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 Dyslexia is a form of learning disability that causes a child to have 

difficulties in writing alphabets, reading words, and doing mathematics. 

Early identification of dyslexia is important to provide early intervention to 

improve learning disabilities. This study was carried out to differentiate 

EEG signals of poor dyslexic, capable dyslexic, and normal children during 

writing using machine learning and deep learning. three machine learning 

algorithms were studied: k-nearest neighbors (KNN), support vector 

machine (SVM), and extreme learning machine (ELM) with input features 

from coefficients of beta and theta band power extracted using discrete 

wavelet transform (DWT). As for the deep learning (DL) algorithm, long 

short-term memory (LSTM) architecture was employed. The kernel 

parameters of the classifiers were optimized to achieve high classification 

accuracy. Results showed that db8 achieved the greatest classification 

accuracy for all classifiers. Support vector machine with radial basis 

function kernel yields the highest accuracy which is 88% than other 

classifiers. The support vector machine with radial basis function kernel 

with db8 could be employed in determining the dyslexic children’s levels 

objectively during writing. 
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1. INTRODUCTION 

Fundamental learning skills that children need to acquire are reading, writing, and doing 

calculations [1], [2]. However, this is the most challenging skill faced by dyslexic children and becomes 

apparent when they start schooling compared with normal children. Signs of dyslexia become obvious when 

learning activities required them to read and write. Early identification of dyslexia is crucial to help them to 

master the basics before academic content becomes harder. The level of difficulties faced by children is 

varied, some dyslexic children have severe difficulties and some have mild difficulties. Classification of this 

level requires a skilled examiner who assesses the children learning disability. Intervention programs 

designed specifically for dyslexic children would help them to overcome their learning difficulties early and 

provide an opportunity for them to be on par with normal learners.  

The study of dyslexia through brain-based techniques was implemented previously using structural 

and functional connectivity imaging such as magnetoencephalography (MET) [3], functional magnetic 

resonance imaging (fMRI) [4], and positron emission tomography (PET) [5]. However, these techniques 

https://creativecommons.org/licenses/by-sa/4.0/
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incurred high costs, are bulky and require the subject to lie down which is not suitable for children to perform 

activities while their brain activities images are monitored. Electroencephalography (EEG) provides a better 

solution by analyzing the brain’s electrical activity. EEG consists of five frequency bands related to 

information from different parts of the brain. Most previous studies only focused on the differences between 

EEG signals of dyslexic and normal learners [6]. They do not further categorize dyslexic children into several 

types. This work analyses the dyslexic children's EEG signals and categorizes them into poor dyslexic and 

capable dyslexic. This is important to monitor dyslexic children's progress of learning in the intervention 

program objectively. 

Studies on dyslexia mainly focus on reading [7] with limited work concentrating on writing, even if 

it is one of the main indicators and part of the consequence of having dyslexia [8]. Writing can be seen as a 

complex process that requires coordination between cognitive related processes and motor skills [9]. In 

differentiating brain activity of normal and dyslexic children, it is paramount to seek tasks that could 

stimulate the required changes that differ between the groups, in which the writing process is seen as an 

option as it requires active attention from learners. During writing, the brain activates two main areas known 

as Broca and Wernicke. The language area of Broca is mainly responsible for expressive writing and 

speaking while Wernicke is associated with understanding the language of both writing and speaking. Other 

areas that are found to be related to machines are temporal and parietal where a study found these areas to be 

responsible for written word comprehension and converting visual images to written symbols that involve the 

programming of motor areas [8]. 

Previous studies investigating differences in EEG signals involved in determining intelligent 

quotient (IQ) [10] as well as EEG related problems such as sleep studies [11], epileptic, mental task [12], 

mental imaginary [13], motor imaginary [14], brain-computer interface [15], epilepsy [16], autism spectrum 

disorder [17] and learning disabilities [18]. This is done by applying several machine learning such as 

multilayer perceptron (MLP), linear discrimination analysis (LDA) and artificial neural network (ANN) to 

identify this symptom by examining the EEG signals. However, k-nearest neighbors (KNN) [19], support 

vector machine (SVM) [14] and extreme learning machine (ELM) [17] gradually gain popularity due to their 

algorithm simplicity. One of the main drivers behind the application of deep learning (DL) in EEG is due to 

the requirement for the application of features that indicate a specific mental state in machine learning (ML). 

Whereas DL would identify the features automatically. Most of the applications of DL in examining EEG use 

a convolution neural network (CNN) that process the images [12], [20]. A few researchers use a recurrent 

neural network (RNN) to process the signal through long short-term memory (LSTM) [21]. 

This paper describes the performance of ML and DL in identifying types of dyslexia from EEG 

signals during writing. Three types of ML classifiers which are KNN, SVM and ELM together with DL 

utilized LSTM were studied and optimized to attain the highest classification accuracy in distinguishing 

between poor dyslexic, capable dyslexic and normal children based on EEG signals during writing-related 

tasks. These are important steps to make use of EEG more practical and to become less dependent on trained 

professionals [22]. The classifiers were selected due to their classification capability and performance. 

 

 

2. RESEARCH METHOD 

The process of classifying EEG signals of normal, poor and capable dyslexic children using KNN, 

SVM, ELM classifier and DL is shown in Figure 1. The work was implemented in stages that start from the 

subject selection, data acquisition procedure which includes EEG signal recording, removal of artifacts, 

extracting features, optimization of kernel selection to achieve the highest classification accuracy and finally, 

the selection of the optimum classifier. 

 

2.1.  Subject identification 

In this work, subjects with an age range from 7 to 12 years old were chosen as signs of their 

dyslexic and learning disability can be seen and readily diagnosed. They have also already started receiving 

formal learning activities at schools such as spelling, reading, and writing. A total of 54 subjects participated 

in this study. Among them are 18 poor dyslexic subjects, 18 capable dyslexic subjects and 18 normal subjects 

as the control group. The categorization of capable and poor dyslexics was made based on the assessment 

that was carried out by the Dyslexia Association of Malaysia.  

Subject denoted as poor dyslexic is based on those that exhibit difficulties in both writings and 

reading when compared with children in their age group. While capable dyslexic is a subject that has 

undergone intervention program and has shown improvement in their overall reading and writing capabilities. 

Before the assessments were carried out, each subject's medical history, and background, along with the use 

of their dominant hand during writing, either right or left, were duly recorded. This is to ensure consistency 

and data conformity among all subjects. In addition, subjects were also selected among those without any 

record of prior neurological disorder or having any history of suffering from a double deficit. This work has 
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obtained ethical approval for conducting the research from Research Ethics Committee UiTM. An explanation 

of the research and the consent form was given to the subject’s caretaker upon receiving approval.  

 

 

 
 

Figure 1. Flowchart showing the process of distinguishing EEG signals of subjects 

 

 

2.2.  Writing task 

Five tasks were designed for writing assessment as shown in Table 1. The first task is relaxing with 

the eye closed to get EEG baseline recording and to eliminate physiological conditions that may influence the 

signal. The second task is writing known words (tasks B1 and B2) that will activate brain areas associated 

with memory recall and matching of the written word within the visual word form area (VWFA) in the 

occipital temporal regions. Task C1 and C2 are writing of non-words which are words that are made up and 

has no meaning. This will invoke the brain areas of Wernicke and Broca that will try to decode the non-word 

rather than recalling it from memory.   
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Table 1. Tasks designed for the assessment 
Categories Task 

A Relax state with close eye 
B1 Writing of simple words 

 B2 Writing of complex words 

C1 Writing of simple non-words 
C2 Writing of complex non-words 

 

 

2.3.  EEG signal acquisition and pre-processing 

In this study, EEG signals were recorded from normal and dyslexic subjects by our team and the 

database is not available to the public. During EEG signal acquisition, the subject was seated in a controlled 

environment holding a pencil with a paper on the table as shown in Figure 2. A computer screen was placed 

in front of the subject displaying a set of words one by one in turn and the subject was required to duplicate 

the word seen by writing it on the paper for tasks B1, B2, C1 and C2. Each set of words contains related 

alphabets that pose a difficulty for a dyslexic to write. 

 

 

 
 

Figure 2. Recording of EEG signal from a subject during the assessment 

 

 

EEG signals were recorded using g.Nautilus wireless biosignal acquisition system as shown in 

Figure 2 while subject completing tasks. A total of eight electrodes were positioned on the scalp following 

the International 10-20 electrode placement system. The placement of the electrodes is based on known areas 

that are associated with writing and reading found in our previous work [23]. Within the learning pathway of 

the left side of the brain, EEG signals were recorded from electrode locations C3, P3, T7 and FC5. To 

monitor any alternative pathway that may exist on the right side of the brain, signals were recorded mirrored 

to the left side of locations C4, P4, T8 and FC6. All signals were sampled at 250 Hz with a 24-bit resolution. 

Pre-processing of all acquired signals include the removal of power-line interference with a Notch filter and 

the removal of DC offset was achieved through a high pass filter having a cut-off frequency of 0.5 Hz. The 

EEG signals were then saved as .mat files for feature extraction and classification using a program written in 

MATLAB. Table 2 shows related electrode positions and their corresponding function. A total of 216 

datasets containing 1,728 EEG signals recording were attained from the 8 electrodes. Out of these, 70% was 

used for the training dataset and the remaining 30% was for the testing dataset. 

 

 

Table 2. Electrode positions and functions 
Area Brain Hemisphere Left/Right Functions 

Parietal Lobe C3/C4 Analyze word – sensorimotor integration 
Wernicke's Area P3/P4 Recognition of word – cognitive processing 

Temporal Lobe T7/T8 VWFA - memory representation of the letter 

Broca’s Area FC5/FC6 Connect sounds to letters - motor plan for vocalization 

 

 

2.4.  Feature extraction 

Raw EEG signal recorded from the subject's scalp during the writing task contains all the signal 

frequencies that were combined in one single EEG signal. Since the EEG signal is non-stationary, the 

separation of a frequency band to localize features according to brain activities was achieved using the time-

frequency scale representation discrete wavelet transform (DWT) which decomposes the signal into detail 

and approximation coefficients at different sub-bands [24]. The wavelet decomposition involves two digital 

filters which are low-pass and high pass filters denoted as 𝑔 and h as shown in (1) and (2): 
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𝐴[𝑘] = ∑ 𝑥[𝑛] − 𝑔[2𝑘 − 𝑛]𝑛  (1) 

 

𝐷[𝑘] = ∑ 𝑥[𝑛] − ℎ[2𝑘 − 𝑛]𝑛  (2) 

 

where x[n] represents the signals, D[k] is the detail, A[k] is the approximation. 

Five frequency sub-bands as shown in Table 3 were obtained from the decomposition of the signal 

using Daubechies mother wavelet with orders 2, 4, 6 and 8 to provide smooth EEG signals. Each sub-band 

provides information related to brain activities. Detail coefficients at level 3 (D3) which represents the beta 

band and level 5 (D5) which represents the theta band were frequency bands of interest in this study. The 

beta band corresponds to learning-related tasks while theta band corresponds to relax conditions.  

 

 

Table 3. Decomposition level of EEG signal frequency sub-band 
Decomposition Level Frequency Range EEG Band 

D1 64-128 Noise 

D2 32-64 Gamma 

D3 16-32 Beta 
D4 8-16 Alpha 

D5 4-8 Theta 

A5 0-4 Delta 

 

 

Band power calculates the magnitude of the signal in response to a given stimulus or task under 

measurement. It indicates activation and allows the determination of area localization to take place. Power 

features for EEG signal from the reconstruction of the beta band and theta band were computed using (3) to 

get the coefficient. Signal values are shown by symbol x and the signal length by symbol L.  

 

𝐵𝑎𝑛𝑑 𝑃𝑜𝑤𝑒𝑟 =
∑ 𝑥2

𝐿(𝑥)
 (3) 

 

The ratio of theta/beta band power was calculated using (4). The coefficients of the beta band power 

served as the first feature vector and the coefficient of the ratio of theta/beta band power served as the second 

feature vector of the classifier. Having more than one feature vector would make classifier prediction more 

accurate and reliable. 

 

𝑅𝑎𝑡𝑖𝑜 =
𝑇ℎ𝑒𝑡𝑎 𝐵𝑎𝑛𝑑 𝑃𝑜𝑤𝑒𝑟

𝐵𝑒𝑡𝑎 𝐵𝑎𝑛𝑑 𝑃𝑜𝑤𝑒𝑟
 (4) 

 

2.5.  Cross-validation and classifier  

Model evaluation was carried out using cross-validation to check how well a model generalizes to 

training data before the model is used in new data. It was accomplished by splitting the training data into 

several folds. K-fold cross-validation that splits the dataset into 10 folds was applied to determine the error 

rate in the model parameter selection. For each fold, it contains a dataset with equal distribution of classes to 

avoid bias in the results. After setting up the cross-validation, the classification was performed. 

 

2.5.1. k-nearest neighbors 

KNN performs classification by computing the distance of new data to training data that is the 

nearest [25]. The selected ‘k’ value is the number of neighbors that will be referred to and the new data will 

be classified according to the majority rule. This work sets the k value starting from 1 to a maximum of 19 

with an incremental of 2. New data distances to the training sample were calculated using functions as shown 

in (5) to (10). D(x,y) is the distance of sample x and y, while xi and yi are the ith features of the sample and the 

number of features represented by k. Note that Hamming distance is equivalent to Cityblock distance if it is 

looked at in the form of a real coordinate for binary string. Changing the q value in Minkowski distance 

would form Cityblock, Euclidean and Chebychev distance. 

 

Euclidean 𝐷(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1  (5) 

 

Cityblock/Hamming𝐷(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|𝑘
𝑖=1  (6) 
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Correlation 𝐷(𝑥, 𝑦) =
∑ (𝑥𝑖−𝑥𝑖̅̅ ̅)𝑘

𝑖=1 (𝑦𝑖−𝑦𝑖̅̅̅)

√∑ (𝑥𝑖−𝑥𝑖̅̅ ̅)2 ∑ (𝑦𝑖−𝑦𝑖̅̅̅)2𝑘
𝑖=1

𝑘
𝑖=1

 (7) 

 

Cosine 𝐷(𝑥, 𝑦) =
∑ (𝑥𝑖×𝑦𝑖)𝑘

𝑖=1

√∑ (𝑥𝑖)2𝑘
𝑖=1 ×√∑ (𝑦𝑖)2𝑘

𝑖=1

 (8) 

 

Chebychev 𝐷(𝑥, 𝑦) = 𝑚𝑎𝑥|𝑥𝑖 − 𝑦𝑖| (9) 

 

Minkowski 𝐷(𝑥, 𝑦) = (∑ (|𝑥𝑖 − 𝑦𝑖|)𝑞𝑘
𝑖=1 )

1

𝑞 (10) 

 

where q  1. 

 

2.5.2. Support vector machine 

SVM works by computing the maximum boundary separation based on space optimization between 

two sets of classes [26]. For linear based categorization, a simple linear kernel can be utilized to achieve the 

separation, but in non-linear cases, data are to be placed in features space where the isolation of data can only 

be implemented in hyperspace. This nonlinear separation can be achieved by employing radial basis function 

(RBF) and the Polynomial kernel. This work uses multiclass SVM with a one versus one mechanism, 

separating each pair of classes against each other and using a majority voting scheme to determine the output. 

The SVM classifier can be written as in (11): 

 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖 , 𝑥)𝑁
𝑖 + 𝑏 (11) 

 

where i is the weight vector, yi is the target vector, N is the size of training data, b is the bias and k(xi,x) is 

the SVM kernel as shown in (12) to (14). In this work, the parameters of all kernels were varied to obtain the 

optimal solution; 

 

Linear Kernel 𝑘(𝑥𝑖 , 𝑥) = 𝑥𝑖 , 𝑥 (12) 

 

Polynomial Kernel 𝑘(𝑥𝑖 , 𝑥) = (𝑥𝑖 , 𝑥 + 1)𝑑  (13) 

 

where d is the degree of the polynomial  

 

RBF Kernel 𝑘(𝑥𝑖 , 𝑥) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥‖2

2𝜎2 ) (14) 

 

where 𝜎 is the kernel width.  

 

2.5.3. Extreme learning machine 

In achieving fast learning speed and improved generalization, this work investigates ELM which is a 

feedforward neural network with a single hidden layer that is based on the risk minimization principle [27]. 

The only parameter that needed to be learned is the weights between hidden and output neurons, which are 

determined analytically. For N arbitrary distinct samples (xi, ti) Rn×Rm, standard ELM with L hidden nodes 

and activation function g(x) were modelled as in (15): 

 

∑ 𝛽𝑖𝑔(𝑎𝑖𝑏𝑖𝑥𝑗) = 𝑡𝑗, 𝑗 = 1, … , 𝑁𝐿
𝑖=1  (15) 

 

where βi is the weight vector connecting the ith hidden node and output node; ai is the weight factor 

connecting the ith hidden node and the input node; bi is the impact factor of the ith hidden node. 

As shown in (15) can be written efficiently as (16): 

 

𝐻 = 𝑇 (16) 

 

The main goal of ELM is to achieve the smallest error in training and the smallest norm of output weights. 

The solution using least-square that computes the minimum norm using (17): 

 

�̂� = 𝐻 † 𝑇 (17) 
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where H† is the Moore Penrose generalized inverse of hidden layer output matrix H.  

Kernels are employed as output weight and integrated into ELM to obtain better generalization with 

less user intervention. In (18) to (21) shows the kernel for ELM that were used in this work: 

 

Linear kernel 𝐾(𝑥, 𝑦) = 𝑥 × 𝑦  (18) 

 

Polynomial kernel 𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(𝑥 × 𝑦 + 𝑛)𝑑  (19) 

 

where d is the degree of the polynomial  

 

RBF kernel 𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝 (
−‖𝑥−𝑦‖2

𝜎
)  (20) 

 

where 𝜎 is the kernel width 

 

Wavelet Kernel 𝐾(𝑥, 𝑦) = 𝑐𝑜𝑠 (
𝑑‖𝑥−𝑦‖

𝑐
) 𝑒𝑥𝑝 (

−‖𝑥−𝑦‖2

𝑏
)  (21) 

 

where b, c and d are the parameters for the wavelet kernel 

 

2.5.4. Deep learning 

Deep learning is a multilayer network structure that can extract significant features by learning from 

a lower layer to a higher layer. One of the architectures used in deep learning is RNN. In this work, LSTM 

which is the extension of RNN architecture was used since it can deal with sequential data [28]. It works with 

sequence and time-series data such as EEG signals. RNN take input in the shape of a sequence x = (x1, …, xT) 

and compute hidden vector sequence h=(h1, …, hT) and output vector y=(yi, …, yT) by iterating the following 

equations from t = 1 to T: 

 

ℎ𝑡 = 𝐻(𝑊𝑥ℎ𝑋𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (22) 

 

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (23) 

 

where W terms denote weight matrices, b terms denote bias vectors and H is the hidden layer function. The 

hidden layer function for LSTM is computed in the following set of (24) to (28): 

 

𝑖𝑡 = (𝑊𝑥𝑖𝑋𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (24) 

 

𝑓𝑡 = (𝑊𝑥𝑓𝑋𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑓) (25) 

 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡  𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (26) 

 

𝑜𝑡 = (𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (27) 

 

ℎ𝑡 = 𝑜𝑡  𝑡𝑎𝑛ℎ(𝑐𝑡) (28) 

 

Here  is the logistic sigmoid function, and the components of the LSTM model, referred to as input gate, 

forget gate, output gate and cell activation vectors are denoted as i, f, o and c respectively. In this work, to 

achieve the optimal solution, the mini-batch size and max epoch were varied. 

 

 

3. RESULTS AND DISCUSSION 

Table 4 shows the accuracy of each distance function in the KNN classifier using features from 

DWT with the nearest neighbor parameter varied from 3 to 17 and the rule was set to calculate the nearest 

neighbor. The best result for each distance function and parameter is presented in Table 4. Note that the 

Correlation distance function with features db2 gives the highest accuracy which is 81.67% while keeping the 

nearest neighbor at 3 and using the smallest rule. It also found that db2 and db8 produce better results 

compared to other Daubechies wavelet orders. In terms of nearest neighbor, the highest accuracy can be 

achieved when the number is 3 or 5 for all distance functions except for Hamming.  

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Machine learning and deep learning performance in classifying … (Ahmad Zuber Ahmad Zainuddin) 

6621 

Table 4. Accuracy of KNN classifier 

Distance Function 
Parameter 

Accuracy 
DWT N-neighbor Rule 

Euclidean db8 5 Smallest 78.33 

Cityblock db2 3 Nearest 73.33 

Cosine db8 3 Smallest 76.67 
Correlation db2 3 Smallest 81.67 

Chebychev db8 5 Smallest 78.33 

Hamming db8 11 Nearest 43.33 
Minkowski db8 5 Smallest 78.33 

 

 

Table 5 shows the accuracy of each kernel for the SVM classifier. Parameters of each kernel were 

tested from 0.0001 to 1,000 to find better accuracy but only the parameter with the highest accuracy for each 

wavelet is shown in Table 5. It was found that RBF kernel with db8, the scale of 10 and box constraint of 1 

gives the highest accuracy which is 88.33%. Overall, the RBF kernel outperforms other kernels for all 

wavelets. It also found that db2 and db8 give better performance in the SVM classifier. For the linear kernel, 

db8 give an accuracy of 85%. For the Polynomial kernel, db2 provides an accuracy of 71.67%.  
 

 

Table 5. Accuracy of SVM classifier 

Kernel 
Parameter 

Accuracy 
DWT Box C Order Scale 

Linear db8 - - - 85 

RBF db8 1 - 10 88.33 

Polynomial db2 0.1 4 - 71.67 

 

 

Table 6 shows the accuracy of each kernel in the ELM classifier. It was found that the Wavelet 

kernel with db8 gives the highest accuracy which is 83.33% compared to other kernels in the ELM classifier. 

The performance of wavelet kernel is slightly better compared to RBF kernel. Overall, db8 gives the best 

features for Linear, RBF and wavelet kernels. In the Polynomial kernel, db2 provides the highest accuracy.   
 

 

Table 6. Accuracy of ELM classifier 

Kernel 
Parameter 

Accuracy 
DWT Para Order Para 

Linear db8 - - - 68.3 

RBF db8 1 - - 81.67 
Polynomial db2 0.1 2 - 73.33 

Wavelet db8 1 1 0.1 83.33 

 

 

The performance of DL using the LSTM is shown in Table 7. It was found that LSTM using epochs 

30 with minibatch size 20 and Adams solver produces a higher accuracy which is 83.78% in detecting 

capable dyslexic children. In recognizing poor dyslexic children and normal children, the accuracy is 78.79% 

and 81.82% respectively. This shows that LSTM can differentiate the dyslexic subject between normal, poor 

and capable subjects during writing.  

The sensitivity and specificity of all classifiers that produces the highest accuracy using their 

optimal parameters and functions are shown in Table 7. It is found that using the wavelet db8 as the feature 

extraction method, the SVM with RBF kernel provides the most consistent high accuracy, sensitivity and 

specificity in distinguishing all subjects. All machine classifiers perform very well and provide the highest 

accuracy in recognizing capable dyslexic children compared to when differentiating normal children and 

poor dyslexic children. In the case of detecting poor dyslexic children, the most accurate is SVM (91.67%) 

and the lowest is the LSTM which can only provide an accuracy of 78.79%. LSTM produces low accuracy 

than other classifiers since it has to find features itself, unlike other classifiers where features selection is 

given, however, LSTM still produce encouraging performance. For LSTM, to increase the accuracy, the 

number of subjects needs also to be increased. In recognizing capable dyslexic children, the highest accuracy 

which is 93.55% is achieved from SVM and the lowest accuracy is given by LSTM which is 83.78%. 

This work has shown that the SVM with RBF kernel is the optimum classifier for distinguishing 

normal, poor dyslexic and capable dyslexic children. The recognition of poor and capable dyslexic children 

using machine learning and deep learning carried out in this work is unique and has not been reported by 

previous researchers. Even though there is a report revealed the performance of two types of machine 
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learning (k-means and artificial neural network) and fuzzy logic in detecting normal and dyslexic children [6] 

using EEG, they do not further separate the dyslexic children into poor and capable dyslexic categories. 

 

 

Table 7. Performance of classifiers with the optimized parameter (for machine learning) 

Group Performance 
Classifier 

Deep Learning LSTM 30 epochs 
KNN db2 Correlation SVM db8 RBF ELM db8 Wavelet 

Normal 
Sensitivity 80.00 90.00 85.00 63.94 
Specificity 92.50 92.50 85.00 90.91 

 Accuracy 88.33 91.67 85.00 81.82 

Poor 
Sensitivity 80.00 85.00 70.00 68.18 
Specificity 85.00 95.00 100.00 84.09 

 Accuracy 83.33 91.67 90.00 78.79 

Capable 
Sensitivity 85.00 90.00 95.00 81.82 
Specificity 95.24 95.24 90.91 84.62 

 Accuracy 91.94 93.55 92.19 83.78 

 

 

4. CONCLUSION  

In this work, KNN, SVM, ELM and DL were used to categorize EEG signals of normal children and 

differentiate between poor and capable dyslexic children during tasks that involved writing known words and 

non-words. The performance of each classifier was analyzed and assessed using a confusion matrix to 

ascertain its accuracy as well as its sensitivity and specificity. Results showed that the SVM classifier with 

RBF kernel and using features from db8 gives 88.33% overall accuracy outperformed KNN, ELM and DL. It 

was also found that features from db8 yielded the highest accuracy in determining normal, poor dyslexic and 

capable dyslexic subjects. In this study, the categories of dyslexic children can be distinguished through 

writing using ML and DL. In future work, more subjects have to be used to perform the classification using 

DL to get better accuracy. The optimum classifier found in this study can be used in the development of an 

automated dyslexia diagnosis system by other researchers which would help the school to design the 

appropriate intervention program for the dyslexic children and assist the trainer to monitor their progress 

during the training. 
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