.3.5. Skewness 

The skewness is defined as the division of the third central moment of a segment of signal sample by 

the cube of its standard deviation. It is given by (7). 

 

𝑣𝑦[𝑛] =
1

𝐿+1

1

σ𝑦
3 [𝑛]

∑ (𝑦𝑛[𝑙] − μ𝑦[𝑛])
3𝐿/2

𝑙=−𝐿/2 . (7) 

 

Skewness is a measure of PDF asymmetry. It is 0 for symmetric distributions, negative for distributions with 

their mass centered on the right, and positive for distributions with their mass centered on the left.  

 

3.3.6. Kurtosis 

Kurtosis is defined as the division of the fourth central moment of a segment of signal sample by the 

fourth power of the standard deviation. It is mathematically computed as (8): 

 

ω𝑦[𝑛] =
1

𝐿+1

1

σ𝑦
4 [𝑛]

∑ (𝑦𝑛[𝑙] − μ𝑦[𝑛])
4𝐿/2

𝑙=−𝐿/2 − 3. (8) 

 

Kurtosis quantifies the non-Gaussianity of the PDF. It is an indicator of the flatness of the PDF compared to 

the Gaussian distribution. It is zero for a Gaussian distribution, is negative for a flatter distribution with a 

wider peak, and positive for distributions with a sharper peak. 

 

3.3.7. Shannon energy 

Shannon energy finds the average spectral of a segment of signal samples. It discounts the high 

value components into the low value components. It is obtained for a segment of samples. 
 

𝐸𝑠𝑦[𝑛] = ∑ |𝑦𝑛[𝑙]|2𝐿/2
𝑙=−𝐿/2 log|𝑦𝑛[𝑙]|2. (9) 

 

In the presence of noise and outliers, Shannon energy approaches signal ranges, resulting in fewer errors. The 

advantage of using Shannon energy is its ability to emphasis the medium over traditional energy. 

 

3.3.8. Shannon entropy 

Shannon entropy quantifies the uncertainty of a random variable. It is calculated using the PDF 

𝑝𝑦(𝑦𝑛[𝑙]) of a segment of samples. 

 

ℎ𝑠𝑦[𝑛] = ∑ 𝑝𝑦(𝑦𝑛[𝑙])𝐿/2
𝑙=−𝐿/2 log 𝑝𝑦 (𝑦𝑛[𝑙]). (10) 

 

Entropy measures how effectively one can predict the behavior of respective parts from the others. In 

general, more entropy denotes more complicated signals and, as a result, less predictability. 
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3.3.9. Zero-crossing rate 

The number of sign changes in subsequent samples is referred to as the zero-crossing rate. It is a 

low-level feature that has been utilized in audio analysis for decades due to its straightforward calculation. 

 

𝑧𝑦[𝑛] =
1

2

1

𝐿+1
∑ |sign(𝑦𝑛[𝑙]) − sign(𝑦𝑛[𝑙 − 1])|𝐿/2

𝑙=−𝐿/2 . (11) 

 

The output is in the range of 0 ≤ 𝑧𝑦[𝑛] ≤ 1. The more often the signal changes its sign, the more  

high-frequency content is assumed to be in the signal.  

 

3.3.10. Quantile ranges 

Quantiles can be used to split the PDF into subsets of equal size. When the PDF is divided into two 

quantiles, it is divided into two halves, each of which contains half of the total number of observations. The 

median will be defined as the point where the border between those two quantiles crosses. 

 

𝑄𝑦(0.5) = 𝑦|
∫ 𝑝𝑦(𝑥)𝑑𝑥

𝑦
𝑖𝑛𝑓 =0.5

 (12) 

 

In the case of symmetric distributions, this equals the arithmetic mean. Quantile ranges are useful for 

simplifying the explanation of a distribution’s shape. Here, we adopt the range spanned by 50 % of the 

samples by discarding the upper and lower 25 %. The quantile range is then computed. 

 

Δ𝑄𝑦(0.5) = 𝑄𝑦(0.75) − 𝑄𝑦(0.25). (13) 

 

3.4.  Normalization of feature sequences 

Normalization rescales the features so that they have a zero mean and unit standard deviation. For a 

feature vector a[n] with mean μ𝑎 and standard deviation σ𝑎, the normalization is accomplished.  

 

𝑎[𝑛] =
𝑎[𝑛]−μ𝑎

σ𝑎
. (14) 

 

Normalization of features to be centered around zero with a standard deviation of one is important for 

comparing measurements with different units, and it is also required by many learning algorithms. This 

normalization is applied to all of feature sequences obtained as shown in the previous section. Figure 4 

depicts an example of 10 normalized sequences of extracted features from two PCG signals. The normalized 

sequences are then used to train and test the biLSTM network. 

 

3.5.  Feature classification 

Recurrent neural networks (RNNs) [33] are composed of hidden layers and feedback connections. In 

RNN models there are at least recurrent layer with numerous hidden neurons/nodes between input and output 

layers. The recurrent long short-term memory (LSTM) network contains hidden layers with self-recurrent 

weights, allowing memory to retain previous information. This network is well-known for modeling the trend 

in a sequence of features [39]. The bidirectional LSTM (biLSTM) network is a modified LSTM network with 

two hidden layers. These hidden layers learn sequences by alternating between backward and forward layers 

[40]. The alternating strategy improves the accuracy of LSTM networks by enabling past data to offer 

context for subsequent samples in a training sequence. 

 

3.5.1. Training the biLSTM model 

Backpropagation is applied to calculate the training parameters of the biLSTM network, which is 

then followed by an optimization algorithm [41]. The simplest way is to take each training example, run it 

through the network to get a prediction output, subtract it from the actual output we want to get, and square 

it. The network performs very well if the loss function is small, and it should be as small as possible. 

Backpropagation computes the gradients used by the optimization algorithm to minimize loss functions. To 

update the network parameters, we use the stochastic gradient descent (SGD) with momentum. Unlike the 

SGD, the momentum considers the gradient obtained in the last steps to find the optimum search path. This 

allows the network to approach the minimum value of the loss function more quickly. Although the 

momentum speeds up convergence, it should be used in conjunction with simulated annealing to avoid 

overshooting global minima. In the real world, the momentum is set at values that start at 0.5 and 

progressively increase to 0.9 over the course of the training epochs. 
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Figure 4. Normalized sequences of features for two PCG signals obtained with a 75 ms Gaussian window 

 

 

4. EXPERIMENTS 

4.1.  Database 

The heart sound recordings considered here are taken from the database of the PhysioNet 2016 

challenge, which is publicly available on the Web [42]. An electronic stethoscope was used to record PCG 

signals at four different points on the chest. The database includes recordings that have been classified as 

healthy or pathological. We chose a well-balanced database that includes sound recordings of 150 healthy 

hearts and other 150 pathological hearts. These recordings range in length between 5 and 120 seconds, with a 

sampling frequency of 2,000 Hz. Following Nyquist theorem, all recordings are downsampled at 500 Hz. 

 

4.2.  Training and testing 

For extraction of short-time features, we truncate the downsampled PCG signals, so that their 

lengths become 10 seconds (5,000 samples). The truncated signals are divided into short-length segments of 

samples using a window of length L+1. 70% of the extracted features are used to train the model, while 30% 

are used to test it. The training and testing sets are picked from the extracted features of the recording 

database at random. This procedure of training and testing is done for thirty times separately. Averaging the 

outcomes of the thirty experiments yields the classification performance. The classification results are 

provided in terms of the shape and length of the sliding symmetric window and as a function of four different 

numbers of the hidden neurons of the biLSTM classifier. We set the value of the model variables as listed in 

Table 1. These variables include the learning rate and the value of momentum in SGDM. 

 

4.3.  Classification performance 

The number of successfully classified signal examples vs the number of wrongly classified signal 

examples is a measure of classification performance. False negatives (FN) occur when the total number of 

signals from pathological patients are reported healthy, while false positives (FP) occur when the total 

number of signals from healthy patients are proclaimed pathological. True positives (TP) refer to 
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pathological heart sounds that have been accurately identified, whereas true negatives (TN) are healthy heart 

sounds that have been appropriately categorized. The sensitivity (Sens.), specificity (Spec.), and accuracy 

(Accu.) are commonly computed using the above-defined variables [43]. 

 

𝑆𝑒𝑛𝑠. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
100%, 

 

𝑆𝑝𝑒𝑐. =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
100% 

 

𝐴𝑐𝑐𝑢. =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
100%. 

 

 

Table 1. Implementation variables of the biLSTM classifier with SGDM 
Variable Value 

# biLSTM layers 2 

# Neurons in layer 5, 30, 50 or 100 
# Classes 2 

Initial learning rate 0.01 

Epochs 500 
The momentum 0.90 

 

 

4.4.  Results 

Figure 5 depicts the classification records for the selected test dataset averaged over the number of 

hidden neurons in the biLSTM model. The best performance is obtained by employing the Gaussian window 

with a length of 30 samples (75 ms) to split PCG signals into short-length segments for feature extraction, 

followed by the triangular window. Furthermore, the specificity and the accuracy accomplished by the 

classifier are better when short-length segments are obtained using the triangular window of length  

50 samples (125 ms) than those by the Gaussian window, and the sensitivity values are comparable. The 

results obtained with the Gaussian window surpass those with the triangle and rectangular windows in terms 

of sensitivity and accuracy for windows of length of 15 samples (37.5 ms), while the results with the 

rectangular window are better than those with the other windows in terms of specificity, followed by those 

with the Gaussian window. 

 

 

 
 

Figure 5. Average performance for four numbers of neurons of the classification model 

 

 

Figure 6. depicts three sub-figures of the accuracy obtained by the biLSTM network. Each  

sub-figure shows the accuracy when each window of the three windows is used to divide PCG signals into 

short-length segments. The accuracy follows different trends for different numbers of hidden neurons. 
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Overall window shapes, the optimal accuracy achieved by the biLSTM classifier when the number of its 

hidden neurons is set to 30. For a large or small number of hidden neurons, accuracy degradation is recorded. 

When using the biLSTM network to classify features extracted from short-length segments of PCG signals 

with a sliding symmetric window, the Gaussian window or the triangular window is the best choice. 

However, the rectangular window outperforms the other two windows for a length of 15 samples (37.5 ms). 

Table 2 reports detailed classification performance for the selected test PCG signals. According to 

the results, using any window length and shape provides a good identification of heart abnormality for all 

numbers of hidden neurons in the biLSTM classifier, as evidenced by the sensitivity values compared to the 

specificity. The window shape and length can be adapted to get the best performance. The best achieved 

accuracy is 89.10. 

 

 

 
 

Figure 6. Classification performance of the test dataset in terms of accuracy for each window shape as a 

function of a different number of hidden neurons and different window lengths 

 

 

Table 2. Detailed classification results for the test data 
Window length 15 samples 30 samples 50 samples 

Window shape Neurons Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec. Accu. 

Rectangular 5 71.40 74.10 72.70 78.60 74.10 76.40 78.60 70.40 74.50 
30 82.10 77.80 80.00 85.70 70.40 78.20 71.40 70.40 70.90 

50 75.00 74.10 74.50 75.00 74.10 74.50 71.40 70.40 70.90 

100 78.60 77.80 78.20 75.00 70.40 72.70 75.00 63.00 69.10 
Triangular 5 82.10 77.80 80.00 85.70 74.10 80.00 75.00 81.50 78.20 

30 89.30 70.40 80.00 92.90 85.20 89.10 85.70 77.80 81.80 

50 85.70 70.40 78.20 85.70 85.20 85.50 82.10 77.80 80.00 
100 78.60 70.40 74.50 89.30 81.50 85.50 78.60 77.80 78.20 

Gaussian 5 85.70 66.70 76.40 89.30 88.90 89.10 75.00 66.70 70.90 

30 92.90 77.80 85.50 92.90 85.20 89.10 89.30 81.50 85.50 
50 92.90 77.80 85.50 92.90 85.20 89.10 85.70 77.80 81.80 

100 89.30 77.80 83.60 85.70 81.50 83.60 78.60 74.10 76.40 
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4.5.  Discussion 

Adaptation of the shape and length of sliding window to split PCG signals into short-length 

segments for feature extraction is an intriguing need to improve the diagnosis accuracy of heart disease. The 

nonstationary nature of these signals and the presence of side-lobes in the spectrum of windows encourage us 

to search for optimal window length and shape to avoid destructive effects on the performance, as is 

theoretically demonstrated in the literature and experimentally confirmed in this work. Using a sliding 

window with adapted length and negligible side-lobes, such as the Gaussian window, provides improved 

performance. 

To demonstrate the importance of this work, we compare the results obtained by the proposed 

method to those obtained by a baseline method of [21]. In this baseline method, authors offer to extract four 

sets of features obtained from the wavelet and Hilbert transforms, the homomorphic filtering, and the power 

spectral density. This results in eleven extracted features, which were classified using kNNs and yielded 

classification accuracy ranging from 74.07 to 81.40. These values of accuracy outperform many other 

classification methods, as reported in [21]. The proposed method achieves a classification accuracy of 89.10 

with the Gaussian or triangular windows of length 30 samples (37.5 ms) for extracting features and setting 

the number of hidden neurons to 30 for classifying features. In this regard, the proposed method outperforms 

the baseline method and achieves accuracy gain ranging between 15.03 and 7.70. 

 

 

5. CONCLUSION 

In this paper, we proposed to optimize the shapes and the lengths of sliding symmetric temporal 

windows for splitting PCG signals into short-length segments, for extraction of sequences of statistical 

features. We used these sequences to train and test the biLSTM classifier for the purpose of diagnosing heart 

abnormalities. We tested three different window shapes, each with three different window lengths for the 

extraction of features from short-length segments and four different numbers of hidden neurons for feature 

classification. According to our findings, the classification performance obtained using the triangular window 

is comparable to that obtained using the Gaussian window. However, the performance obtained using the 

rectangular window cannot compete with that obtained using the other two windows. This results in the  

high-level sidelobe present in the spectrum of the rectangular window compared to the spectra of the other 

windows. These sidelobes interfere with the spectrum of signal segment. The best classification performance 

is achieved when we used the Gaussian or triangular window of length 75 ms to extract features from  

short-length segments of PCG signals, and we set the number of neurons of the biLSTM classifier to 30. 

With this set of variables, the proposed methodology outperforms a baseline classification method. 
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