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 The use of bio-signals analysis in human-robot interaction is rapidly 

increasing. There is an urgent demand for it in various applications, 

including health care, rehabilitation, research, technology, and 

manufacturing. Despite several state-of-the-art bio-signals analyses in 

human-robot interaction (HRI) research, it is unclear which one is the best. 

In this paper, the following topics will be discussed: robotic systems should 

be given priority in the rehabilitation and aid of amputees and disabled 

people; second, domains of feature extraction approaches now in use, which 

are divided into three main sections (time, frequency, and time-frequency). 

The various domains will be discussed, then a discussion of each domain's 

benefits and drawbacks, and finally, a recommendation for a new strategy 

for robotic systems. 
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1. INTRODUCTION 

Human-robot interaction (HRI) is a rapidly expanding field of study and application. There are 

numerous complex problems in this field, and solutions that have a positive societal impact are possible. due 

to their interdisciplinary nature, researchers in the discipline must understand their studies from a larger 

perspective [1]. HRI is an interdisciplinary topic that encompasses essential research in domains such as 

human-robot interaction (HCI), artificial intelligence (AI), control systems, pattern recognition, psychology, 

electronics, mechanics, social communication, behavioral expression systems, and neuroscience, among 

others. Most HRI experiments involve the development of a robot that interacts with the environment or a 

specific item. They devised a movement strategy for a particular situation (based on physical attributes) 

without considering the impulse or stream of thinking that characterizes human activity [2]. 

To develop the robotics hardware and software needed to create a successful human-robot interface. 

A range of fields must collaborate, analyze human behavior when interacting with robots in various social 

circumstances, and design the aesthetics of the robot's embodiment and behavior and the domain knowledge 

required for specific applications. Due to the numerous disciplinary jargon and processes [3]. Monitoring and 

evaluating the patient's physiological data is crucial in physical therapy to assess treatment effects and 

regulate assistive devices during the rehabilitation process. These two forms of data are detected using 

various sensors, including electromechanical sensors (such as accelerometers) [4]. And biosensors (such as 

electromyography (EMG) [5], as well as force sensors [6], Electroencephalography (EEG), and 

magnetoencephalography (MEG) have been used. Electromechanical sensors can effectively detect 

biological data [5], [7]. 

The number of possible bio-signals is enormous, given that there are many physiological systems of 

relevance. Bio-signals include everything from a visual evaluation of the patient to bodily indicators captured 
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by sensors in a larger sense [8]. Machine learning (ML) offers powerful algorithms for perception and 

knowledge that may be used to create solid and versatile high-level recognition systems. Image processing 

techniques and entropy distance, wearable cameras, and inertial sensors were used to recognize human 

actions and detect falls. A 99% adaptable system based on decision trees and four sensors coupled to the 

body system was constructed to identify daily behaviors such as standing, sitting, and walking [9]. 

This research paper is divided into the following sections: the second section explains how existing 

studies' research was gathered. In the next area, we will go over how to evaluate human-robot interactions. 

Following that, the model for gesture recognition techniques is presented. The last section compares domains 

for feature extraction in pattern recognition techniques. The study's conclusion was then discussed. 

 

 

2. RESEARCH METHOD  

Unlike previous surveys, this work provides a thorough review of current advancements in 

prosthesis control based on upper-limb myoelectric control in terms of model robustness, adaptation, and 

reliability. Efforts will be made in three areas in this context: i) primary consideration should be given to 

robotic systems in the rehabilitation and assistance of amputees and disabled persons; ii) domains of features 

extraction techniques now in use, categorized into three types (time, frequency, and time-frequency); and iii) 

a review of the benefits and drawbacks of each domain that has been evaluated. Elsevier, PubMed, IEEE, 

SpringerLink, Google Scholar, and Wiley Online Library were used to conduct literature searches for this 

review. Search terms included surface EMG (sEMG), myoelectric control, bio-signals analysis, 

rehabilitations, assistances, classification, regression, features extraction, features domains, robustness, 

reliability, domain adaptability, multi-modal, sensor fusion, confidence estimate, uncertainty analysis, and so 

on. Publications from 2010 to 2021 were favored, while the time period was extended in some situations. 

After doing a literature search, we carefully examine each article to exclude those that do not meet the 

following criteria: i) the literature must focus on upper-limb motion estimates utilizing machine learning 

control and ii) technical contributions should be relevant to one of the three targets, namely robotic systems 

in the rehabilitation and assistance of amputees and disabled people, feature extraction, and their benefits and 

drawbacks. For these objectives, we first chose 74 linked papers. 
 

 

3. HUMAN-ROBOT INTERACTION BASED ON BIOMEDICAL SIGNALS 

Bio-signals are the critical source of information on biosystem functioning and provide 

communication between them. It is, as all signals require the transmission of energy. Bio-signals can be 

evaluated directly from their biological source; however, external power is frequently used to study 

physiological and external power interactions. A transducer converts a bio-signal into an electric signal that 

can be measured. In most cases, the analog signal is converted to a digital (discrete-time) signal [10]. 

 

3.1.  Electroencephalography signal 

The EEG is a technique for detecting electrical activity in the brain. Because of its exceptional 

temporal sensitivity, EEG is primarily used to detect changes in brain activity. EEG testing may benefit 

patients with seizures, epilepsy, or unusual spells. This comes with several benefits. EEG signals are linked 

to mental functions in the brain, making them less susceptible to an amputation. Second, muscle strain has 

little effect on EEG-based movement estimations. As a result, using EEG in conjunction with another  

bio-signal, such as sEMG, has piqued researchers' curiosity [11]–[13], where the features of two signals can 

be analyzed sequentially or concurrently.  

In study [14], researchers created a new EEG dataset that was infected with real-time motion 

artifacts and discovered that coherence was a better similarity metric between the motion artifact-infected 

EEG and motion sensor data. This real dataset was created to aid researchers working on EEG motion artifact 

reduction techniques by allowing them to compare and contrast existing methods as well as develop new 

models. Hadiyoso et al. [15] presented a study comparing the coherence of EEG signals in mild cognitive 

impairment (MCI) patients and healthy people. Its goal is to make each group's feature visible so that the 

coherence value can be used to detect early Alzheimer's disease via EEG analysis. It looked at the inter-and 

intra-hemispheric coherence of the electrode pairs. MCI sufferers' mean coherence was lower than healthy 

people were. In this experiment [16], the Wavelet technique to evaluate the EEG signal successfully 

classified a person's brain dominance. This is due to the Wavelet's ability to assess brain signals based on 

scale and direction. The benefits of EEG signals include being less reliant on amputation conditions. On the 

other hand, the disadvantages include a low signal-to-noise ratio (SNR), a slow data transfer rate, poor 

estimation accuracy, and restricted user adaptability. 
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3.2.  Electromyogram signal 

The EMG signal, which is frequently employed in psychophysiology to study the relationship 

between cognitive expression and physiological responsiveness, measures and records the electrical potential 

generated by muscle cells [17]. The two categories of EMG sensors are sEMG and intra muscular (iEMG). 

Muscle cells produce EMG signals, which are bioelectric signals used in a variety of applications including 

sports science, ergonomics, assistive technology, and rehabilitation [18]. 

The method for classifying various hand gestures that have been developed will be helpful in 

human-computer interaction as well as in controlling devices such as prostheses, virtual objects, and 

wheelchairs; for example, In [19], researchers used time-domain EMG features that were normalized to the 

area under the averaged root mean square curve to improve gesture recognition accuracy (AUC-RMS). From 

each channel's active EMG signals, the four basic time-domain features were extracted: mean absolute value 

(MAV), zero crossing, waveform length (WL), and slope sign change (SSC). The researchers used five 

machine-learning algorithms to classify the three different hand motions: k-nearest neighbor (k-NN), 

discriminant analysis (DA), naive Bayes (NB), random forest (RF), and support vector machine (SVM). The 

results showed that both normalizing approaches improved performance indicators such as accuracy, F1 

score, Matthew correlation coefficient, and Kappa score compared to the original EMG features. 

EMG signal is employed as a signal for intention prediction of human motion in numerous robotic 

applications, particularly in human-robot interaction systems. Most significantly, it is used to calculate the 

kinematics of upper limb movements, which are the most active sections of the human body and are 

necessary for daily tasks [20]. Patricia et al. [21] looked at four adaptive learning algorithms, two of which 

had previously been evaluated in the prosthetic field, to see if they could help amputees learn to use an 

sEMG-based prosthetic hand in less time. By increasing the number of source subjects available, they 

compared their performance when dealing with different types and numbers of hand movements. As a result, 

they demonstrated that adaptive learning has much potential in this field. 

Researchers investigate several mother wavelet functions in discrete wavelet transforms (DWT), and 

continuous wavelet transforms (CWT) in [22]. The performance of several mother wavelets in DWT and 

CWT is also investigated at various decomposition levels and scales. Each CWT and reconstructed DWT 

wavelet coefficient has extracted its MAV and WL features. The SVM, a popular machine learning 

technique, recognizes different hand movements. As a result, DWT outperforms CWT in rehabilitation and 

clinical application. 

 

3.3.  Mechanomyography signal 

Acoustic myography (AMG) is the term for when microphones pick up an MMG signal [23]. 

During contraction, they measure the mechanical responses of muscle fibers' lateral oscillation at low 

frequencies (2–200 Hz). Unlike sEMG, MMG is unaffected by changes in skin impedance or sensor 

positioning sensitivity [24]. MMG can be created using a variety of transducers, including piezoelectric touch 

sensors and accelerometers [25]. As a result, combining these two signals has piqued people's interest. In 

[26], researchers proposed a hybrid EMG and MMG acquiring method for hand motion detection and 

discovered that combining EMG and MMG features reduced classification error. On the other hand,  

Zhang et al. [27] developed a structure-level strategy for post-processing sEMG-based hand gesture detection 

and feature-based fusion techniques using MMG signals as movement onset/offset detectors. 

 

 

4. HUMAN-ROBOT INTERACTION PERFORMANCE EVALUATION METHODS 

Many studies have been carried out to document user experiences and the psychological impacts of 

human-computer interaction. Using features of psycho-physiological data collected in real-time, they 

deduced the subject's biology. There are varieties of research findings for various study issues along these 

lines. Still, very little of the accumulated data can formulate speculative hypotheses or establish more 

detailed research questions [28].  

Multiple events, such as subject moves, electrode disconnection, fluctuating temperatures, humidity 

levels, subject-dependent physiological abnormalities, electrostatic artifacts, and other unrelated user actions, 

may occur during the data collection operation, causing the sensor signal to degrade and external interference 

[29]. As a result, signal-preprocessing approaches need to be applied to the unprocessed signal, typically the 

initial stage in developing an ML system. It requires synchronizing the signals from various sensors, 

removing data loss and null values, and perhaps other tasks: filtering, noise removal, and outlier elimination 

(usually by linear interpolation). The type of sensor utilized and the goal of the study state the filter type and 

characteristics, which are as [30]: HRI's principal purpose is to equip robots with various skills to interact 

with people more effectively. However, as more people contact robots daily, it is becoming increasingly 

necessary for untrained users to engage with and use these robots efficiently. A robot hand a wheelchair [31], 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

A survey on bio-signal analysis for human-robot interaction (Huda Mustafa Radha) 

6001 

or a humanoid robot [32] are examples of external mechanical equipment that have grown increasingly 

common in brain robot interaction (BRI) [33]–[35]. 

 

4.1.  Rehabilitation and assistance by using human-robot interaction 

Rehabilitation robots are one area of study that focuses on using robotic systems to augment and 

analyze rehabilitation processes. These devices have been created to assist with various therapeutic 

preparation and sensory function testing methods [36]. For example, robotic rehabilitation is a valuable tool 

for treating motor control in people who have had a stroke or another type of motor impairment [37]. 

Alternatively, assistive robotics strives to help people with impairments execute their daily life activities 

(DLAs) with greater freedom. Moving, gripping, as well as handling objects, and eating, are examples. 

Consequently, robotic devices are used daily for therapy and assistance. A growing number of research 

efforts have recently focused on assistive and rehabilitative robots due to rapidly growing technical 

breakthroughs in machine learning, sensors, data processing, computation, prototype testing, and production, 

as well as massive social demands such as mobility aids for older people [38], [39] are a couple of examples. 

 

4.1.1. Assistive robotics  

Millions of people worldwide have upper or lower limb limitations, limiting their reach and ability 

to control objects. Geriatric patients, older patients, patients with muscular dystrophy (MD), amyotrophic 

lateral sclerosis (ALS), Multiple sclerosis (MS), cerebral palsy (CP), spinal muscular atrophy (SMA), as well 

as others who have severe motor paralysis, are among the patients [40]. This emphasizes a need for a  

low-cost, moderate assistive device that enables patients to grasp objects, interact safely with their 

environment, and gain independence. Researchers have developed assistive robotic manipulators (ARMs) in 

wheelchair-mounted and fixed desktop forms [41]. Many studies have focused on building novel user 

interfaces to improve the performance of helpful robotic manipulators. Furthermore, as more embedded 

system computers become available, artificial intelligence is increasingly used to aid patients in executing 

activities more autonomously and successfully. A sensitive joystick, similar to intelligent wheelchairs, is the 

most often used user interface for assistive robotic manipulators [42]. 

 

4.1.2. Robotic prostheses  

The use of a robotic prosthesis effective Prosthesis, also known as a rehabilitation robot, is a type of 

rehabilitation robot attached to a patient's body and performs the duties of the missing limb during daily 

activities. Patients frequently order and regulate their function via muscle or brain impulses in real-time. The 

human body interacts directly with the robotic prosthesis. As a result, designing robotic prostheses, physical 

qualities, humanoids' looks, knowledge of user intent, reproducing movements, grasp patterns of the 

complete human body, or force effort are essential factors to consider [43]. Many recent research efforts have 

focused on producing prosthetics that resemble a biological limb's capabilities. The key to successful 

improvement is acquiring a comprehensive technique for comprehending the patient's desire to perform a 

task and detecting the environment [44]. The mobility and dynamic control system of the robot may gather 

numerous bio-signals in order to create a recognition algorithm and achieve the user's goal [45]. Prosthetic 

operating methods, which significantly impact the device's comfort, define how muscle activation data 

collected by sensing modalities are used to handle the prosthesis [46]. 

Upper limb prosthetics are frequently controlled using pattern-recognition-based proportional 

control approaches and combinations. On chosen degree of freedom (DOF) shafts for the Prosthesis, 

balanced control technology also offers a position, velocity, or force control, with a motion property adjusted 

proportionally to the intensity of muscle contractions [47]. Although direct scaling control of prosthetic 

fingers is more natural than grip selecting, the user may find it more challenging it to modify the position of 

the fingers for the work because there are usually only a few control sites available [48]. Deep learning (DL) 

has only recently been used in sEMG research, even though pattern recognition approaches have been used 

for decades. Because of the introduction of large sEMG data sets and the development of evolutionary 

algorithms, DL had already shown significant potential in the sEMG pattern identification of an artificial 

hand. sEMG and DL are employed in various foundational gesture recognition investigations [18]. 

 

 

5. PATTERN RECOGNITION SYSTEM 
Although the concept of gesture recognition techniques is similar, each step has its own style; also, 

not all study uses all phases of the standard framework. As a result, we recommend a six-step conventional 

strategy: data collection, data preparation, feature extraction, classification algorithms, post-processing, and 

performance evaluation. Figure 1 shows how to identify sEMG signal patterns using conventional ML-based 

methodologies. 
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5.1.  Data acquisition 

Two or more electrodes were put in the front and rear of the lower arm to acquire the EMG signal, 

believing that the cross-talk content for each signal would be essentially the same for each movement. The 

purpose would have been to characterize the signal's varied patterns for different directions [49]. Because 

there are only a few coupled sensors over the muscles in this setup, most gesture labels are assigned to  

sEMG [50]. 

 

 

 
 

Figure 1. The general framework for describing the interactions between the user and the robotic prosthesis 

 

 

5.2.  Data preprocessing 

A single-channel EMG signal is segmented for post-processing and production of muscle activation 

patterns. Each muscle is independently recorded since not all EMG recording channels are sufficient to 

account for movement cycles. The applicability of particular EMG channels is determined by the mode of 

muscle activity and the number of onsets and cessations during each movement cycle. For example, muscles 

in a phasic manner with only one activity interval within the movement cycle produce the most appropriate 

EMG signals [51]. Because of the limited EMG voltage amplitude and poor EMG signal in stroke patients, 

recognizing motion intent based on EMG presents an additional challenge due to the reduced SNR; hence, 

standard signal processing may not effectively extract the user's purpose. Emerging machine-learning signal 

processing algorithms may increase EMG signal processing quality while eliminating the need for onsite 

manual calibration and threshold setup operations, resulting in a user-friendly solution [52]. To determine 

EMG-based hand movement intent, neural network-based machine learning techniques such as a 

convolutional neural network (CNN) were used, demonstrating the ability to overcome these challenges in 

EMG signal feature extraction and system calibration [22]. 

 

5.3.  Feature extraction 

Extracting features from a signal to achieve consistent categorization is known as feature extraction. 

The most important step in biomedical signal classification is feature extraction because if the features are 

not extracted correctly, the classification performance will suffer. The feature extraction stage should reduce 

the original data to a smaller dimension while retaining most of the useful information from the initial vector. 

As a result, it is critical to identify the fundamental elements that define the collection based on its nature. 

Because they are the most typical values for determining the distribution of biological signals, different 

statistical features can be retrieved from each subsample data point. Biological signals' min, max, mean, 

median, mode, std, variance (VAR), 1st, 3rd, and inter-quartile range (IQR) can be used as features [53]. ML 

employs feature engineering to achieve this goal, time domain (TD) features, time-serial domain (TSD) 

features, frequency domain features, and time-scale or time-frequency domain characteristics are all included 

[54]. 

 

5.3.1. Time-domain features 

The TD values are determined by the raw sEMG, which are time functions. They are commonly 

used because they have a lower processing complexity than other sEMG features. MAV, root mean square 

(RMS), integrated EMG (iEMG), histogram (HIST), zero crossings (ZC), standard deviation (SD), SSC, 

waveform length (WL), Willison amplitude (WAMP), variance (VAR). Other time-domain components are 
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frequently used, commonly used together [18]. Table 1 presents a brief use of Time-domain features. Hamedi 

et al. [55] Use the integrated (INT), MAV, mean absolute value slop (MAVS), RMS, VAR, and WL  

time-domain feature extraction methods on signals. To obtain recognition accuracy and assess the efficacy of 

each feature extraction method, the features are categorized using Fuzzy C-means. 

 

 

Table 1. Shows the domain-specific features 
Category Feature Formula Time-domain 

Time 
domain 

MAV MAV= 
1

𝑁
∑ |𝑥𝑖|𝑁

𝑖=1  Indication of muscle contraction levels 

 RMS 
RMS=√

1

𝑁 
∑ 𝑥𝑖2𝑁

𝑖=1  
A Gaussian random process with 

amplitude modulation. 

 iEMG iEMG = ∑ |𝑥𝑖|𝑛
𝑖=1  An index for detecting the onset of a 

condition 

 ZC ZC=∑ [𝑠𝑔𝑛(𝑥𝑖 × 𝑥𝑖 + 1)  ∩ |𝑥𝑖 − 𝑥𝑖 + 1| ≥𝑛−1
𝑖=1

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑] 
 

𝑠𝑔𝑛(𝑥) = {
1 , 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

} 

A feature that makes an 

approximation of frequency domain 
properties. 

 SSC SSC=∑ [ 𝑓[(𝑥𝑖
𝑛−1
𝑖=2 − 𝑥𝑖−1) × (𝑥𝑖 − 𝑥𝑖+1 )]]  

 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 

A method for representing the signal's 
frequency information. 

 WL WL=𝑙𝑜𝑔(
∑ |𝛥𝑥|𝑛−1

𝑖=0

∑ | 𝛥2𝑥 |𝑛−1
𝑖=0

) The signal's frequency, duration, and 

amplitude are all detailed. 
 WAMP 

𝑓(∆i) = {
1, 𝑖𝑓 ∆i ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 

 

∆i = |𝑥𝑖 + 1 − 𝑥𝑖| 

Indicator of muscle contraction 

intensity. 

 VAR VAR=
1

𝑁−1
∑ 𝑥𝑖

2𝑁
𝑖=1  

 

The sEMG signal's power index 

 V-order 
(V)  

V=(
1

𝑁
 ∑ 𝑥𝑖

𝑣𝑁
𝑖=1 )

1

𝑣
 

A nonlinear detector for estimating 
the force of muscle contractions 

implicitly. 

 simple 
square 

integral 

(SSI) 

SSC=∑ [ 𝑓[(𝑥𝑖
𝑛−1
𝑖=2 − 𝑥𝑖−1) × (𝑥𝑖 − 𝑥𝑖+1 )]]  

 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 

The sEMG signal's energy index 

Frequency 

domain 

total 

power 

(TP) 

TP=∑ 𝑝𝑖𝑀
𝑗  The sEMG power spectrum as a whole. 

 modified 

phase 

(MP) 

MP=
1

𝑀
∑ 𝑝𝑖𝑀

𝑗=1  The EMG power spectrum's average 

power 

 mean 

frequency 

(MNF) 

MNF=
∑ 𝑓𝑗𝑃𝑖𝑀

𝑗=1

∑ 𝑃𝑖𝑀
𝑗=1

 
Frequency average 

 median 

frequency 

(MDF) 

∑ 𝑝𝑗 = ∑ 𝑝𝑗 =
1

2
∑ 𝑃𝑗

𝑀

𝑗=1

𝑁

𝑗=𝑀𝐷𝐹

𝑀𝐷𝐹

𝑗=1

 
A frequency splits the sEMG power 

spectrum into two regions of equal 

amplitude. 

Notes: N denotes the number of sampling points; xi denotes the sEMG signal of the ith sampling point; M denotes the total number of 

frequency bins; PJ denotes the sEMG power spectrum, and fj indicates the frequency of the range of the jth frequency bin. 

 

 

According to Balbinot and Favieiro [56], the system was created with a small number of myoelectric 

signal acquisition channels (up to eight) and a more robust artificial intelligence technique in mind. By 

describing seven different motions, he was able to demonstrate the system's validity. They used an  

eight-input neuro-fuzzy network with one output to calculate the RMS value for each of the eight channels. 

The average accuracy for seven different moves was 86 %. On the other hand, Wu et al. [57] study the use of 

a single-channel signal characteristic of a single-channel time-domain sEMG envelope in a gesture detection 

system. The modified KNN algorithm and the soft margin SVM method are used to classify five different 

types of motions. Using the improved KNN algorithm and the smooth margin SVM approach, they were able 

to attain gesture recognition scores of 75.8% and 79.4%, respectively. Table 2 provides more information. 

 

5.3.2. Frequency domain features 

The FD features are calculated using the Fourier transform of the sEMG signal's autocorrelation 

function, which is then estimated using a period gram or parameter method. Other frequency domain 

properties of sEMG signals include frequency ratio (FR), TP, MP, MDF, MNF, power spectrum (PS), and 
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others [58]. The detailed information is shown in Table 1. Awang et al. [59] create an integrated method for 

identifying brain changes during rest and writing situations using power spectral density (PSD) estimation for 

selected representative EEG data. The k-NN classifier is used, which has an average accuracy of 95% 

researcher in [60] used the short-time Fourier transform on raw EEG data to determine the power distribution 

for each frequency band. The stationary wavelet transform was used to remove artifacts, and k-NN and SVM 

were used to classify them. 

The power distribution for each frequency band was determined using the short-time Fourier 

transform on raw EEG data. Artifacts were removed using the stationary wavelet transform, and they were 

classified using k-NN and SVM. They show that k-NN has the best results for frequency bands between 4 

and 50 HZ, with an average accuracy of 94.208% and 90.816% using SVM.   

Djemal et al. [61] proposed a system for extracting features. Using event-related de-synchronization 

and synchronization strategies, the classification accuracy of three-class motor imagery (MI) brain to 

computer interaction (BCI) is improved. The classification method uses fast Fourier transforms (FFT) and 

autoregressive (AR) modeling to combine phase and amplitude aspects of brain signals. For two BCI 

competition datasets, 86.06 % and 93% classification accuracy were achieved using sequential forward 

floating selection (SFFS) and multi-class linear discriminant analysis (LDA) classifiers. Acharya et al. [62] 

developed a computer-aided diagnostic (CAD) technique that can classify the three classes of EEG segments 

with 99.7% classification accuracy by using a fuzzy Sugeno classifier and non-linear features based on 

higher-order spectra (HOS), fractal dimension, and Hurst Exponent. Table 3 provides further information 

time-dependent power spectrum descriptors (TD-PSD) [63] and temporal-spatial descriptors (TSD) [64] are 

two new features that have recently been proposed to increase the robustness of feature extraction. Because a 

single feature, such as Phinyomark's feature set, may only supply so much information, combining elements 

from multiple groups is a smart concept [65]. 

 

 

Table 2. Summary of previous literature utilizing time domain features extraction 
Ref Year Signal type Features Classification Accuracy 

[55] 2012 sEMG INT, MAV, MAVS, RMS, VAR, and WL Fuzzy C-means (FCM) 90.8% 

[56] 2013 sEMG RMS neuro-fuzzy 86% 

[57] 2018 sEMG IEMG, MAV, VAR, Standard deviation, 
Average energy, MAX, SSC, Skewness, 

Kurtosis 

KNN+SVM 75.8-79.4% 

[66] 2021 EMG, ECG, hand and foot 
galvanic skin response (hand 

GSR) and (foot GSR) 

statistical features SVM 88.89% 

*Galvanic skin response (GSR) 

 

Table 3. Summary of previous literature utilizing frequency domain features extraction 
Ref Year Signal type Features Classification Accuracy 

[59] 2012 EEG Spectral density of power (PSD) k-NN 95% 

[62] 2012 EEG Higher-order spectra higher-ordertal dimension 

and hurst exponent-based nonlinear features 

Fuzzy Sugeno 

Classifier 

99.7% 

[61] 2016 EEG FFT + auto regressive (AR) LDA 86.06%-93% 

[60] 2020 EEG Short-time fourier transform k-NN+SVM 94.20%-90.81% 

 

 

5.3.3. Time-frequency domain features 

The energy of the sEMG signal in time and frequency is calculated using time–frequency domain 

(TFD) features, which is a typical feature extraction approach. The frequency bands are formed by different 

wavelet coefficients, and statistical indicators are extracted as TFD features. When the basic wavelet function 

db4 is utilized as the wavelet transform equation, the raw sEMG signal is partitioned into three levels. 

 

𝑊𝑇 =
1

√𝑎
 ∫ 𝑓(𝑡)𝜓∗  (

𝑡−𝜏

𝑎
) 𝑑𝑡

+∞

−∞
 (1) 

 

Where, a is the scale parameter, the mother wavelet is 𝜓 (t), and the translation parameter is τ. The ith level 

decomposition coefficient ci (ci=one of [cD1, cD2, cD3, cA3]) has a length of ni.; μ is the average of ci [57]. 

 

5.3.4. Parameter model 

The parameter model's central premise is that raw sEMG data sequence information should be 

treated as a time series. So, the sEMG signal is stable on short notice. The coefficients and intercept of the 

fourth autoregressive model are often used as characteristic values [67]. 
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5.3.5. Performance feature extraction domains 

By thoroughly reading various publications, including primary methodologies for one-dimensional 

signal linear analysis in the time, frequency, or time-frequency domain. Several common interest approaches 

were examined and rated for their overall benefits and drawbacks. The advantages and disadvantages of 

several feature extraction algorithms for gesture detection are shown in Table 4. 

 

 

Table 4. Feature extraction approaches (pros and cons) [54], [68]–[70] 
Domain name Pros Cons 

Time − TD characteristics are derived directly from 

raw signal time series without any 

manipulations. 

− Implementation is simple. 

− The computational load must be kept to a 

minimum. 

− Because they are entirely made of time, Time-domain 

windows are adaptable. 

− Depending on the values of the R-R interval, 

Frequency − This is a valuable tool for signal processing in 

a stationary environment 

− It is better for narrowband signals like sine 

waves. 

− It outperforms virtually all other approaches 

available in real-time applications 

− Non-stationary data analysis, such as EEG suffers from a 

flaw. 

− Because of its poor spectrum estimation, it cannot be 

used to analyze short EEG signals. 

− Its spectrum estimation is poor, so it cannot be used to 

analyze short EEG signals. 

Time-

Frequency 
− It has a variable window size, with a large one 

at low frequencies and a small one at higher 

frequencies. 

− It excels at analyzing transient and fast signal 

changes. 

− Better at analyzing erratic data patterns, such 

as impulses that occur at irregular intervals. 

− It is necessary to choose a suitable mother wavelet. 

Parameter 

model 
− The use of augmented reality (AR) techniques 

reduces spectral loss and improves frequency 

resolution 

− Excellent frequency resolution is provided. 

− Spectral analysis based on the AR model is 

helpful when analyzing small data segments. 

− It is difficult to choose the model order in AR spectral 

estimation. 

− The AR technique produces poor spectral estimation 

when the estimated model is not appropriate, and the 
model's orders are incorrectly specified. 

− Solid biases and even large variability can easily 

influence it. 

 

 

5.4.  Pattern classification  

The final stage of pattern recognition for EMG control of the prosthesis is pattern classification. 

Following that, a specific tool can be chosen based on the system's requirements and characteristics. One of 

the most widely used pattern detection methods in myoelectric signals is support vector machines (SVM), 

which discover an n-dimensional hyperplane that can divide a set of extracted input features into different 

classes [71]. 

This approach outperforms other classifiers in recognizing complicated patterns, such as artificial 

neural networks (ANN) and linear discriminant analysis (LDA). On a number of occasions. The SVM is 

based on the following basic concepts: i) hyperplane divider, ii) kernel function, iii) optimal separation 

hyperplane, and iv) soft margins (tolerance of hyperplane). SVMs have a high classification accuracy 

because they may be coupled with other classification methods to achieve diverse classification goals. They 

also have a high rate of accuracy [72]. 

 

5.5.  Performance evaluation 

5.5.1. The metrics used for models’ evaluation 

Prediction accuracy is usually one of the most important criteria for evaluating the functionality of a 

pattern recognition model. Offline testing evaluates the model's performance using accuracy, recall, 

precision, standard deviation, and other metrics. Error measures such as mean square error (MSE), root mean 

square error (RMSE), normalized root mean square error (NRMSE), and correlation coefficient are 

commonly used to classify these observations [73]. 

Furthermore, the data in the model's test set for each category and generation must be balanced; 

otherwise, the model's accuracy will be comparable to that of subjects with more data. The system 

performance evaluation can measure the accuracy of the complete system in real-time when developing the 

real-time model. Fetts' law was used to calculate these results. This is used to evaluate the proposed system's 

objective performance [74]. 
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6. COMPARATIVE ANALYSIS OF MOTION DETECTION TECHNIQUE AND DISCUSSION  

This paper summarizes recent human-robot interaction research and development efforts in assistive 

and rehabilitation robotics. Several subdomains of assistive and rehabilitative robotic research are first 

identified. The background and trends of such advancements and the types of feature extraction domains 

employed by the technique are discussed. It has been discovered that feature extraction methods based on the 

Time domain can yield good results if the environment (e.g., temperature, humidity, and lightning) does not 

influence the recorded signals. While features-based Frequency domains perform well in real-time 

applications, they struggle to analyze brief EEG signals. It is difficult to choose the model order for AR 

spectral estimation. On the other hand, Feature-based parameter models can help reduce the constraints of 

spectral problems and improve the technique's accuracy by increasing frequency resolution. The feature-

based Time-Frequency domain is superior for assessing rapid and transient signal changes and 

comprehending irregular data patterns, but it necessitates the selection of the appropriate mother wavelet. In 

addition, combining a large dataset with a robust feature selection strategy can improve the classifier’s 

performance. 

 

 

7. CONCLUSION  

The current methodologies and measures for assessing HRI states in biological signal analysis 

investigations are summarized in this paper. Different methods for estimating user states and the signals and 

procedures utilized to gather these signals are identified. For example, they must be processed and analyzed 

to prepare them for usage in machine learning algorithms. Furthermore, this research reviewed and analyzed 

the most important literature in the HRI perspective to measure the cognitive state by examining 

psychological and biological signals. After benefiting from the literature study, we want to develop a multi-

module that uses analysis of biological data such as EEG and EMG to produce a robotic limb to assist 

patients with upper limbs. According to our research, the most prevalent feature extraction strategies have 

been presented with their benefits and drawbacks. According to a comparative study, accuracy varies 

depending on the situation. Finally, moving from feature engineering to feature learning is a good idea. On 

the other hand, DL improves representation through feature learning, which extracts high-level features from 

input data through multiple layers of processing blocks.  

 

 

REFERENCES 
[1] W. Lambrechts, J. S. Klaver, L. Koudijzer, and J. Semeijn, “Human factors influencing the implementation of cobots in high 

volume distribution centres,” Logistics, vol. 5, no. 2, May 2021, doi: 10.3390/logistics5020032. 

[2] C. Jost et al., Human-robot interaction, vol. 12. Cham: Springer International Publishing, 2020, doi: 10.1007/978-3-030-42307-0. 
[3] F. Negrello, H. S. Stuart, and M. G. Catalano, “Hands in the real world,” Frontiers in Robotics and AI, vol. 6, Jan. 2020,  

doi: 10.3389/frobt.2019.00147. 

[4] L. M. S. do Nascimento, L. V. Bonfati, M. L. B. Freitas, J. J. A. Mendes Junior, H. V. Siqueira, and S. L. Stevan, “Sensors and 
systems for physical rehabilitation and health monitoring—a review,” Sensors, vol. 20, no. 15, Jul. 2020, doi: 10.3390/s20154063. 

[5] C. Fang, B. He, Y. Wang, J. Cao, and S. Gao, “EMG-centered multisensory based technologies for pattern recognition in 

rehabilitation: state of the art andchallenges,” Biosensors, vol. 10, no. 8, Jul. 2020, doi: 10.3390/bios10080085. 

[6] U. Martinez-Hernandez, I. Mahmood, and A. A. Dehghani-Sanij, “Simultaneous Bayesian recognition of locomotion and gait 

phases with wearable sensors,” IEEE Sensors Journal, vol. 18, no. 3, pp. 1282–1290, Feb. 2018,  

doi: 10.1109/JSEN.2017.2782181. 
[7] S. S. Jasim and A. K. Abdul Hassan, “Modern drowsiness detection techniques: a review,” International Journal of Electrical and 

Computer Engineering (IJECE), vol. 12, no. 3, pp. 2986–2995, Jun. 2022, doi: 10.11591/ijece.v12i3.pp2986-2995. 

[8] S. N. Mohammed and A. K. A. Hassan, “A survey on emotion recognition for human robot interaction,” Journal of Computing 
and Information Technology, vol. 28, no. 2, pp. 125–146, Jun. 2021, doi: 10.20532/cit.2020.1004841. 

[9] H. Rezaie and M. Ghassemian, “An adaptive algorithm to improve energy efficiency in wearable activity recognition systems,” 

IEEE Sensors Journal, vol. 17, no. 16, pp. 5315–5323, Aug. 2017, doi: 10.1109/JSEN.2017.2720725. 
[10] A. Mohammed and L. Wang, “Advanced human-robot collaborative assembly using electroencephalogram signals of human 

brains,” Procedia CIRP, vol. 93, pp. 1200–1205, 2020, doi: 10.1016/j.procir.2020.03.074. 

[11] E. Rocon et al., “Multimodal BCI-mediated FES suppression of pathological tremor,” in Annual International Conference of the 
IEEE Engineering in Medicine and Biology, Aug. 2010, pp. 3337–3340, doi: 10.1109/IEMBS.2010.5627914. 

[12] K. KIGUCHI, T. D. LALITHARATNE, and Y. HAYASHI, “Estimation of forearm supination/pronation motion based on EEG 

signals to control an artificial arm,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 7, no. 1,  
pp. 74–81, 2013, doi: 10.1299/jamdsm.7.74. 

[13] X. Li, O. W. Samuel, X. Zhang, H. Wang, P. Fang, and G. Li, “A motion-classification strategy based on sEMG-EEG signal 

combination for upper-limb amputees,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, Dec. 2017,  
doi: 10.1186/s12984-016-0212-z. 

[14] A. Islam, E. J. Esha, S. F. Binte Ahmed, and M. Kafiul Islam, “Study and analysis of motion artifacts for ambulatory 

electroencephalography,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 2, pp. 1520–1529, 
Apr. 2022, doi: 10.11591/ijece.v12i2.pp1520-1529. 

[15] S. Hadiyoso, I. Wijayanto, and S. Aulia, “Comparison of resting electroencephalogram coherence in patients with mild cognitive 

impairment and normal elderly subjects,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 2, 
pp. 1558–1564, Apr. 2022, doi: 10.11591/ijece.v12i2.pp1558-1564. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

A survey on bio-signal analysis for human-robot interaction (Huda Mustafa Radha) 

6007 

[16] K. A. Abu Nawas, M. Mustafa, R. Samad, D. Pebrianti, and N. R. Hasma Abdullah, “K-NN classification of brain dominance,” 
International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 4, pp. 2494–2502, Aug. 2018,  

doi: 10.11591/ijece.v8i4.pp2494-2502. 

[17] J. S. Hussain, A. Al-Khazzar, and M. N. Raheema, “Recognition of additional myo armband gestures for myoelectric prosthetic 
applications,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 6, pp. 5694–5702, Dec. 2020, 

doi: 10.11591/ijece.v10i6.pp5694-5702. 

[18] W. Li, P. Shi, and H. Yu, “Gesture recognition using surface electromyography and deep learning for prostheses hand: State-of-
the-art, challenges, and future,” Frontiers in Neuroscience, vol. 15, Apr. 2021, doi: 10.3389/fnins.2021.621885. 

[19] M. F. Wahid, R. Tafreshi, M. Al-Sowaidi, and R. Langari, “Subject-independent hand gesture recognition using normalization 

and machine learning algorithms,” Journal of Computational Science, vol. 27, pp. 69–76, Jul. 2018,  
doi: 10.1016/j.jocs.2018.04.019. 

[20] Y. Liu, Z. Li, H. Liu, and Z. Kan, “Skill transfer learning for autonomous robots and human–robot cooperation: a survey,” 

Robotics and Autonomous Systems, vol. 128, Jun. 2020, doi: 10.1016/j.robot.2020.103515. 
[21] N. Patricia, T. Tommasit, and B. Caputo, “Multi-source adaptive learning for fast control of prosthetics hand,” in 22nd 

International Conference on Pattern Recognition, Aug. 2014, pp. 2769–2774, doi: 10.1109/ICPR.2014.477. 

[22] J. Too, A. R. Abdullah, N. Mohd Saad, N. Mohd Ali, and H. Musa, “A detail study of wavelet families for EMG pattern 

recognition,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 6, pp. 4221–4229, 2018,  

doi: 10.11591/ijece.v8i6.pp.4221-4229. 

[23] N. Siddiqui and R. H. M. Chan, “Hand gesture recognition using multiple acoustic measurements at wrist,” IEEE Transactions on 
Human-Machine Systems, vol. 51, no. 1, pp. 56–62, Feb. 2021, doi: 10.1109/THMS.2020.3041201. 

[24] R. B. Woodward, M. J. Stokes, S. J. Shefelbine, and R. Vaidyanathan, “Segmenting mechanomyography measures of muscle 

activity phases using inertial data,” Scientific Reports, vol. 9, no. 1, Apr. 2019, doi: 10.1038/s41598-019-41860-4. 
[25] M. A. Islam, K. Sundaraj, R. B. Ahmad, N. U. Ahamed, and M. A. Ali, “Mechanomyography sensor development, related signal 

processing, and applications: a systematic review,” IEEE Sensors Journal, vol. 13, no. 7, pp. 2499–2516, Jul. 2013,  

doi: 10.1109/JSEN.2013.2255982. 
[26] P. Prociow, A. Wolczowski, T. G. Amaral, O. P. Dias, and J. Filipe, “Identification of hand movements based on MMG and EMG 

Signals,” in Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing, 2008,  

pp. 534–539, doi: 10.5220/0001057305340539. 
[27] X. Zhang, X. Li, O. W. Samuel, Z. Huang, P. Fang, and G. Li, “Improving the robustness of electromyogram-pattern recognition 

for prosthetic control by a postprocessing strategy,” Frontiers in Neurorobotics, vol. 11, Sep. 2017,  

doi: 10.3389/fnbot.2017.00051. 
[28] M. Z. Baig and M. Kavakli, “A survey on psycho-physiological analysis & measurement methods in multimodal systems,” 

Multimodal Technologies and Interaction, vol. 3, no. 2, May 2019, doi: 10.3390/mti3020037. 

[29] A. Samad, D. R. Obando Nuñez, G. C. Solis Castillo, B. Laquai, and U. Vogt, “Effect of relative humidity and air temperature on 
the results obtained from low-cost gas sensors for ambient air quality measurements,” Sensors, vol. 20, no. 18, Sep. 2020,  

doi: 10.3390/s20185175. 

[30] P. J. Bota, C. Wang, A. L. N. Fred, and H. Placido Da Silva, A review, current challenges, and future possibilities on emotion 
recognition using machine learning and physiological signals, vol. 7, Institute of Electrical and Electronics Engineers (IEEE), 

2019, pp. 140990–141020, doi: 10.1109/ACCESS.2019.2944001. 

[31] D. A. Craig and H. T. Nguyen, “Adaptive EEG thought pattern classifier for advanced wheelchair control,” in 29th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 2007, pp. 2544–2547,  

doi: 10.1109/IEMBS.2007.4352847. 

[32] A. Guneysu and H. L. Akin, “An SSVEP based BCI to control a humanoid robot by using portable EEG device,” in 35th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 2013, pp. 6905–6908,  

doi: 10.1109/EMBC.2013.6611145. 

[33] H. Abdulkarim and M. Z. Al-Faiz, “Online multiclass EEG feature extraction and recognition using modified convolutional 
neural network method,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 5, pp. 4016–4026, 

Oct. 2021, doi: 10.11591/ijece.v11i5.pp4016-4026. 
[34] J. Zhao, W. Li, X. Mao, and M. Li, “SSVEP-based experimental procedure for brain-robot interaction with humanoid robots,” 

Journal of Visualized Experiments, vol. 2015, no. 105, Nov. 2015, doi: 10.3791/53558. 

[35] S. Bozinovski and A. Bozinovski, “Mental states, EEG manifestations, and mentally emulated digital circuits for brain-robot 
interaction,” IEEE Transactions on Autonomous Mental Development, vol. 7, no. 1, pp. 39–51, Mar. 2015,  

doi: 10.1109/TAMD.2014.2387271. 

[36] R. Gassert and V. Dietz, “Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective,” 
Journal of NeuroEngineering and Rehabilitation, vol. 15, no. 1, Dec. 2018, doi: 10.1186/s12984-018-0383-x. 

[37] W. Liao, C. Wu, Y. Hsieh, K. Lin, and W. Chang, “Effects of robot-assisted upper limb rehabilitation on daily function and real-

world arm activity in patients with chronic stroke: a randomized controlled trial,” Clinical Rehabilitation, vol. 26, no. 2,  
pp. 111–120, Feb. 2012, doi: 10.1177/0269215511416383. 

[38] H. Tanaka, M. Yoshikawa, E. Oyama, Y. Wakita, and Y. Matsumoto, “Development of assistive robots using international 

classification of functioning, disability, and health: concept, applications, and issues,” Journal of Robotics, vol. 2013, pp. 1–12, 
2013, doi: 10.1155/2013/608191. 

[39] S. W. Brose et al., “The role of assistive robotics in the lives of persons with disability,” American Journal of Physical Medicine 

and Rehabilitation, vol. 89, no. 6, pp. 509–521, Jun. 2010, doi: 10.1097/PHM.0b013e3181cf569b. 
[40] M. J. Matarić and B. Scassellati, “Socially assistive robotics,” in Springer Handbook of Robotics, Cham: Springer International 

Publishing, 2016, pp. 1973–1994, doi: 10.1007/978-3-319-32552-1_73. 

[41] P. Polygerinos et al., “Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and 

applications in human‐robot interaction,” Advanced Engineering Materials, vol. 19, no. 12, Dec. 2017,  

doi: 10.1002/adem.201700016. 

[42] A. Kumar, A. Mantri, and R. Dutta, “Development of an augmented reality‐based scaffold to improve the learning experience of 
engineering students in embedded system course,” Computer Applications in Engineering Education, vol. 29, no. 1, pp. 244–257, 

Jan. 2021, doi: 10.1002/cae.22245. 

[43] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, “A survey on robotic devices for upper limb 
rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 11, no. 1, Dec. 2014, doi: 10.1186/1743-0003-11-3. 

[44] J. Cheesborough, L. Smith, T. Kuiken, and G. Dumanian, “Targeted muscle reinnervation and advanced prosthetic arms,” 

Seminars in Plastic Surgery, vol. 29, no. 01, pp. 62–072, Feb. 2015, doi: 10.1055/s-0035-1544166. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 5998-6009 

6008 

[45] A. Mohebbi, “Human-robot interaction in rehabilitation and assistance: a review,” Current Robotics Reports, vol. 1, no. 3,  

pp. 131–144, Aug. 2020, doi: 10.1007/s43154-020-00015-4. 
[46] M. Connan, E. Ruiz Ramírez, B. Vodermayer, and C. Castellini, “Assessment of a wearable force- and electromyography device 

and comparison of the related signals for myocontrol,” Frontiers in Neurorobotics, vol. 10, Nov. 2016,  

doi: 10.3389/fnbot.2016.00017. 
[47] D. Farina et al., “The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging 

avenues and challenges,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 4, pp. 797–809,  

Jul. 2014, doi: 10.1109/TNSRE.2014.2305111. 
[48] C. L. Semasinghe, D. G. K. Madusanka, R. K. P. S. Ranaweera, and R. A. R. C. Gopura, “Transradial prostheses: Trends in 

development of hardware and control systems,” International Journal of Medical Robotics and Computer Assisted Surgery,  

vol. 15, no. 1, Oct. 2019, doi: 10.1002/rcs.1960. 
[49] S. Grushko, T. Spurný, and M. Černý, “Control methods for transradial prostheses based on remnant muscle activity and its 

relationship with proprioceptive feedback,” Sensors, vol. 20, no. 17, Aug. 2020, doi: 10.3390/s20174883. 

[50] A. Phinyomark, R. N. Khushaba, and E. Scheme, “Feature extraction and selection for myoelectric control based on wearable 
EMG sensors,” Sensors, vol. 18, no. 5, May 2018, doi: 10.3390/s18051615. 

[51] E. Stålberg et al., “Standards for quantification of EMG and neurography,” Clinical Neurophysiology, vol. 130, no. 9,  

pp. 1688–1729, Sep. 2019, doi: 10.1016/j.clinph.2019.05.008. 
[52] Y. Geng et al., “A robust sparse representation based pattern recognition approach for myoelectric control,” IEEE Access, vol. 6, 

pp. 38326–38335, 2018, doi: 10.1109/ACCESS.2018.2851282. 

[53] S. Siuly, Y. Li, and Y. Zhang, EEG signal analysis and classification techniques and applications. Springer International 
Publishing, 2016, doi: 10.1007/978-3-319-47653-7. 

[54] A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard, and Y. Laurillau, “EMG feature evaluation for 

improving myoelectric pattern recognition robustness,” Expert Systems with Applications, vol. 40, no. 12, pp. 4832–4840,  
Sep. 2013, doi: 10.1016/j.eswa.2013.02.023. 

[55] M. Hamedi, S. H. Salleh, A. M. Noor, T. T. Swee, and I. K. Afizam, “Comparison of different time-domain feature extraction 
methods on facial gestures’ EMGs,” Progress in Electromagnetics Research Symposium, pp. 1897–1900, 2012 

[56] A. Balbinot and G. Favieiro, “A neuro-fuzzy system for characterization of arm movements,” Sensors, vol. 13, no. 2,  

pp. 2613–2630, Feb. 2013, doi: 10.3390/s130202613. 
[57] Y. Wu, S. Liang, L. Zhang, Z. Chai, C. Cao, and S. Wang, “Gesture recognition method based on a single-channel sEMG 

envelope signal,” EURASIP Journal on Wireless Communications and Networking, vol. 2018, no. 1, Dec. 2018,  

doi: 10.1186/s13638-018-1046-0. 
[58] F. E. Abd El-Samie, T. N. Alotaiby, M. I. Khalid, S. A. Alshebeili, and S. A. Aldosari, “A review of EEG and MEG epileptic 

spike detection algorithms,” IEEE Access, vol. 6, pp. 60673–60688, 2018, doi: 10.1109/ACCESS.2018.2875487. 

[59] S. Ardeenawatie Awang, M. P. Paulraj, and S. Yaacob, “Analysis of EEG signals by eigenvector methods,” in IEEE-EMBS 
Conference on Biomedical Engineering and Sciences, Dec. 2012, pp. 778–783, doi: 10.1109/IECBES.2012.6498164. 

[60] A. Jalilifard, A. Rastegarnia, E. B. Pizzolato, and M. K. Islam, “Classification of emotions induced by horror and relaxing movies 

using single-channel EEG recordings,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 4,  
pp. 3826–3838, Aug. 2020, doi: 10.11591/ijece.v10i4.pp3826-3838. 

[61] R. Djemal, A. Bazyed, K. Belwafi, S. Gannouni, and W. Kaaniche, “Three-class EEG-based motor imagery classification using 

phase-space reconstruction technique,” Brain Sciences, vol. 6, no. 3, Aug. 2016, doi: 10.3390/brainsci6030036. 
[62] U. R. Acharya, S. V. Sree, P. C. A. Ang, R. Yanti, and J. S. Suri, “Application of non-linear and wavelet based features for the 

automated identification of epileptic EEG signals,” International Journal of Neural Systems, vol. 22, no. 02, Apr. 2012,  

doi: 10.1142/S0129065712500025. 
[63] A. H. Al-Timemy, R. N. Khushaba, G. Bugmann, and J. Escudero, “Improving the performance against force variation of EMG 

controlled multifunctional upper-limb prostheses for transradial amputees,” IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 24, no. 6, pp. 650–661, Jun. 2016, doi: 10.1109/TNSRE.2015.2445634. 
[64] R. N. Khushaba, A. H. Al-Timemy, A. Al-Ani, and A. Al-Jumaily, “A framework of temporal-spatial descriptors-based feature 

extraction for improved myoelectric pattern recognition,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 

vol. 25, no. 10, pp. 1821–1831, Oct. 2017, doi: 10.1109/TNSRE.2017.2687520. 

[65] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunction myoelectric control,” IEEE Transactions on Biomedical 

Engineering, vol. 40, no. 1, pp. 82–94, 1993, doi: 10.1109/10.204774. 

[66] I. Isikli Esener, “Subspace-based feature extraction on multi-physiological measurements of automobile drivers for distress 
recognition,” Biomedical Signal Processing and Control, vol. 66, Apr. 2021, doi: 10.1016/j.bspc.2021.102504. 

[67] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Fractal analysis features for weak and single-channel upper-limb EMG 

signals,” Expert Systems with Applications, vol. 39, no. 12, pp. 11156–11163, Sep. 2012, doi: 10.1016/j.eswa.2012.03.039. 
[68] A. S. Al-Fahoum and A. A. Al-Fraihat, “Methods of EEG signal features extraction using linear analysis in frequency and time-

frequency domains,” ISRN Neuroscience, vol. 2014, pp. 1–7, Feb. 2014, doi: 10.1155/2014/730218. 

[69] K. K. Patro and P. Rajesh Kumar, “A novel frequency-time based approach for the detection of characteristic waves in 
electrocardiogram signal,” in Lecture Notes in Electrical Engineering, vol. 372, Springer India, 2016, pp. 57–67,  

doi: 10.1007/978-81-322-2728-1_6. 

[70] S. Kuila, N. Dhanda, and S. Joardar, “Feature extraction of electrocardiogram signal using machine learning classification,” 
International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 6, pp. 6598–6605, Dec. 2020,  

doi: 10.11591/ijece.v10i6.pp6598-6605. 

[71] Q. Li, A. Zhang, Z. Li, and Y. Wu, “Improvement of EMG pattern recognition model performance in repeated uses by combining 
feature selection and incremental transfer learning,” Frontiers in Neurorobotics, vol. 15, Jun. 2021,  

doi: 10.3389/fnbot.2021.699174. 

[72] A. Subasi, “Medical decision support system for diagnosis of neuromuscular disorders using DWT and fuzzy support vector 
machines,” Computers in Biology and Medicine, vol. 42, no. 8, pp. 806–815, Aug. 2012,  

doi: 10.1016/j.compbiomed.2012.06.004. 

[73] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. M. A. Hashem, “Attack and anomaly detection in IoT sensors in  IoT sites using 
machine learning approaches,” Internet of Things, vol. 7, Sep. 2019, doi: 10.1016/j.iot.2019.100059. 

[74] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust you?,’” in Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, Aug. 2016, pp. 1135–1144, doi: 10.1145/2939672.2939778. 
 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

A survey on bio-signal analysis for human-robot interaction (Huda Mustafa Radha) 

6009 

BIOGHRAPHES OF AUTHORS  

 

 

Huda Mustafa Radha     Computer Sciences Department/College of Science, 

Baghdad University, Iraq. B.Sc. in Computer Sciences, Baghdad University 1995, High 

Diploma Computer Sciences, University of Baghdad 2010, M.Sc. at the Computer Sciences, 

University of Baghdad 2018. From 2006 to 2018 Teaching assistant at the University of 

Baghdad, Science college, Baghdad, Iraq. Publication Published (8) papers in Conferences 

and Journals. Current Research Interests AI, Data Mining, Biomedical Signal analysis, 

Robotics, and Image processing. Currently, she is a lecturer in the Computer Science 

department and a student for a Ph.D. at Computer Sciences, University of Technology. She 

can be contacted at email: huda.rada@sc.uobaghdad.edu.iq. 

  

 

Alia Karim Abdul Hassan     Computer Sciences Department, the University of 

Technology, Baghdad, Iraq. B.Sc. at Computer Sciences, University of Technology on 1993, 

M.Sc. at Computer Sciences, University of Technology on 1999, Ph.D. Computer Sciences, 

University of Technology on 2004. Professor since 2019. Position Dean of Computer Science 

Department since Feb 2019 till now. Supervised 26 M.Sc. and Ph.D. thesis in Computer 

Science since 2007. Publications Published more than (85) papers in International 

Conferences and Journals. Current research interests soft computing, green computing, AI, 

data mining, software engineering, electronic management, computer security. She can be 

contacted at email: 110018@uotechnology.edu.iq. 

 

mailto:huda.rada@sc.uobaghdad.edu.iq
mailto:110018@uotechnology.edu.iq
https://orcid.org/0000-0002-8041-7679
https://scholar.google.com/citations?user=oZI0bnAAAAAJ&hl=ar
https://www.scopus.com/authid/detail.uri?authorId=57211209037
https://orcid.org/0000-0002-6835-8872
https://scholar.google.com/citations?user=hiSht-4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55293743800
https://publons.com/researcher/1458528/alia-karim-abdul-hassan/

