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 This paper focuses on the optimal sizing of a positive second-generation 

current conveyor (CCII+), employing a hybrid algorithm named DE-ACO, 

which is derived from the combination of differential evolution (DE) and ant 

colony optimization (ACO) algorithms. The basic idea of this hybridization 

is to apply the DE algorithm for the ACO algorithm’s initialization stage. 

Benchmark test functions were used to evaluate the proposed algorithm’s 

performance regarding the quality of the optimal solution, robustness, and 

computation time. Furthermore, the DE-ACO has been applied to optimize 
the CCII+ performances. SPICE simulation is utilized to validate the 

achieved results, and a comparison with the standard DE and ACO 

algorithms is reported. The results highlight that DE-ACO outperforms both 

ACO and DE. 
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1. INTRODUCTION  

Analog circuit optimal design techniques are increasingly gaining attention from analog designers 

because of the continuous need for a high-performance electronic circuit, with properties such as low power 

consumption and small area [1]. Analog circuit optimization problems involve various types of objective 

functions, variables, and constraints. Hence, these problems can be formulated as optimization problems, 

which optimization algorithms can fix. Metaheuristic methods have been suggested in the literature to tackle 

challenging problems in diverse domains [2], such as genetic algorithm (GA) [3], differential evolution (DE) 

[4], [5], particle swarm optimization (PSO) [6], ant colony optimization (ACO) [7]–[9], and artificial bee 

colony (ABC) [10]–[12]. Nevertheless, many researchers use hybrid metaheuristic methods to overcome 

many optimization issues.  

The hybridization of metaheuristic algorithms is not simply an association of various algorithms, but 

their association is based on a specific framework [13]. In general, the performance of a unique algorithm is 

not efficient compared to a hybrid algorithm. Numerous studies have suggested hybridizing metaheuristic 

techniques belonging to the swarm intelligence domain. For instance, in [14], the authors proposed  

two-hybrid methods: a genetic algorithm with ant colony optimization (GA-ACO) and simulated annealing 

with ant colony optimization (SA-ACO) to optimize an operational amplifier and a complementary metal-

oxide semiconductor (CMOS) second-generation current conveyor. In [15], a hybrid method based on whale 

optimization algorithm and particle swarm optimization was proposed to size a CMOS differential amplifier, 

two-stage operational amplifier, and radio frequency micro-electro-mechanical systems (RF MEMS) shunt 

switch. A hybrid algorithm between the whale optimization algorithm and modified grey wolf optimization 

(WOA-mGWO) was proposed in [16] and applied to optimize the performance of a two-stage operational 
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amplifier. In [17], the authors suggest hybridization of PSO and cuckoo search (CS) for sizing a low-voltage 

CMOS second-generation current conveyor.  

The ACO algorithm has emerged as a valuable and efficient method for seeking optimal solutions to 

an optimization problem. ACO drawback requires a longer computation time than DE. Therefore, a novel 

hybrid algorithm is suggested by combining ACO with DE to enhance the execution speed of ACO. The 

hybrid algorithm developed in this work is named DE-ACO. In this hybridization, DE provides an enhanced 

initialization to ACO to limit the search space, focus on the exploitation process, and quickly converge to 

optimal solutions. First, DE-ACO's performances regarding solution quality, robustness, and computation 

time were evaluated using four benchmark test functions. Second, DE-ACO was applied to optimize the 

CCII+ performances.  

The rest of this paper is organized as outlined below: ACO, DE, and DE-ACO are highlighted in 

section 2. Performance evaluation of DE-ACO using test functions is shown in section 3. In section 4, the 

CCII+ circuit is described. The obtained results are summarized in section 5. Finally, section 6 recaps the study. 

 

 

2. METAHEURISTIC ALGORITHMS 

2.1.  Ant colony optimization algorithm 

ACO is a population-based metaheuristic method illustrated by the real ants’ foraging behavior. 

Dorigo et al. [18] proposed ACO in 1996, and it has been employed to deal with combinatorial optimization 

issues like the travelling salesman problem (TSP) [19], [20]. The transition probability of an ant k located at 

city i to an adjacent city j is given by (1): 
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where Ni
k is the set of neighbors of vertex i of the kth ant. τij(t) is pheromone trail quantity on edge (i, j). α 

and β are two factors that illustrate the relative effects of pheromone trail and heuristic function. The 

expression of ηij is given by the (2): 

 

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
  (2) 

 

where dij represent the distance from vertex i to j. Once all ant constructs their solutions, the pheromone 

value τij is updated as shown in (3):  

 

𝜏𝑖𝑗 = (1 − 𝜌) ⋅ 𝜏𝑖𝑗 + ∑ 𝛥𝜏𝑖𝑗
𝑘𝑚

𝑘=1   (3)

  
 

where m is the number of ants, and ρ is the pheromone evaporation rate. Δτij
k
 is the quantity of pheromone 

laid on edge (i, j) by ant k: 
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here, Lk denoted the length of the tour constructed by ant k, and Q is a predefined constant. The ACO 

pseudocode is presented as shown in algorithm 1. 

 

Algorithm 1. Pseudo code of ACO 
Randomly initialize the values of pheromones 

While stop criterion is not met do 

     For each ant do  

            Generate a candidate solution using the equation 1 

            Assess the solution fitness 

     End 

     Determine the best solutions  
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     Perform the update of pheromone using equations 3 and 4  

     Save the optimal solutions  

END 

 

2.2.  Differential evolution algorithm 

DE is an evolutionary metaheuristic algorithm suggested by Storn and Price in 1997 [21]. The DE 

comprises the following primary operations: mutation, crossover, and selection. In the mutation, each 

individual in the population known as the target vector Xi is utilized to produce a mutant vector, Vi. The 

DE/rand/1 mutation strategy is used in this work as (5):  

 

𝑉𝑖 = 𝑋𝑟1 + 𝐹 ⋅ (𝑋𝑟2 − 𝑋𝑟3) (5) 

 

where 𝑖 = 1, 2, … ,𝑁𝑃; NP is the population size; 𝑟1, 𝑟2, 𝑟3 (𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖) are integers randomly 

selected in the interval [1, NP]. F is a scale factor chosen in [0, 2]. After the mutation operation finish, the DE 

utilizes mutation to produce a trial vector Ui by the (6): 
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here, randj ϵ[0,1], jrand is chosen randomly in [1, D], and D is design variable numbers. CR is the crossover 

parameter ϵ[0,1]. Trial vector Ui is compared to target vector Xi in the selection operation. For  

next-generation, the individual with the best fitness will be selected as (7). The pseudocode of the DE is as 

shown in algorithm 2. 
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Algorithm 2. Pseudo code of DE 
Randomly initialize the individuals of the population 

Assess the individual fitness 

While stop condition is not met do 

      For each individual do 

           Generate the vector Vi using the equation 5 

           Create the vector Ui using the equation 6 

           Evaluate the individual fitness 

           Choose the best individuals using equation 7 

      End  

Save the optimal solutions  

End 

 

2.3.  Proposed hybrid DE-ACO algorithm 

The consumption of more computational time is the most significant shortcoming of ACO. 

Therefore, the DE-ACO has been designed using the advantage of DE to enhance ACO performances. In this 

hybridization strategy, DE is run for a predefined number of iterations. The best-achieved results by DE are 

employed to find a better launching point for the initialization of ACO. After DE completes the initialization 

phase, the search process is transferred to ACO to determine optimal solutions. DE-ACO structure is shown 

as: 

 

Algorithm 3. Pseudo code of DE-ACO 
Initialize the pheromone values randomly 

Initialize the individuals of the population randomly 

Assess the fitness of each individual 

Calculate the distances values using solutions found by DE 

While stop criterion is not met do 

     For each ant do  

            Generate a candidate solution using the equation 1 

            Assess the solution fitness 

     End 

     Determine the best solutions  

     Perform the update of pheromone using equations 3 and 4  

     Save the optimal solutions  

END 
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3. APPLICATION TO BENCHMARK TEST FUNCTIONS 

In this section, four test functions [22], [23] are utilized to evaluate DE-ACO performances, and a 

comparison against ACO and DE is made. The functions description is provided in Table 1. Fmin is the 

optimum function value, and Range is the boundary of search space. The environment for the experimental 

simulation is an Intel 2.00 GHz processor with 4 GB of RAM and a Windows 10 operating system. Table 2 

shows the parameter values of the algorithms. Dimension size is 2, population size is 50, and the number of 

iterations is 500. 

 

 

Table 1. Test functions details 
Name Functions expression Range Fmin 
Sphere 
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[-5, 5] 0 

 

 

Table 2. Parameter settings 
Parameter description DE ACO 

Scale factor (F) 0.5 ---- 
Crossover constant (CR) 0.9 ---- 

Pheromone Factor (α) ---- 1 
Heuristics Factor (β) ---- 1 
Evaporation Rate (ρ) ---- 0.1 

Quantity of Deposit Pheromone (Q) ---- 0.2 

 

 

The four test functions are repeatedly evaluated using the DE-ACO, ACO, and DE algorithms to 

assess the proposed approach's performance. The algorithms are developed in MATLAB and run 30 times 

independently. The mean (mean) and standard deviation (SD) of the obtained results are reported and listed 

in Table 3.  

 

 

Table 3. Statistical results of the used algorithms 
 DE-ACO ACO DE 

F1    Mean 0 0 3.65E-136 
     SD 0 0 1.98E-135 

F2    Mean 0 0 5.32E-59 
     SD 0 0 2.58E-58 

F3    Mean 8.88E-16 8.88E-16 8.88E-16 
     SD 0 0 0 

F4    Mean 0 0 0 
     SD 0 0 0 

 

 

From Table 3, DE-ACO and ACO perform better than DE. The mean CPU execution time of the 

used algorithms is investigated in Table 4. Figure 1 presents a boxplot of the best results from running these 

algorithms 30 times. As shown in Table 4, DE-ACO decreases the computational time of ACO. Figure 1 

shows that the three algorithms are robust for the four functions. It can be deduced from the boxplots of the 

four test functions that the proposed DE-ACO generally converges toward the identical best solution. 

 

 

Table 4. Average computing time (in seconds) 
Function name DE-ACO ACO DE 

F1 4.03 4.84 0.20 
F2 1.89 1.97 0.20 
F3 4.00 4.23 0.25 
F4 4.11 4.25 0.32 
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Figure 1. Boxplot representation for the test functions 

 

 

4. CMOS CURRENT CONVEYORS 

The current conveyors are analog current mode circuits widely applied in oscillators, amplifiers, and 

filters [24]. The current conveyor circuit used in this work is a positive second-generation current conveyor 

(CCII+), as depicted in Figure 2. It contains three active ports, X, Y, and Z. The trans linear loop made by 

transistors M1-M4 ensures the function of the current follower between ports X and Z. The current mirrors 

provided by transistors M5-M6 and M7-M8 allow the operating of the voltage follower between ports X and Y. 

The optimization problem will be tackled through two distinct strategies. The first one will handle 

each objective function independently as a mono-objective optimization. The main objective is to find the 

optimal design variables that minimize the input X-port resistance (Rx) and maximize the high cut-off 

frequency (fci). The input X-port resistance (Rx) is given by (8) [25]. 

 

𝑅𝑥 ≈
1

𝑔𝑚2+𝑔𝑚4
 (8) 

 

Here, gm represents transconductance for the MOS transistor. The expression of (fci) is not provided here 

because of its many terms. Furthermore, it can be derived from the expression of the current transfer function 

between X and Z ports offered by (9) [26]. 
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  (9) 

 

Where g0 represents the conductance of the MOS transistor, Cgs and Cgd are the parasitic grid to source 

capacitance, and the parasitic grid to drain the MOS transistor. s is Laplace coefficient. 
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In this first approach, two cases of transistor design are considered. In the first case, the channel 

length of N-type metal-oxide-semiconductor (N-MOS) transistors differ from that of P-type  

metal-oxide-semiconductor (P-MOS) transistors. In the second case, the channel lengths are the same for all 

transistors. Bi-objective optimization has been chosen in the second approach, which simultaneously 

minimizes (Rx) and maximizes (fci). Equation (10) represents the objective function to be minimized [27]. 

 

𝑓𝑜𝑏𝑗 =
1

𝑓𝑐𝑖
+ 𝑅𝑥 (10) 

 

The saturation conditions of transistors, which should be satisfied, are given by (11) and (12). 
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VTP and VTN were the threshold voltages of P-MOS and N-MOS, respectively. Cox, μN and μP were the 

parameters of MOS technology. VDD and Ibias represent voltage supply and bias current, respectively. The design 

variables of the problem are the channel lengths (LN, LP) and the MOS transistor's gate widths (WN, WP). 

 

 

 
 

Figure 2. CCII+ circuit 

 

 

5. RESULTS AND DISCUSSION 

In this section, the CCII+ was optimized by DE-ACO and compared with ACO and DE. The 

simulations use the AMS 0.35 µm CMOS technology with 2.5 V as supply voltage and 100 µA as bias 

current. The number of populations is 100, and the stopping criterion is 1,000 iterations. 

 

5.1.  Mono-objective optimization results 

This subsection addresses the first case where the channel length of N-MOS transistors differs from 

that of P-MOS transistors. The task of DE-ACO is to minimize Rx and maximize fci separately.  

Tables 5 and 6 show the algorithms’ optimization and simulation results. SPICE simulations are performed to 

verify the achieved results. Figure 3 shows the simulation results using optimal design parameters found via 

DE-ACO, ACO, and DE for input X-port resistance (Rx) in Figure 3(a) and current gain in Figure 3(b) of the 

CCII+ circuit. 
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According to the results below, the proposed approach highlights the best results for Rx and fci, and 

the simulation results match well with those of the optimization. In addition, the DE-ACO gives the lowest 

error than other algorithms. Due to the stochastic effect of the algorithms, these algorithms are executed 30 

times. Figure 4 shows the boxplot representation of the best performances for Rx in Figure 4(a) and fci in 

Figure 4(b). Table 7 presents the average computing times of the methods used. 

 

 

Table 5. Optimal results of CCII+ for Rx 
 LN (µm) LP (µm) WN (µm) WP (µm) Rx (Ω) Error (%) 

Optimization Simulation 

DE-ACO 0.55 0.35 18.82 30 456 467 2.36 

ACO 0.59 0.35 18.80 30 465 480 3.13 

DE 0.59 0.35 18.88 30 464 479 3.13 

 

 

Table 6. Optimal results of CCII+ for fci 
 LN (µm) LP (µm) WN (µm) WP (µm) fci (Ghz) Error (%) 

Optimization Simulation 

DE-ACO 0.55 0.35 4.48 7.69 1.913 2.024 5.48 

ACO 0.55 0.35 4.67 7.96 1.874 2.002 6.39 

DE 0.55 0.35 4.86 8.34 1.838 1.980 7.17 

 

 

 
 

(a) (b) 

 

Figure 3. Simulation results for (a) Rx vs frequency and (b) current gain vs frequency 

 

 

 
 

(a) (b) 

 

Figure 4. Boxplot representation for (a) Rx and (b) fci 
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As illustrated in Figure 4 and Table 7, DE-ACO enhances the robustness and reduces the computing 

times of the ACO algorithm. The second case, where the channel length of the N-MOS transistors is equal to 

that of the P-MOS transistors, is treated. The results of this case are provided in Tables 8 and 9. 

The above results indicate that the hybrid algorithm provides the best performances of Rx and fci for 

CCII+ compared to ACO and DE algorithms. In addition, DE-ACO and ACO give a lower error for fci and 

Rx, respectively. Figure 5 presents the simulation results for Rx in Figure 5(a) and fci in Figure 5(b). 

 

 

Table 7. Average computing time (in seconds) 
 DE-ACO ACO DE 

Rx 45.08 45.38 17.12 

fci 46.06 46.61 17.19 

 

 

Table 8. Optimal results of CCII+ for Rx 
 LN=LP 

(µm) 

WN (µm) WP (µm) Rx (Ω) Error (%) 

Optimization Simulation 

DE-ACO 0.35 11.36 29.93 519 461 12.58 

ACO 0.35 11.29 29.64 521 464 12.28 

DE 0.35 11.27 30.00 521 462 12.77 

 

 

Table 9. Optimal results of CCII+ for fci 
 LN=LP 

(µm) 

WN (µm) WP (µm) fci (Ghz) Error (%) 

Optimization Simulation 

DE-ACO 0.35 4.82 5.37 2.254 2.522 10.63 

ACO 0.35 4.86 5.41 2.245 2.523 11.02 

DE 0.35 4.95 5.55 2.224 2.495 10.86 

 

 

  
(a) (b) 

 

Figure 5. Simulation results for (a) Rx vs frequency and (b) current gain vs frequency 

 

 

All algorithms are run 30 times independently. Figure 6 presents the boxplot representation for Rx 

in Figure 6(a) and fci in Figure 6(b). Table 10 highlights the average computing times of DE-ACO, ACO, 

and DE. The optimization results are in good agreement with the simulation results. DE-ACO and ACO are 

more robust than DE for Rx than DE, and the reverse for fci. In addition, DE-ACO minimizes the computing 

time of the ACO algorithm. 

 

5.2.  Bi-objective optimization results 

This subsection discusses the second approach, where Rx and fci are optimized simultaneously. The 

channel length of N-MOS transistors is different from that of P-MOS transistors. Table 11 summarizes the 

optimization and simulation results. Table 11 shows that the DE-ACO achieved better results simultaneously 

for Rx and fci. Moreover, DE-ACO provides a lower Rx value than the ACO and DE algorithms. Figure 7 shows 

the SPICE simulation results for Rx in Figure 7(a) and fci in Figure 7(b). The used algorithms were run  
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30 times independently. Figure 8 presents the boxplot representation for Rx in Figure 8(a) and fci in  

Figure 8(b). Table 12 shows the average execution times of the three algorithms. 

 

 

  
(a) (b) 

 

Figure 6. Boxplot representation for (a) Rx and (b) fci 

 

 

Table 10. Average computing time (in seconds) 
 DE-ACO ACO DE 

Rx  40.06 41.75 16.78 

fci 38.74 39.02 17.63 

 

 

Table 11. Optimal results of CCII+ for Rx and fci 
 LN LP WN WP Rx (Ω) Error fci (Ghz) Error 

 (µm) (µm) (µm) (µm) Optimization Simulation (%) Optimization Simulation (%) 

DE-ACO 0.58 0.35 9.60 14.88 647 743 12.92 1.298 1.554 16.47 

ACO 0.59 0.35 9.56 14.97 652 747 12.72 1.337 1.537 13.01 

DE 0.60 0.35 9.62 15.00 653 750 12.93 1.282 1.520 15.66 

 

 

As seen in Figure 7, the simulation results match the optimization results. From Figure 8, DE-ACO 

is more robust than ACO for Rx and almost identical to ACO for fci. Furthermore, as shown in Table 12, the 

hybrid algorithm gives the lowest value in computing times than the ACO algorithm. 

 

 

  
(a) (b) 

 

Figure 7. Simulation results for (a) Rx vs frequency and (b) current gain vs frequency 
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(a) (b) 

 

Figure 8. Boxplot representation for (a) Rx and (b) fci 

 

 

Table 12. Average computing time (in seconds) 
 DE-ACO ACO DE 

𝑓𝑜𝑏𝑗 32.82 39.36 16.52 

 

 

6. CONCLUSION  

A hybrid algorithm referred to as DE-ACO was proposed in this work, which uses ACO and DE’s 

advantages to obtain a robust algorithm with better quality solutions. The suggested hybridization uses the 

DE to provide a better initialization of ACO. Four test functions are used to evaluate the hybrid algorithm’s 

performances regarding solutions quality, robustness, and running times. As an analog circuit optimization 

application, DE-ACO was employed to optimize the Rx and fci of CCII+. The results highlight that DE-ACO 

performs better for the test functions and the CCII+ circuit. We conclude that the DE-ACO technique is 

successfully applied for analog circuit optimization. 
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